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The resolvent equations in the simplest variant of the geometrically nonlinear theory 
of anisotropic multilayer Timoshenko-type shells are derived here, and put in a form con- 
venient for numerical solution with the aid of a computer. An analysis of studies made on 
this subject can be found elsewhere [!] ~nd, therefore, here reference will be made only to 
some published items not included in that survey [2-4]. 

Calculating the geometrical parameters of a shell of revolution whose original surface 
has been generated by rotation of a plane curve of an arbitrary form is a difficult and of- 
ten unsolvable problem, inasmuch as the abscissas and the ordinates of points on the meridian 
are given approximately only. It is well known [5] that a small error of the ordinates can 
lead to large errors in the curvatures when the latter are calculated by interpolation or 
finite-difference methods. The search for a method of effectively solving this class of 
problems has produced the algorithm of smoothing experimental data with cubic splines [6, 7]. 
This method and the methodological basis of the algorithm will be covered completely in the 
second part of this article. 

In the third part of this article some results of numerical calculations pertaining to 
corded-rubber shells of revolution, calculation made according to the specially developed 
ANSTIM program, will be discussed. This program is suitable for evaluating the combined 
effect of anisotropy and geometrical nonlinearity of the stress--strain state of multilayer 
shells of revolution with an analytically describable reference surface. The effect of 
anisotropy has already been analyzed within the scope of the linear theory of shells [8-11]. 

i. We consider a thin multilayer shell of revolution consisting of N anisotropic 
layers. As the reference surface we will use the inside surface of any k-th layer or the 
contact surface between layers, in a curvilinear orthogonal system of coordinates ~,, a2. 
The transverse coordinate z will be read toward an ascending normal to the original surface. 
Compression of the shell across its thickness will be disregarded. Let h be the thickness 
of shell; hk, thickness of the k-th layer; 6k, distance from the reference surface to the 
upper boundary of the k-th layer; Ai, Lame constants; ki, curvatures of the coordinate 
lines; u i and w, respectively, tangential and the normal displacements of points on the 
original surface; ui ~, tangential displacements of points in the k-th layer; 8i and ~i, 
functions characterizing the transverse shear; and q, a normal load. Here and henceforth 
i = i, 2 and k = i, 2, ..., N. 

According to the Timoshenko hypothesis about the kinematics, we have for the entire 
stack of layers 

u~=u~+z~. 

For the shearing stresses we use the independent approximation 

~?: f (z) ~i. (I. i) 

This approximation introduces an only formal contradiction into a Timoshenko-type theory, 
inasmuch as the elasticity relations for shearing stresses are satisfied here integrally 
over the stack thickness. 

We will now proceed to the nonlinear relations for strains [12, 13]. The expressions 
defining the strain tensor for the k-th layer will be written in the quadratic approximation 
for small elongations and displacements according to the simplest variant of the nonlinear 
theory of shells, viz., 
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eu~=E~i+zKi~; e~2n=E,~+ZK~z; e.iz=[~-O~; ez~=O; 

E 1 . = s ~ + ~  O~; E,~=r 
(z.2) 

where 
1 d w  1 dut 

; Fklw; ~2=k2w--pul; ,01=ktui At dal 02=k2u~_; e~= At dc~ 

1 du2 
r t-pu2; 

At d~r 
1 d~2 ~ P ~ 2 ~  k2 du2 ~-klptt2; 1 d~I ; K22=_p~l; Km= A1 da~ At dat KH= A~ dat 

1 dA2 
P=" AtA2 d~zi" 

(1.3) 

The relation between stresses and strains in the k-th layer follows the generalized Hooke's 
law 

al  1 h : bl lkgl  1 k -+- b12h822 h + bl6hel2h; 022 b" = b 12kel th'"~- 022ke22k + b26b'812k; ( i  .4) 
al2 h = b 16kgl 1 h + b26hE22 h -~- b66h~312 h. 

Upon introducing here specific forces and specific moments [14], then integrating with re- 
lations (1.4) taken into account, we obtain 

A B ] [Etl, E22, E,=,/<,i, K22, K,2] r. [TI'Tg'S'MbM2'H]T= [ B C 

The components of the stiffness matrix can be calculated according to the expressions 

N N 
! 

