
The last of these orientations is possible when IfL/2fal -~< I. An analogous condition 
for extremality was obtained in a two-dimensional problem in the theory of elasticity, namely 
orientatlon of the axes of orthotropy [5]. 

For obtaining approximate analytical solutions we will use the method of successive 
approximations. As the initial approximation will serve the solution to the problem of 
flexure for an anisotroplc plate with rectilinear anlsotropy. The subsequent approximations 
can be obtained through successive resolutions of the optimality condition with respect to 
angle a and solution of the boundary-value problem of flexure for a plate with curvilinear 
anisotropy. Let us construct an analytical solution for the first approximation. 

As an example we will consider the problem of optimizing the stiffness of an elliptical 
multilayer plate loaded by a uniform pressure. As the zeroth approximation for the deflec- 
tion function we select the solution to the flexure problem for a plate with rectilinear 
anisotropy [2]: 

w (x , ,  x2) = qoa4 ( 1 - x,~ia~ -- x~lb=) =/81 t ;  c = a/b; 
I t=[3D2=22'Ic4+2Dj,=21)c~+4D,=I=~ 

where a and b are the semiaxes of the ellipse. The directions of lay of reinforcing fibers 
in accordance with the three possible orientations of the axes of anisotropy are shown in 
Fig. 3. 
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STABILITY OF LAMINATION IN COMPOSITES* 

V. V. Partsevskii UDC 539.4:678.06? 

The fracture mechanisms of laminated and fibrous composites are very varied. Although 
a large number of authors dealt with this subject (reviews may be found in [1-3]), the pro- 
cesses of lamination, which are characteristic of the fracture of polymer composites, have 
not been sufficiently studied. In particular, there is no satisfactory theoretical descrip- 
tion of stable and unstable brittle peeling near the fractures of the reinforcing elements 
of composites under arbitrary loads. Some special cases of lamination were investigated on 
continuous [4, 5] and simple discrete models [6-8] of the composite; an explanation of the 
stability through the effect of ~nelastic deformations was given in [3]. 

i. It follows from theoretical [9, i0] and experimental [2, 3] analyses that in a laml- 
nated composite with a crack transverse to the layers, with the composite being situated in 
an arbitrary uniform stress field, we must expect Z-shaped laminations (Fig. la). 

The plane problem for a regular laminated medium with alternating hard and soft layers 
is described by the equations [i, 9] 

*Paper presented at the Fifth All-Union Conference on the Mechanics of Polymer and Composite 
Materials (Riga, October, 1983). 
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Fig. 1. 
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Laminations at a transverse crack (a) and symmetrization of 
the problem (b, c). 

Au'~,+B[u,z+,-2u~+u~-j  +-2-(wC ,(~+, _ w'~_,) ]=0;  

C [ u , .,, c . . , .  ] 
Dwcz(4)-C(w=+1-2~'~+wo~-i) - B  -9-" ,Z+l--u o~-I"r -~[W ~+1 +2W/'~+W'~--1) =0 ( -  ~<~z<oo). 

(1) 

Here ua(xl), Wa(X~) are the displacements of a point of the middle surface of the hard layer 
with the number ~; A, D, tensile and flexural rigidities, respectively, of the hard layer; 
B, C, flexural rigidity and tensile rigidity transverse to the layers, respectively, of the 
soft layer; and c, distance between the middle surfaces of neighboring hard layers. A prime 
indicates here and henceforth differentiation with respect to x~. 

The regularity of the medium, and consequently also of Eqs. (i), is disturbed when ~ = 
n, n +i and a = -n, -(n + i) in the zone of lamination. On xt ~ [0, xl ~ we introduce the 
function 

~(x,)  B [ u , , + , - u .  c '" ' ]; = +~(~  ,,+,+w .) 

~2 ( x ~ )  = C(Wn+~ - w.). (2) 

These formulas determine the tangential and normal interlaminar stresses before lamination. 
After lamination we do not insert in (i) ~ i, ~'t, ~ a for a = • • + i) on the sections 
of opened-up (~= > 0) lamination cracks. For closed cracks (~ < 0) we put fT2 and f~'a in- 
stead of ~ and ~'z (f is the coefficient of Coulomb friction). 

For u = • • + i) we supplement on the left-hand and right-hand sides of Eqs. (i) the 
same terms, so that the matrix of the differential-difference operators of system (i) becomes 
regular. Assuming for the time being that ~h ~2 are known, we obtain for the problem in 
Fig. la an inhomogeneous system of equations with homogeneous conditions on the lips of the 
transverse crack xl = 0, lal~n (the longitudinal force, the moment, and the generalized 
transverse force in the hard layer): 

Au~=O; O -~," ~" 
c , ( 3 )  

D w " ' = - B - ~ [  u=+,-u~_,+ 2--(w =+,+2w'=+w'=.,) ] =O 

and the conditions at infinity (X is the coefficient of reinforcement): 

o,,==o,,=/Z; o,~==~,a~; o3~=a3s ~. (4) 

The conditions (3) correspond to the case of an opened-up transverse crack. 

