
the layered material under discussion (in comparison with the classical problem). The group 
velocity increases from zero (at the blocking frequency) to the largest values at frequencies 
at which c m < c < cf, and it also tends to c m as ~ § ~. 
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PREDICTING THE CREEP OF UNIDIRECTIONAL REINFORCED PLASTIC WITH 

THERMORHEOLOGICALLY SIMPLE STRUCTURAL COMPONENTS 

R. D. Maksimov and E. Z. Plume UDC 539.376;678.067.5 

In investigating the thermoelastic properties of fibrous polymer composites, many studies 
have established observance of the temperature--time analogy and demonstrated on this basis the 
possibility of predicting the long-term rheologic resistance of these materials from the re- 
sults of accelerated tests. Thus, observance of the analogy is demonstrated for various fiber- 
glasses in [1-6] and in studying the relaxation properties of fiberglasses in [7], while ob- 
servance of the analogy for high-strength organoplastic is exposed in [8]. In the majority 
of cases, the composite is treated as a quasihomogeneous anisotropic material; as a rule, the 
question concerning a relationship between the temperature--shear function and the volume con- 
tent and orientation of reinforcing fibers has not been studied. Strictly speaking, the data 
used for this prediction therefore characterize the properties of the tested components alone, 
and could not be used in optimization problems for the structure of reinforcement with allow- 
ance for the long-term deformation properties of the structural components. 

Our objective in this study was to investigate the possibility of the staged prediction 
of the viscoelastic properties of a composite, the structural components of which can be con- 
sidered thermorheologically simple bodies: first to perform accelerated tests on the compo- 
nents and to predict their viscoelastic properties, and then, using prediction data and struc- 
tural models, to determine by computational means the long-term viscoelastic properties of 
the composite with allowance for the structure of the reinforcement. This approach is more 
fundamental in cases where a composite material consisting of thermorheologically simple com- 
ponents develops a thermorheologically complex behavior; this may be caused not only by pro- 
cesses at the fiber/binder interface, but also by the formation of boundary layers. This is 
easy to demonstrate as an example on the simplest model of a unidirectional composite~ We 
will assume that in such a fiber/matrix composite there are viscoelastic thermorheologically 
simple materials whose rheological properties in the linear strain region are described in 
accordance with Boltzmann--Volterra hereditary theory using the reciprocal equations 

t 

I 

0 

t (i) 

~(O=E [ s(t)- ~ R(t-s, T)~(s)ds] , 
0 
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where ~ is stress, e is strain, E is the elastic modulus, K and R are creep and relaxation 
kernels, t is time,:mnd T is temperature. In the isothermal case, the K and R kernels depend 
on temperature as a parameter. Analytical expressions for the kernels can be adopted in the 
form of the sum of the exponents 

K(l-s ,  T)= Z Ai (T)~i (T) e-a,(r)(t-~); 
i=x (2) 

h 

R( t - s ,  7) = 2~ 
i = 1  

Bi (T) ~ (T) e-~, IT)(~-~). 

The temperature--time analogy will apply only when the following conditions are observed: 

Ai=inv(T);  a i(T)=~i~ ,ai~ 
Bi=inv(T);  f3i(T)=~~ I~@=inv(T), 

(3) 

where a T is a temperature--shear function. Substitution of equality (3) in (2) and introduc- 
tion of conditional time t' and s' from the equations t' = aTt and s' = aTS reduce Eq. (l) 
to a temperature-invariant form (with coefficients independent of temperature). If it is 
assumed that in loading the composite in the direction of the reinforcement, the fibers and 
binder are in a uniaxial stressed state and temperature stresses are neglected, the relation 
between the stress~=strain state of the composite and its components will be determined by 
the following system of equations: 

t 

0 

t 

0 

~cr~(t) + (1--~)~m(t) =*, 

(4) 

where e(t) is the deformation of the composite under a constant stress o, and ~ is the rein- 
forcing factor; the subscript a pertains to fiber characteristics, and the subscript m to 
binder characteristics. After certain transformations, we can reduce system (4) to the second- 
order Volterra integral equation 

R~(t-s, T) ] e(s)ds. 
(5) 