Am.= Z (6h--~k-t)b~.?; B , , , - = ' ~ ' Z  (6~2--6k-t2)b"~"h; 
k=t h=l 

N (1.5) 
! 

Z ( Oh3-bh-t~)bm~ (m, n=l, 2, 6). C~=-~ 
k=l 

The mixed variational principle yields, after standard transformations, the equations 
of equilibrium 

dT, dN1 =p(T1-T2) -kiN1; -df---=pNl+klTi+k2T2-q; 
dt 

dM1 dS* 
dt =p(Mx-Me) +Q,; ~dt -=2pS* +k2(T~O~+SO~); 

dH d 1 d 
dt =2pH+Q2; NI=Qi-TIOI-S,O,2; S*=S+2k2H; dt A1 &z, 

and the additional relations 

N 8~ 

(1.6) 

Z ~ (ela--a45h~23~--a55ha13h)/(z)dz=O (1 ~ 2 ;  4 ~ 5 ) ,  (1.7) 
h=l 5k_; 

c h a r a c t e r i s t i c  of  a Timoshenko-type theo ry .  Here a44 k, a55 k, a45 k are  the  e l a s t i c i t y  con- 
s t a n t s  of  the  k - t h  l a y e r  [15]. Re la t ions  (1.7) s i g n i f y  tha t  the  express ions  for  the  shea r -  
ing s t r e s s e s  in  the  theory  of  e l a s t i c i t y  a r e  v a l i d  i n t e g r a l l y  over the  t h i ckness  of a 
ponderable  s h e l l  f ( z ) .  We now take  expres s ion  (1.2) fo r  ei3 and express ion  (1.1) fo r  ois  k, 
a l so  at3 k from express ion  (1 .7 ) ,  and a f t e r  t r an s fo rm a t i ons  ob ta in  

~l=q44(~l--01)--q45(~2--02) (l ~-~2; 4~--5); 

(m, n=4, 5); 

TTrnn 
qmn = 

"644T55 -- T452 (i* 8 ) 
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N 6 k ,N 6 k 

k ~ l  8k_  1 k = l  t~h_ t 

When the distribution of shearing stresses over the stack thickness is specified, then re- 
lations (1.8) yield the ~i functions and thus the shearing forces Qi = Tui" 

For a numerical solution of this problem, we rewrite expressions (1.3) for the strains 
in the form 

dul 1 2 dw dU2 =Ej2_pu2_OlO2; 
dt 

(1 .9)  
d823 

dt = K12-,oe23- 2k~ (E12- 0t0~). 

We h a v e  thus  o b t a i n e d  a r e s o l v e n t  s y s t e m  o f  t e n  n o n l i n e a r  o r d i n a r y  f i r s t - o r d e r  d i f -  
f e r e n t i a l  e q u a t i o n s  ( 1 . 6 )  and ( 1 . 9 ) .  The c a n o n i c a l  s y s t e m s  o f  d i f f e r e n t i a l  e q u a t i o n  w i l l  
be  s u p p l e m e n t e d  w i t h  b o u n d a r y  c o n d i t i o n s ,  f i v e  a t  each  end o f  t h e  s h e l l :  Tx = T*~ o r  ux = 
0, Nx = Q*x or w = 0, Mx = M*x or BI = 0, S* = T*~2 or ua = 0, and H = M*la or e2s = 0. 

The thus-constructed Timoshenko-type theory of anisotropic multilayer shells allows 
for a natural transition to the classical theory. Letting 8i = 0i and disregarding the non- 
linear terms in all expressions, we arrive at the well-known relations in the linear theory 
of anisotropic shells such as K:2 = 2k2~. 