We represent the solution of the problem by the sum of b and c (Fig. i). For u=• • 
(n+l), x,~[0,xl ~ we put in the right-hand sides of Eqs. (i) of the symmetric b and antisym- 
metric c problems the functions 1/2 ~J and 1/2 ~2 (their signs are shown in Figs. ib, c). 
The solutions of b and c have to satisfy the conditions U~I==OtI~/Z, eIS==0, OSS==gSS ~ and Oil == 
G3a==0, gis==ais ~ , respectively, at infinity. 

In accordance with [9], we introduce on the lips of the transverse crack [~[~<n, xl~ 
[0, xl ~ the hitherto unknown distribution of the generalized distortions (discontinuities of 
generalized displacements): for the symmetric problem ~==u=(0) 8==w'=(0); for the antisym- 
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metric problem ~a = we(0)' We represent the solutions of each of the problems b and c by 
superpositions of the solutions: {~,w=}={u~,w=~} +{u= ~ 0}+{u,, ~, }. Here ua ~, w~ ~ is the 
solution at infinity; uu ~, wa~ is the solution depending on the distribution of the distor- 
tions; u*=, w*= is the solution depending on (~i, (~= on the right-hand sides of Eqs. (i). 
The former are constructed elementarily: 

u~=Ol,~Cx~A-~; w~=aaa~aC-~ (b); (5) 
u~ '=O;  w~=o~x~B-.' (c). 

The solutions Ua ~ wa ~ bounded at infinity, were constructed in [9]. For constructing 
the solutions u*~, w* a, which are also bounded at infinity, we use the Fourier--Sti!tjes 
transformation w~th the discrete argument a; this procedure was described in [9, i0]. In 
regard to the transforms u*, w* of the displacements u'a, w,a, we obtain the boundary condi- 
tions for systems of inhomogeneous ordinary differential equations of eighth order with con- 
stant coefficients, homogeneous boundary conditions for xx = 0, and conditions of bounded- 
ness at infinity. The conditions for xx = 0 correspond to the inhomogeneous conditions of 
the symmetric and the antisymmetric problems for determining u~ ~ w~ ~ [9]. 

The solutions u*, w* of the problems b and c are constructed by the method of variation 
of arbitrary constants. They are obtained as expressed through the definite integrals of 
~i,~'~, T~,.T'~. A distinctive feature of these solutions is that they do not contain functions 
that increase with increasing xx. For instance, after integration by parts, to eliminate 
~'j, the solution for the problem b has the form 

3 X~ ~ 

{u*,w*}= Z ~ L.i(Xl-2:l~(xi)exp(tjlx,-x,I)dx,. (6) 
j = 1 - - x  t ~ 

Here ~={~i,~}; tj are the characteristic indices with negative real parts of the problem 
in the transforms [9]; Lj(2, 2) are the matrices whose elements are discontinuous functions 
that depend on the parameter of the Fourier--Stiltjes transform, the properties of the medium 
and n. Discontinuities of Lj occur at zeros of T~, i.e., at the boundaries of the open sec- 
tions of the lamination cracEs. 

Inversion of (6) and of the solution u*, w*, analogous to it, for the antisymmetric 
problem, the summation of all solutions of the problems b and c, yield the solution of the 
initial problem a. It depends on the unknowns: the distribution of the distortions ~=, 0=, 
q~ on x~ = 0, [~{ ~ n and of the functions~j on x1~[O, x1~ . For their determination we use 
conditions (3) and formula (2) for Tj. If we substitute ua, w a into (2), (3), we obtain, 
in view of the symmetry of the solution, a system of integroalgebraic equations 

~i 0 

o(x,)~+ j H(x,, ~ ) ~ ( ~ ) a ~ , - ~ ( x , ) = p  (x~[0,x~o]) ; 
0 

x,~ (7) 

K~+ ~ m(~l~(~)d~=g. 
0 

Here ~= {S0,~l ..... ~, 00 ..... On, ~0 ..... qn}; the matrices G (2, 3n + 3), H (2, 2) are determined 
through the influence functions ua ~ wa ~ [9]; the matrices K (3n + 3, 3n + 3), M (3n + 3,2) 
are determined via the Fourier--Stiltjes integrals from the solutions of type (6). The vec- 
tors p (2) and g (3n + 3) depend on the external field oxx ~, ~ta ~, oss ~. We do not present 
the formulas for the elements of these matrices here because they are too cumbersome. 