(6) 

t 

= e ( t ) - ~  [ ~E~ Ra(t-s, T) + ( 1 -~ )E ~  
~E~+ (l-~)Em o ~E.+ (1-~)Em ~E~+ (1-~)E~ 

The solution of Eq. (5) can be represented in the following form: 

t 

e(t) =, ixE~+ (1-1x)E~ o 

where F(t- s, T) is the resolvent of the kernel 

l~E~ (1-~)Em Rm(t-s, T). (7) R(t-s, T) - lxE~+ (l--ix)Era Ra(t-s, T) -~ IxE~+ (1-1~)Em 

Creep testing is normally a method more widely used for experimental determination of the 
parameters of hereditary kernels; it will therefore be required to determine the relaxation 
kernels R a and R m that enter into (7) from the creep kernels K a and K m. Making use of (2) 
and considering (3), we can write analytical expressions of the kernels for the fiber: 

Ka ( t -  s, T) = 'L~ Ai~r176 exp [ -- cr176 (t-- s) ] ; 
i ~ l  
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~,~ ( t -  s, T) = ,~_..i B~r176 exp [ -  13~Oar~ ( t -  s) ]. 

The dependence of K a and R a on T as a parameter in the case T = const under consideration does 
not change the familiar [9] relationships relating the parameters of the kernel and resolvent. 

o 
Therefore, ~ia are determined as k real and positive roots of the k-th-order polynomial 

h 

A ia~ia ~ 

i= 1 ~aO-- ~iaO 
~ o Q t h e  r o o t s  o f  t h e  p o l y n o m i a l  a r e  l o c a t e d  b e t w e e n  b a n d s ,  i . e .  a t a ~  )< l a  < ~ l ~ , ~ ,  a k a  < Bka ~ 

[i0] and can be determined by the iteration method. Since one and only one r o~t 31a ~ exists 
for each section [ala ~ al+i1~~ it can be rather easily determined by successive division of 

o 
the section into two equal parts [ala~ ~l+:,a ] [ii]. Unknowns Bin are determined by solution 
of the following linear algebraic system [9]: 

k 

E Bia~ia~ = 1 (] = 1 . . . . .  k). 
i= I ~iaO -- (Y'jaO 

Analytical expressions of the hereditary kernels for the binder can also be adopted as the 
sum o f  t h e  e x p o n e n t s  

Km ( t - - s ,  T) = ~ mimO~imOaTm exp [ --,O~imOaTm ( t - - s )  ],  

n 

Rm ( t -  s, T) = ~ Bim~im~ exp [ --  ~im~ (t-- S) ]. 
/=1  

The u n k n o w n s  Bim a n d  Bim ~ a r e  d e t e r m i n e d  b y  t h e  m e t h o d  o u t l i n e d  a b o v e .  

T h u s ,  t h e  p a r a m e t e r s  e n t e r i n g  i n t o  (7 )  a r e  d e t e r m i n e d .  L e t  us  now a d o p t  a n  a n a l y t i c a l  
e x p r e s s i o n  F ( t )  a s  t h e  sum k + n o f  t h e  e x p o n e n t s  

h + n  

r (t) = ~ .g~C~e~ t. (8) 
i=1  

I n s t e a d  o f  ( 6 ) ,  we t h e n  a r r i v e  a t  t h e  f o l l o w i n g  r e l a t i o n s h i p  f o r  t h e  c r e e p  o f  a u n i d i r e c t i o n -  
a l  c o m p o s i t e  i n  t h e  d i r e c t i o n  o f  t h e  r e i n f o r c e m e n t :  