We now introduce the vector of solutions Y = [Tx, N,, Mx, S*, H, u:, W, 8x, u2, r T. 
The given nonlinear boundary-value problem was numerically solved by a process of successive 
approximation according to the modified Newton method [16]. According to that method, the 
system of equations (1.6) and (1.9) can be linearized and rewritten as 

dY(n+l____~) = y (t, y(n), y(n+l)) . ( 1 . 1 0 )  
dt 

We do not show the right-hand sides of system (i.i0) and for details we refer the reader to 
[16], where the distinctive features have been described which characterize implementation 
of the algorithm of numerical solution in Kirchhoff--Love problems pertaining to the strength 
of orthotropic shells. 

2. Splines are known to have been used principally for interpolation [6]. Interpola- 
tion splines yield excellent results when the ordinates are given with a sufficiently close 
accuracy. Otherwise, an interpolation should be replaced with smoothing. Here the algorithm 
of data smoothing with cubic splines [7] will be examined and extended to a larger class 
of problems. 

A cubic spline for smoothing data points (tj, yj) on a At: to < t~ < ... < t n grid 
will be constructed in the conventional manner. We find a function with an absolutely con- 
tinuous first derivative and summable with the square of its second derivative which mini- 
mizes the functional 

t~ 
(2.1) 

E ( s ) =  J (s")2dt 
to 

in the class of functions satisfying the condition 

~ pT[s (tj) _ y ~ ] 2 ~ .  (2 .2 )  
j=o 

Here ~ = (n + i)~*; and o is the mean deviation of ordinates yj from exact values of the 
function. The weights pj > 0 are used as parameters with which a spline can be fixed at 
some given points. Usually pj = i, but larger values are assigned to the weights for points 
through which the spline is to pass. 

It is well known from the general theory that a cubic splint minimizes the functional 
(2.1) under constraint (2.2) and that it is the only one that does. Inasmuch as the exact 
value of the parameter o is usually not known, it is entirely permissible to require that 
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equality (2.2) be satisfied and to replace the original problem with minimization of the 
funct ional 

N 

[ ] (2.3) 
j=O 

where a j  = s ( t j )  ( j  = O, 1, . . . ,  n) a r e  unknown, f o r  t h e  t ime b e i n g ,  and ~ i s  t h e  Lagrange  
m u l t i p l i e r  ( smooth ing  p a r a m e t e r ) .  Such a f o r m u l a t i o n  o f  t h e  prob lem c o n s t i t u t e s  a com- 
p romise  be tween  smooth ing  and a p p r o x i m a t i o n .  

U n l i k e  i n  a n o t h e r  s t u d y  [ 7 ] ,  where  t h e  n a t u r a l  bounda ry  c o n d i t i o n s  s " ( t o  + O) = 
s " ( t  n -- O) = 0 o f  t h e  v a r i a t i o n a l  p rob lem ( 2 . 3 )  were  c o n s i d e r e d ,  we w i l l  c o n s i d e r  t h e  more 
g e n e r a l  boundary  c o n d i t i o n s  ( f ' o  and f ' n  a r e  g i v e n  numbers)  

s'(to+O)=['o, s'(tn--O)=['n.. (2.4) 

The cubic spline will be sought in the form 

s(t) =az+bl(t-h) +c~(t-h)2+d*(t-h)3; t~[h, tt+l] (l=O, 1, . . . ,  n -  1). ( 2 . 5 )  

The conditions of continuity of the cubic splint, its first and second derivatives at nodes 
of the grid, and the boundary conditions (2.4) yield 

d~= cl+i-c~ ; hi= at+l--a~ hlcz_hl2dz; hl=tz+l-h 
3hi ht 

( l=0,  1 , . . . , n - - I ) ;  (2.6) 

Tc=Qa+W; W= [-Vo,  0 . . . . .  0, ['n]T; C--~ [C0, Cl . . . . .  s 
a =  [ao, al . . . . .  a~] T. (2 .7 )  

Here 2cj = s"(tj) (j = 0, i, ..., n) and T, Q are symmetric matrices with three nonzero 

, . . . . .  T 2 1 1 ( / =  
diagonals each: TU+,=Tt+,,,=~ �9 Qu+l=Ot+Lt= ~ ( /=0,1 ,  n - - l ) "  ll=-.~(hl_m2chl); Qll= hi-1 hi 