2. In the system (7) the unknowns are, in addition to ~, ~(xl) , also the zeros of the 
function ffl. It was solved numerically with an EC-I033 computer by the iteration method ac- 
cording to these zeros. For the specified xx ~ we designated the first approximation for the 
zeros of~2, coinciding with the final distribution in the preceding variant for a smaller 
xx ~ After the problem of the first approximation had been solved, we calculated the values 
of if2 in "zeros" of this approximation. In dependence on the signs of .~2 we selected new 
values for the zeros of ~=. If in some approximation for the interval between adjacent zeros 
of ~ the condition sup~e<10-e[~e(0) ~2(x~0)]was fulfilled, then this interval was excluded 
from examination in the subsequent approximation. 
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Fig. 2. Dependences of the stresses in the soft layer of the composite 
at the tip of the lamination crack on its length (f = 0). The numbers 
next to the curves indicate the values of n; solid lines are for glass- 
fiber reinforced plastic; dashed lines are for carbon-fiber reinforced 
plastic. 

Fig. 3. Dependences of the relative load necessary for the propagation 
of lamination (f = 0). The numbers next to the curves indicate the val- 
ues of o,s~/o**~; solid lines are for glass-fiber reinforced plastic; 
dashed lines are for carbon-fiber reinforced plastic. 
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Fig. 4. Effect of friction on the stability of laminations with trans- 
verse (a) and longitudinal (b) loading by shear. The numbers next to 
the curves indicate the values of ~,,~/~,s ~ (a) and of ~,,~/o** ~ (b); 

) f = 0; - - -) f = 0.i; - . -) f = 0.2. 

We investigated numerically the solutions of the following problems: biaxial tension 
of the medium(~11~0, a33~=0, ~is==0); tension with shear (ou~=0, ~3~=0, ala~=0 and a11~=0, 
~3s~=0, a13~0) . To the first problem correspond H-shaped laminations (Fig. ib). Here 
there is no solution of c, but the factors 1/2 of ~j have to be omitted everywhere. In all 
cases it was found that on the lamination crack there is either one section with friction 
(~2<0) adjacent to the crack tip, or else there are no such sections whatsoever. 

The calculations were carried out for the parameters of a laminated medium characteris- 
tic of glass-fiber reinforced plastics [ii]: Cc2A-I~Ez/EI=O.3; Bc2A-I~GI3/EI=O.I ; and carbon 
fiber reinforced plastics: E3/EI=O.I04; Gi3/ft=O.042; (X=0.7;E,, E3, Gl3 are the macroscopic elas- 
tic constants of the composite. The length x, ~ of the lamination crack and the friction co- 
efficient f varied. 

Figure 2 shows how the stresses change in the soft layer at the tip of the lamination 
crack (x, = x, ~ with increasing length of this crack. The curves correspond to unlaxial 
tension in the direction of the reinforcement with different lengths of the transverse crack. 
The stresses are referred to ~**~; the dimensionless coordinate is ~o=2xi~ 112 �9 It can 
be seen that these stresses are strongly dependent on ~o, and ~ss with n v 0 even change 
their sign. Since the comprehensive strength of polymer composites under transverse compres- 
sion is much larger than the tensile strength, the lamination process is stable with all 
values of the parameters. The determination of stable and unstable crack growth is used 
here in the sense accepted in fracture mechanics. 
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For the  case  of  b i a x i a l  l o a d t n S ,  F i$ .  3 shows the  a t r e s s e s  ~LL ~ t h a t  are neceasary  for  
the propagat ion of the laminat ion crack; they are r e f e r r e d  to these same s t r e s s e s  with 
x~~ ~ l ~ ( ~ o ) / o ~ ( O ) .  %t is  assumed tha t  lamination increases  when the ~ r i t e r i o n  of 
fracture Is fulfilled at the crack tip. AJ crlter~on of fracture we adopted the quadratic 
criterion constructed on the interlaminar strengths ~a+, ~a-, and+~ ~s. In the calcula- 
tions we adopted [ii] for glass-fiber reinforced plastics: ~,-/~s - 7, ~Is/~a + - 2.5; 
for carbon-fiber reinforced plastic: ~s-/~m + - 3.17, ~Ls/~s + - 0.91. 

It follows from Fig. 3 that even with ~ss W - 0 the lamination process is stable. This 
conclusion, found in experiments [3], could not be explained on simpler models [7, 8]. 
Further application, even of small compressive css =, substantially increases the stability 
of the lamination process. With =ss > 0 the curves ~I~(~o) have maxima: Up to some ~o 
the laminations are stable; with larger ~o they are unstable. This may be explained as 
follows: With increasing ~o at the tip of the lamination crack the stresses induced by 
=**~ decrease (Fig. 2), and those induced by ass ~ increase approximately like ~o*/=. 