k + n  

[ E 1+ Ci(1-e-vd)  (9) 8(t) = ~E~+ (1 - ~ ) E ~  ~=~ 

The F(t) function is the resolvent in terms of the R(t) kernel; according to equations de- 
scribing the relation beween the parameters of the kernel and resolvent, the unknowns C i and 
Yi can therefore be determined from (7) with consideration of (8); the methods of derivation 
are similar to those outlined above for dete~nination of the parameters of the fiber and bind- 
er kernels, In this case, it is easily seen that C i and Yi depend on Ea, Em, ~, Aia , Aim , 
aia , aim , aTa , aTm. Thus, if the structural components of a reinforced plastic are thermo- 
theologically simple materials, yet the temperature~shear functions of the fiber aTa and binder 
aTm are equal, the temperature dependence of the viscoelastic properties of the plastic can- 
not be expressed using the single function aT, and, consequently, the composite is a thermo- 
rheologically complex material. Note, however, that the reinforcement of plastic with visco- 
elastic fibers with a significantly lower flexibility as compared with the binder suppresses 
to a large degree (especially for the direction of the reinforcement) the effect of the aTm 
function on the temperature dependence of the flexibility of the composite itself; observ- 
ance of the temperature--time analogy is therefore determined not only by the extent of the 
difference between aTa and aTm, but also to a considerable degree by the relationship between 
the flexibility of the structural components and the magnitude of the reinforcing factor. 
This problem will be discussed in greater detail helow as an example of the experimental data 
obtained in the study. 
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Fig. i. Yield curves of organic fiber: a) initial curves at temperature of 
20 (i), 70 (2), i00 (3), and 150~ (4); b) temperature--shear function at 
To = 20~ c) generalized yield curve reduced to To = 20~ 

Fig. 2. Yield curves of solidified EDP-10 binder: a) initial curves at 20 (i) , 
40 (2), 50 (3), and 60~ (4); b) temperature-shear function at To = 20~ 
c) generalized yield curve reduced to To = 20~ 

If the equality aTa = aTm = aT exists, Eq. (9) can be represented in the following form: 

k-Fn 
o [ r ] ~ ( 0 =  ~ e ~ + ( l - ~ ) E ~  1+ c ' ~ ( l - e - ~ ' , ' )  . 

i = 1  
! ! 

Here ,  C i = i n v ( T ) ,  Yi = i n v ( T ) ,  t he  t e m p e r a t u r e  e f f e c t  i s  t a k e n  i n t o  a c c o u n t  u s i n g  the  s i n g l e  
f u n c t i o n  aT,  and the  t h e o l o g i c a l  p r o p e r t i e s  o f  the  c o m p o s i t e  can be c o n s i d e r e d  t h e r m o r h e o l o g i c -  
a l l y  s i m p l e .  

Let us now assume that the reinforcing fibers are elastic, and the binder a thermorheo- 
logically simple material with the temperature-shear function aTm = a T. In system of Eqs. 
(4), the first integral equation is then replaced by the algebraic equation oa(t) = Eae(t), 
and the solution for e(t) will be 

o [ 
8(t) =.. E . +  (I_~)E,~ 1+ 

I1 I I  
where C i and Yi are independent of temperature. 

Z C'% ( 1 - e - " , ~ ' ,  t)  ] 
i = 1  

Consequently, the temperature-~time analogy 
is also observed in this case for the reinforced plastic. 

Let us now examine the results of experimental confirmation of the possibility of pre- 
dicting the long-term creep of a composite from the properties of structural components as 
determined from accelerated tests. It is known [12-14] that these composites being distin- 
guished by relatively high specific strength indicators, develop increased creep under pro- 
longed loading, even in the direction of the reinforcement. 

We subjected specimens of fiber, binder, and a unidirectional reinforced composite based 
on them to creep tests. Specimens of solidified binder were prepared from a grade EDT-10 
epoxy binder. Fiber specimens were clusters of organic fibers impregnated with binder with 
subsequent solidification under temperature--time conditions similar to the solidification con- 
ditions used for organoplastic blanks; this fiber treatment was carried out to reduce the dif- 
ference in the properties of the fiber specimens and the properties of the fibers in the core- 
posite, since in first approximation, we can assume that the effects of physicochemical inter- 
action between the binder and fiber on the whole manifest themselves similarly during the heat 
treatment of organoplastic blanks and specimens of a fiber cluster impregnated with binder. 

The fiber, binder, and organoplastic specimens were tested for short-term (up to 5 h) 
creep with ~ = const at several temperature levels, and for long-term (5 yr) creep at T = 
20~ The results cited below apply to stress ranges in which the assumption concerning the 
observance of linearity in thermoviscoelastic properties can be made for the materials in- 
vestigated; the region of linearity is evaluated by the method described in [15] with allow- 
ance for temperature effects. 
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Fig. 3. Yield curves for organic fiber at T = 20 (i), 70 (2), 
i00 (3), and 150~ (4). Points indicate average experimental 
data; lines denote approximation from Eq. (i0). 