1,2, n - l )  2 Tn~=2hn_l. Q o o = _ ~ ;  Q ,~=  1 = . . . ,  ; T0o=~h0; ~ ' h~- l "  M i n i m i z a t i o n  o f  f u n c t i o n a l  ( 2 . 3 ) ,  

w i t h  r e l a t i o n s  ( 2 . 5 ) - ( 2 . 7 )  t a k e n  i n t o  a c c o u n t ,  l e a d s  to  the  m a t r i x  e q u a t i o n  

a=y-)~-lP-2Qc; y= (yo, y, . . . . .  yn)T; P = d i a g  (Po, Pi . . . . .  pn). (2.8) 

Inserting this equation into relations (2.7) yields the system of linear algebraic equations 
in the vector c 

(%T+ Qp-2Q) ~=%(Og+ W). (2.9) 

For a determination of the smoothing parameter we turn to equality (2.2), the left-hand 
side of which will be rewritten as 

F~ (;9 = ( a - v )  ~P~ ( a - v ) .  

An a n a l y s i s  made i n  a n o t h e r  s t u d y  [17] has  shown t h a t  t h e  f u n c t i o n  G(X) = 1 / F ( I )  i s  a r i g o r -  
o u s l y  r i s i n g  and convex one ,  which f u l l y  j u s t i f i e s  a p p l i c a t i o n  o f  the  Newton method f o r  f i n d -  

1 
ing  t h e  r o o t  o f  the  e q u a t i o n  G(%) = ~ - Y .  I t e r a t i o n s  w i l l  be p e r fo rm ed  a c c o r d i n g  to  t he  r e -  
lat ion 

)dm+1)=%(m)+ F(~'(m)) [ffl=-F(~'(m))] - .  (2.10) 
~,hF' (~(m)) 

The iteration process (2.10) is globally convergent. However, a case is possible where 
F(0) <~. fl,/=. There the splint degenerates into a broken line. 

We have thus constructed the algorithm of data smoothing with cubic splines. The se- 
quence of calculations is as follows: we find the vector c from the system of linear alge- 
braic equations (2.9), whereupon relations (2.6) and (2.8) yield the remaining coefficients 
(2.5) of the smoothing splint. 

Let us now apply the smoothing algorithm to the problem of calculating the geometrical 
parameters of a shell of revolution, with the equation of its meridian written in the pa- 
rametric form x = x(t), y = y(t). Here t is the arcuate coordinate read along the meridian 
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Ay r162 Mo 

0 x 
Fig. 1 

(Fig. i) from the starting point Mo to point M n. The derivatives are determined from the 
well known relations 

dx dy 
.... cos c~; -- sin a, (2.11) 
dt dt 

where a is the angle which a tangent to the meridian forms with the axis of rotation ox. 

Let the angle ~o of the tangent at point Mo and the angle ~n of the tangent at point 
M n be given, also let the coordinates xj, yj (j = 0, i, ..., n) on the At: to < tl < 
... < t n grid be given. With the aid of relations (2.11) one can easily write down the 
boundary conditions (2.4) needed for s numerical implementation of the algorithm. Let 
s(t, x) and s(t, y) be the cubic splines for smoothing the data points xj and yj (j = 0, i, 
..., n), respectively. Using this notation, we calculate the Lame constants and the curva- 
tures of the coordinate lines as well as the parameter p (1.3) from the relations AI = I; 

A2 = s ( t ,  y ) ;  k2= s'(t,x), s'(t,g) A2 ' p= A ~ ;  k~ =s'(t, x)s"(t, y ) - s ' ( t ,  b')s"(t, x). 

We will show a numerical example indicating the capabilities of the algorithm developed 
here. We will consider a toroidal shell whose original surface has been generated by rota- 
tion of a circle with the radius R~ = 20 cm. The distance from the axis of rotation to the 
equator is Ro = 40 cm (Fig. i). 