The obtained results (see Fig. 3) make it possible to explain the mechanism of the very 
stable nature of the lamination in uniaxial tension in the direction of the reinforcement 
that was observed in experiments. In fact, ess=-~-~sla11=/~ applies everywhere except in 
the region between lamination cracks, where u~ ~ 0. This region is therefore compressed 
along the lamination surfaces by transverse normal stresses. This effect, in combination 
with the considerable friction on the lamination surfaces, is the principal cause of the 
stability of laminations for any ~o. 

Analogous results for laminations in the field of shear stresses ~,~= in combination 
with normal stresses ~s= are given in Fig. 4a, and in combination with ~,= in Fig. 4b. 
Here =13=~Is=(~0)/u~s~(0), ~l~=sl~(~0)/~ll=(0) are the respective relative stresses necessary for 
the propagation of the lamination cracks. These results prove the strong stabilizing effect 
of the magnitude of the friction and of the compressive ua~=, and also the destabilizing 
effect of ~a= in tension in the direction of the reinforcement. However, with small G~ = 
(Fig. 4b) the regions of values ~o of stable growth of lamination cracks are the larger, 
the larger the friction coefficient is. 

The results expressed in Figs. 4a, b enable us to draw conclusions about the change of 
the mechanisms of fracture of composites with transverse cracks when the ratios uss , ,a or 
~=/~ change. The change of the nonmonotonic curves U,s(~o) into monotonic ones indi- 
cates a change of the mechanism of fracture of the composite from predominantly shear frac- 
ture to predominantly detaching failure (with o~a=/u,a=~>0.2, see Fig. 4a). An analogous 
change with ~a=/s~ > 0.i (see Fig. 4b) indicates the change of fracture in consequence 
of accumulated fractures of the reinforcement with stable laminations to the mechanism of 
unstable shear lamination. 

CONCLUSIONS 

i. We constructed analytical solutions of the problems of laminations near a transverse 
crack in a laminated composite in an arbitrary homogeneous field of external stresses. 

2. We investigated the stability and instability of processes of lamination and the 
effects of the magnitude of friction on the fracture surfaces and of the type of load on 
these processes. 
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REGULARITIES OF SHORT-TERM AND LONG-TERM STRENGTH OF COMPOSITES 

IN STATES OF COMPLEX STRESS* 

V. A. Man'kovskii UDC 539.4:678.067 

The objects of the investigation were: i) to verify the acceptability of most of the 
existing criteria of short-term strength (CSS) for describing the known and most representa- 
tive experiments concerning nonuniaxial fracture of composites; 2) to work out a criterion 
of long-term strength (CLS) and its subsequent comparison with the existing conditions of 
time-dependent fracture using the known and fairly detailed long-term experiments; 3) to 
work out practical recommendations for the application of criteria of strength, and also 
of anisotropy formulas (AF) describing the change of the strength characteristics of compos- 
ites in dependence on the coiling angle of the reinforcement, i.e., the angle (~. 

i. Figure 1 presents the experimental data on the fracture of laminated tubes of a 
carbon-fiber composite used in rocket engineering [i]. The authors succeeded in predicting 
satisfactorily the fractive load in dependence on the angle ~ only with the aid of a fairly 
cumbersome cubic tensor polynominal containing ten strength tensor components. It can be 
demonstrated that in this case the Gauss test 

S.= ]/~(l_RilR,)~/n (i) 
i=, 

as the measure of the "efficiency" of the conditions of fracture is S = 17.2Z. In formula 
(i) Ri= q~p~/qo and Re i = q~'./q*o are the theoretical and experimental values, of the frac- 
ture load ~or 9 = ~.. ; the c~se 9 = 0 corresponds to a composite tube whose axis 1 coincides 
with the principal ~irection of the reinforcement u; q*~ is the experimentally found inter- 
nal fracture pressure; n = 6 is the number of varied angles. 

For orthotropic sheets of composite, the quadratic tensor-polynomlnial CSS [2] is at 
present generally accepted; it usually contains six strength tensor components and leads to 
a considerably poorer result: S = 35.4%. Even poorer is the correlation of these experiments 
with the tensor-invariant criterion of Gol'denblat and Kopnov: S = 67.5Z. Equally unsatis- 
factory for the experiments under examination are also other CSS: for them S > 5OZ. An ex- 
ception is the dispersion approach [3-5], for which S = 18.7%. On the one hand, it may he 
viewed as a generalization of the ideas of Mises [6] concerning materials "with different 
strength" that are anisotropic and hydrostatically compressed, and on the other hand it may 
be viewed as a peculiar modification of the tensor-polynomial approach (TPA) by not operat- 
ing with the nominal, but with the normalized stresses (NS): 

l~.~l = I o.J/(;*j J ~< l, (2) 

*Paper presented at the Fifth All-Union Conference on the Mechanics of Polymer and Composite 
Materials (Riga, October, 1983). 
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