Fig. 4. Yield curves for solidified binder at T = 20 (i), 40 
(2), 50 (3), and 60~ (4). Points indicate average experimen- 
tal data; lines denote approximation from Eq. (i0). 

Let us first examine the test results of the fiber and binder specimens. A series of 
averaged yield I(In t, T) curves of the organic fiber and binder, which were obtained from 
short-term-creep tests at ~ = const and four temperature levels, are shown in Figs. la and 2a. 
It is known that preliminary confirmation of observance of the temperature--time analogy con- 
sists in determining the displacements of the I(in t, T) curves along the in t axis and evalu- 
ating the possibility of constructing a generalized curve on the conventional time scale 
I(in t'). This analysis was conducted using an algorithm realized in the form of a computer 
program [16]; the essence of this algorithm consists in a preliminary description of the ex- 
perimental I(in t, T) curves by a polynomial of the required order in accordance with the 
least-squares method, determination of logarithmic shear, description of the a T function, and 
delivery of the final result of the computation ~ a generalized yield curve given in the form 
of a table and reduced to the base temperature To, A graphic illustration of the results of 
the analysis is presented in Figs. i and 2. The resultant in aTa and in aTm values are de- 
scribed well by the familiar Williams--Landell--Ferry equation 

c l  (T- To) lrl ar =- 
c2+ (T-  :To) - 

for the following values of the coefficients: c~ = 70.7 and cz = 582 for the fibers, and el = 
25.8 and c2 = 59.9 for the binder (see Fig. Ib and 2b); note that the same base-temperature 
value To = 20~ is adopted for the fiber and binder. The generalized yield curves obtained 
by reduction to To = 20~ are presented in Figs. ic and 2c. The possibility of the generaliza 
tion of the I(in t, T) curves suggests that they differ only in time scale, i.e., I(in t, T) = 
I(in t + in a T ) = I [in(aTt)] = I(in t'). Consequently, short-term-creep curves obtained for 
a = const at different temperatures may be described by the expression 

k 

~(0 = c r { a + b  1 -k'E [1-exp(-tar#oi)] }, (10) 
i = I  

where <0i is the spectrum of relaxation times at the base temperature To. 

The parameters entering into (i0) are determined via computer using the algorithm in 
[17], on the basis of which a modification of the method of most rapid descent is proposed. 
The purpose function is adopted in the following form 

M N 

' ~ = ~ N  E E [ (s~e--emc)/e-~e] 2-+ rain, 
z r ~ = l  n = l  

where the superscripts "e t' and "~" denote, respectively, the experimental and computed strain 
values, N is the number of concurrent tests for each level of T, and M is the total number of 
average points on the creep curves for all levels of T. The following values were found for 
the parameters: a = 0,78-10- "mm~/kgf, b = 1.09'i0 -~ mml/kgf, T1 = 0.55.10 -I h, ~a = 0.4"10 ~ h, 
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Fig, 5. Long-term creep of organic fibers under stresses o = 33 (i), 
i00 (2), and 165 kgf/mm 2 (3). Points indicate control experiments; 
lines denote prediction. 

Fig. 6. Long-term creep of solidified binder under stresses ~ = 
0.68 (i), 1.36 (2), and 2.04 kgf/mm 2 (3). Points indicate control 
experiments; lines denote prediction. 

T3 = 1.3"103 h, and T4 = 7.67"104 h for the fibers, and a = 31.9.10 -~ mm=/kgf, b = 149.10 -4 
mm=/kgf, Tz = 4.5"103 h, and T= = T~ = 5.0"i0 ~ h. 

The accuracy of the description of the experimental curves can be judged from Figs. 3 
and 4 in which average experimental yield curves for the fiber and binder at different tem- 
peratures and curves computed from (i0) using the above-cited characteristics are presented. 
The error of approximation does not exceed the confidence interval of the average experimental 
points; the relative mean-square error, which characterizes the descrepancy between the com- 
puted data and the average experimental data, is 3.7% and 4.8% for the creep curve of the 
fiber and binder, respectively. Thus, the initial creep curves for the fiber and binder in 
the temperature region investigated are described completely satisfactorily with allowance 
for the corresponding a T functions. The characteristics determined in this case make it 
possible to describe the creep at the base temperature in a time interval exceeding the dura- 
tion of the accelerated tests by several orders of magnitude. What is the validity of this 
prediction? This question is answered by comparing the results of prediction with long-term 
control tests. 