We use A~: 0 ~ 3 ~ ..., 117 ~ , 120 ~ grid where t = ~RJ180. The abscissas and the 
ordinates of points on the meridian, given at the nodes of this grid, will be rounded off 
to the first decimal figure so that the maximum deviation of the coordinates from their 
exact values will not exceed 0.05 cm. The angle of the tangent at the equator is ao = 0 ~ 
and for the angle ~n we select several values: 120 (exact), 119, and i18 ~ The results of 
numerical calculations are given in Table i, where the fraction of the error due to rough 
stipulation of the coordinates is seen to be insignificant in the first variant (ao = 
120~ In the a n = 118 = variant, on the other hand, the approximation of the curvatures is 
getting somewhat worse. In all fairness, however, we must note that in practice the error 
of an a n determination has never exceeded • = and, therefore, the data in Table i should be 
regarded as entirely satisfactory. Reducing the number of nodes to 21 gives rise to a 
negligible error, not larger than 5%. 

It is to be noted, furthermore, that interpolation splines and finite-difference rela- 
tions yield, in principle, incorrect results up to where the curvature changes sign. 
Attempts to use the method of least squares also produced unsatisfactory results. 

3. The algorithms shown here have been implemented in the form of the ANST!M program, 
suitable for analyzing the combined effect of anisotropy and geometrical nonlinearity on 
the state of stress and strain of multilayer shells of revolution with a meridian of an 
arbitrary shape. The capabilities of the ANSTIM program will be demonstrated here on the 
design of corded-rubber shells of revolution. 

The earliest stage of studies pertaining to the theory of rubber-cord shells has been 
well documented in [18]. The greatest progress in the theory of corded-rubber shells has 
been made in applications to mechanics of pneumatic tires [19-23]. 
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Fig. 2 

TABLE i 

V .an  %,;tm o. 
15 ~ 30 ~ 

Exact 10 -l-A2 4,0000 ] 3,9659 3,8660 
value 102,p 0,0000 ] 0,6526 1,2933 

102.k= 2,5000 2,4356 2,2401 
I0 .k~ 1,0000 1,0000, i 1,0000 

~ . =  120 ~ 10 - l .A2 3,9992 { 3,9651 3,8655 
10 ~,p 0,0000 I 0,6584 1,2874 
102. h2 2,5{)05 2,4203 ) 2,2335 
10.k~ 1,0002 I 0,9991 0,9860 

=n=ll9 ~ I0 -~ "A2 3,9992 ] 3,9651 3,8655 
102- p 0,0000 0,6534 , 1.2875 
102.k2 2,5005 2,4210 i2,23;~9 
10 �9 k~ 1,0002 I 0,9994 0.9858 

a n = l 1 8  ~ 10 -~ .A2 3,9992 I 3,9651 i 3,8655 
10 ~.p 0,0000 I 0,6534 1,2876 
102-k2 2,5005 2,4228 i 2,2347 
1o.k, 1,oo~2 ] 1,o0o,7 i 0,9856 

N o t e .  o = 0 . 0 2 9  cm. 

45 ~ 

3,7071 
1,9074 
1,9074 
1,0000 
3,7069 
1,9080 
t,9094 
1,0133 
3,7068 
1,9080 
1,9097 
1,0137 
3,7068 
1,9080 
1,9104 
1,0151 

6 0 ~ 1 7 6 1 7 6 1 7 6  

I 
3,5000 3,2588 3,000C 2,7415 
2,4744 2,9640 3,333~ 3,523~ 
1,4286 0,7942 0,000q -- 0,9442 
1,000011,0000 1,000q 1,O00C 
3,499713,2589 3,0002 2,7424 
2,4719 [2,9624 3,327~ 3,496~ 
1,4212 [0,7956 0,0034[-- 0,935~ 
0,9998[1,0087 0,9894 L004( 
3,499713,2589 3.0004 2,742( 
2,4718 2,9611 i 3,3245 3,499~ 
1,4210 ] 0,7943 ] - 0,00071 -- 0,930~ 
1,0005 1,0110 0,989~ I 0,975~ 
3,4997 3,2590 3,0005] 2,742~ 
2,4716 2,9600 3,3223 3,5041 
1,4z05 0,7938 --0,004w -0,9284 
1,001511,01441 0,99151 0,949~ 

120 ~ 

2,500(1 
3,464] 

-2,0000 
1,0000 
2,5029 
3,4601 

- 1,99T~ 
1,0026 
2,5020 
3,4957 

- 1,9377 
0,9209 
2,5011 
3,5303 

-- 1,8771 
0,8344 

We consider a shell of revolution consisting of an even number of antisymmetric corded- 
rubber layers with a reference surface which cannot be described analytically. This problem 
is undoubtedly a very interesting one: firstly, because such shells are nowadays designed 
on the basis of the theory of orthotropic shells and, secondly, because no clear conception 
can be found in the technical literature on how the shape of the meridian should be approxi- 
mated. Owing to the intricate shape of the meridian (possibly a combination of convex and 
concave segments), an approximation of the latter with analytical functions will appreciably 
distort the true state of stress and strain of the structure. The algorithm of smoothing 
by means of spiines, which is included in the ANSTIM program, does not have these drawbacks. 

Let the shell be made of 2L corded-rubber layers and let the contact surface between 
the layers L and L + i serve as the reference surface. We will assume that all layers of 
this shell are of the same constitution and differ only in the angles Yk which their cord 
filaments form with the meridian, these angles being ~k = (--i)ky (k = l, 2, ..., 2L). This 
arrangement is close to a real one and is used in the construction of diagonal tires [24]. 

The elasticity relations for the k-th corded-rubber layer will be expressed as 

~l'l'h:Ci181,1,h~r U2,2,k=C1281,1,k~C2282,2,k; ~l,2,h~C6681,2,h; 
81,3 k ~ Gl3-1Ui,3k~ 82,3 k ~ G23-I~2,3 k 

(axes i', 2', 3 running, respectively, along the cord filaments, across the cord filaments 
in the plane of a layer, and normally to the plane of a layer, as shown in Fig. 2). The 
components of the mean-stiffness matrix for a layer are 

El Eu v21E1 w12E2 
= ; C12 = ~ ,  ; C 6 6 = G 1 2  �9 

Cll I--~12u C22= i--~12V21 I - - V I 2 V 2 1  1--V12u 

442 



TABLE 2 

Param- ~ 

Variant eter ~176 I 15~ I 3~176 ] 45~ I 6~176 

Exact 
value 

ANSTIM 

10 -a 'Ti  " 4,085 4,0561 
10-~.T~ 5,6691 5,4471 
lO.S 1,7601 1,715 I 
Mt --0,402 '--0,310 i 
M= - - 0 , 5 4 5  - -  0,404 [ 
H --2,444 --2,401 I 
10. u~ 0,000 1,360 I 
10. w 1,942 2,510 I 

! 
I0 -~ �9 T~ 4,103 4,073[ 
l0 -~. T= 5,697 5,473t 
10" S 1,759 1,706 [ 
M~ -0,401 -0,294 ] 
M2 --0,543 -0 ,382 
H --2,457 --2.413 
i0. ut 0,000 1.314 I 
10. w 2,0,99 2.6641 

3,985[ 3,915 3,897 
4,859 4,089 ] 3,325 
1,592 1,422[ 1,243 
0,0371 0,386 0,842 
0,038 ! 0,398 0,703 
2,282 2,114 i - -  1,937 
2,243 2,408. 1 925 
3,981 5,7271 6,958 

4,004 3,938 3,92{] 
4,884 4 ,113 3,344 
1,587 1 ,420 1,235 
0,019 0,344[ 0,821 
0,017 0,355 1 0,685 
2,294 2,126 I -  !,948 
2,178 2,337] 1,853 
4,074 5,720 1 6,930 

75~ I 90~ I05~ 120~ 

3,977 [ 4,184] 4,529 5,000 
2,676 2,1791 1,832 1,619 
1,079 0,940 1 0,815 0,648 
1,080 0,658 [ -- 1,267 - 6,653 
0,710 0,326]--0,537 -2,154 
1,785 [ - 1,681 - 1,638 -- 1,752 
1,089 0,269--0,184 0,000 
7,007 5,594 2,977 0,000 

'3,9991 4,205 4,549 5,017 
2,692] 2,191 1 ,843  1,,629 
1,072 ] 0,929 0,802 0,627 
1,068[ 0 ,670-1 ,250-6 ,641  
0,702 0,333 -0,530 -2,156 

- 1,795 - 1,690 - 1,646 - 1,759 

Note. o = 0.029 cm. 

1,052 0,247 -0,I92 1 0,000 
6,975 5,581 2,9771 0,000 

The five independent elasticity constants Ex, E2, vx2, Gt2, and G23 of an elementary corded- 
rubber layer will be calculated according to the well known relations in the theory of re- 
inforced plastics. Since no method based on a structural analysis of a corded-rubber layer 
and taking into account the constitution of such a layer as well as the mechanical proper- 
ties of its components is available, we will use the relations in study [8] as the first 
approximation. 

In rotated coordinates a corded-rubber layer has anisotropic properties and the elas- 
ticity relations (1.4) become valid. The components of the stiffness matrix for the k-th 
layer are, in rotated coordinates, 

b11a=bu=cn~4+2(c12+2c66)~2~2+c22~4; b22~=bn=cu~4+2(c12+ 

+ 2C66 ) ~2~2 Jr C22~4; h i 2  k .~- 012 ~- [Cll + c9~2 --  2 (c12` --}- 2c66) ] ~2~2..~_ c12; 
( 3 . 1 )  

6~? = b66 = [ c . , +  c=-  2 (el2 + 2c66) ] ~2 + c66; 
b16 k = ( - 1 ) kbl6 = ( - -  1) h [ (c12 + 2c66-- Cu) ~ 3  + (c22-- c12 -- 2c66) ~3~] ; 

b26 h = ( - 1 ) kb26 = ( - -  1 ) k [ (c12 + 2 c 6 6 - -  cx l )  g3~ + (c22- -  c12- -  2c66) ~ 3 ]  ; 

~=sinT; ~=cos y. 

The elasticity constants in relations (1.8) will be calculated from the expressions 

a44h = =44 = GI~-I$2+ G23-I~2; a55 h =a55= G13-1~ 2 + G2`3-1$z; 

a45 ~ =  ( - -  1) ha45 = ( - -  1 ) h (G23-1_  G13-I) ~g. (3.2) 

E x p r e s s i o n s  ( 1 . 5 )  a n d  ( 3 . 1 )  y i e l d  

(An,  A12, A2~, A66) = h  (bll ,  hi2, 022, b66); ( 3 . 3 )  
h 3 h 2 

(c . ,  c1~, c=, c66) = ~ f ( b . ,  b,~, b2~, b6~); (B,~, B2`~) =5%--(b~6, b26). 

The  c o m p o n e n t s  o f  t h e  s t i f f n e s s  m a t r i x  m i s s i n g  i n  e x p r e s s i o n s  ( 3 . 3 )  a r e  a s s u m e d  t o  b e  e q u a l  
t o  z e r o .  We w i l l  n o t  c o n c r e t i z e  t h e  f o r m  o f  t h e  f u n c t i o n  w h i c h  c h a r a c t e r i z e s  t h e  d i s t r i b u -  

t i o n  of shearing stresses across the stack thickness. Let ~(z) =~ i-- . Then relations 

~ 5h 5h 
( 1 . 8 )  a n d  ( 3 . 2 ) ,  t o g e t h e r  w i t h  t h i s  e x p r e s s i o n  f o r  f ( z ) ,  y i e l d  q44--6--~5 ~ ' q~--a-%-77_ ' a n d  qa~ = 

0 n e e d e d  f o r  c a l c u l a t i o n  o f  t h e  t r a n s v e r s e  f o r c e s .  

It is obvious that the smoothing algorithm introduces some error in the determination 
of the state of stress and strain of anisotropic multilayer shells. For an estimate of this 
error we consider the circular toroidal shell whose geometry has been thoroughly analyzed 
here. The mechanical characteristics of this shell will be selected close to those of a 
factory-produced tire, namely: elasticity constants of the cord material E c = i0 ~ kgf/cm ~ 
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and v c = 0.3, elasticity constants of the rubber E r = 60 kgf/cm 2 and v r = 0.49, diameter of 
a cord filament d c = 0.07 cm, thickness of an elementary corded-rubber layer ho = 0.12 cm, 
angle between a cord filament and the tire meridian at the equator Yo = 52 ~ frequency of 
filament around the equator io = 9, number of corded-rubber layers N = 8 (L = 4), and in- 
ternal pressure q = 5 kgf/em 2 (Fig. 2). The expressions for the angle y that a cord filament 
makes with the meridian and for the frequency i of cord filaments are [24] 

r Rocosyo 
s i n y = ~ o  sinyo; i=io r cosy  ' 

where r is the distance from the axis of rotation to the parallel of the shell on which 
and i are defined. As is customary, we assume a rigid joint at the rim. 

The basic variables which determine the strain state of the shell are given in Table 2 
as function of the central angle @o They have been calculated by two different methods. 
First the geometrical parameters of the circular toroidal shell were defined by analytical 
expressions, then they were calculated according to the algorithm of smoothing splines. The 
input data needed for numerical calculations were taken from the example considered in the 
preceding (second) part of this article. Specifically, a grid with 41 nodes was used and 
an angle ~n = 120~ was selected. 

The data in Table 2 indicate that the ANSTIM program ensures an accuracy which is ade- 
quate for practical calculations and, therefore, can be used for numerical solution of more 
complex problems pertaining to strength of multilayer shells of revolution made of materials 
with highly anisotropic properties. The shape of the original shell surface does not have 
to be stipulated beforehand and can be entirely arbitrary. 
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STABILITY OF ORTHOTROPIC TRIPLE-LAYER SHELLS UNDER A COMPOUND LOAD 

K. N. Lebedev UDC 624.074:678.067 

The stability problem is solved here for orthotropic triple-layer shells with a three- 
dimensional elastic filler and orthotropic carrier sheaths of an asymmetric structure under 
a compound load, and the results of an experimental stability study of such shells are pre- 
sented. 

In the derivation of the stability equations it has been assumed that the carrier 
sheaths are thin orthotropic shells for which the Kirchhoff--Love hypothesis holds true, 
their two principal axes oriented lengthwise and around the circumference, respectively~ 
The filler is a three-dimensional elastic cylinder fastened to one carrier sheath on the 
outside surface and to one carrier sheath on the inside surface. Before a loss of stability 
occurs, the shell is in a zero-moment stress--strain state. With this arrangement the equa- 
tions of stability for the carrier sheaths are 

OTix ~ OSi OSi + OTiu O ZMix 

ox x 

2~Hi OMiy Tiy o 02wi o ~wi  o Ozwi 
+0--~9 ~ Og 2 Re ~T~x-0---x-i-+T~u -~gz +2S~ OxOy (-1)~qr (1) 

Here x, y, r are, respectively, axial, circumferential, and radial coordinates; Tix, Tiy, 
Si, Mix, Miy ~ Hi, forces and moments on the i-th sheath (i = i, outer sheath; i = 2, inner 
sheath); Tix , Tiy ~ Si ~ subcritical forces on the carrier sheaths; qix, qiy, qir, contact 
forces between the carrier sheaths and the filler; ui, vi, wi, displacements of the median 
surfaces of the carrier sheaths; and Ri, radius of the median surface of the i-th sheath. 

Using a solution for the filler analogous to that given in another study [i] for the 
stability of shells with a filler under axial compression, with the components of displace- 
ments and stresses inside the filler in the solution to the three-dimensional problem in the 
theory of elasticity expressed through Bessel functions of the first kind and the second 
kind, we can obtain the resolvent system of stability equations from Eqs. (i) and the 
appropriate elasticity relations. Unlike in that other study [i], however, here the condi- 
tions of contact and bonding at the boundaries between the carrier sheaths and the filler 
will be expressed as 

~(R~+a)=q~,.; ~x(R~+a)=qi~; ~(Ri+a)  =q~y, (2) 

Translated from Mekhanika Kompozitnykh Materialov, No. 4, pp. 646-650, July-August, 
1981. Original article submitted August 20, 1980o 
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