Experimental curves of the 5-yr creep of the fiber and binder specimens, which were aver- 
aged from five concurrent tests, are presented in Figs. 5 and 6. The stress levels of 33, 
i00, and 165 kgf/mm 2 used for the fiber were, respectively, 0.i, 0.3, and 0;5 of the ultimate 
short-term strength; the stresses of 0.68, 1.36, and 2.04 kgf/mm 2 used for the binder were, 
respectively, 0.i, 0.2, and 0.3 of R. Random temperature fluctuations during long-term test- 
ing did not extend beyond the 17-22~ interval, and relative humidity ranged from 50-70%. 
The certain nonmonotonic character of the variation in the experimental creep curves was 
apparently caused by instability of the temperature--humidity conditions in the rooms where 
the long-term tests were conducted. 

A significant difference between the character of the long-term creep curves for the 
binder and fibers follows from Figs. 5 and 6. In contrast to the binder, the basic part of 
the creep strains in the fiber is realized over the course of the first three to five months 
of testing; thereafter, the creep rate of the fiber diminishes appreciably; strictly speak- 
ing, however, it cannot be considered zero even after five years of testing. Also shown in 
Figs. 5 and 6 are creep curves predicted from the above-cited characteristics obtained from 
accelerated temperature tests. The maximum deviation of these curves from the average ex- 
perimental points was 25%; the relative mean-square error of the prediction does not exceed 
the confidence intervals of the experimental curves. Thus, the fact that the temperature 
tests for short-term creep made it possible to predict the long-term strength of fiber and 
binder completely satisfactorily can be considered established. 

Let us now assess the possibility of predicting the long-term creep of a plastic with a 
given reinforcing factor from the properties of the components (fiber and binder) as deter- 
mined from accelerated tests. The computations were performed on an ES-I022 computer in ac- 
cordance with relation (9) for a unidirectional reinforced organoplastic with a volumetric 
fiber content of 0.65. Control creep tests of this material were carried out over the course 
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Fig. 7. Long-term creep of unidirectional reinforced organo- 
plastic under tension in direction of reinforcement; ~ = 30 
(i), 45 (2), and 60 kgf/mm = (3). Points indicate control ex- 
periments; lines denote prediction from accelerated tests of 
fiber and binder and subsequent computation of creep of or- 
ganoplastic (---) and from accelerated tests of organoplastic 
specimens (). 

Fig. 8. Temperature--shear functions for binder (i), organic 
fiber (2), and organoplastic (3) at base temperature To = 20~ 

of five years under tension in the direction of the reinforcement at stresses of 30, 45, and 
60 kgf/mm=; this was, respectively, 0.2, 0.3, and 0.4 of the ultimate short-term strength. 
The temperature--humidity conditions of the tests were similar to those of the long-term tests 
of the fiber and binder specimens. The results of prediction and control tests of the organo- 
plastic are presented in Fig. 7, from which it is apparent that the creep curves of the plas- 
tic as predicted from the properties of the components correspond wholly satisfactorily with 
the averaged experimental curve; the relative mean-square deviation of the curves is 8.75%. 
Also shown in Fig. 7 are creep curves predicted from the results of accelerated temperature 
tests of organoplastic specimens. 

We tested the composite for short-term (up to 5 h) creep at seven temperature levels in 
the 20-90~ range; the resultant data were analyzed in accordance with the above-described 
scheme (for the fiber and binder). In describing the family of I(in t, T) curves of the com- 
posite, there was no clear-cut nonobservance of the temperature--time analogy. The tempera- 
ture--shear function derived from the composite is sho~rn in Fig. 8, in which a T functions for 
the binder and fiber are also presented for comparison. 

At first glance, the conclusion concerning the thermorheologically simple behavior of 
the composite contradicts the considerations made in the first part of this paper. In effect, 
the temperature--shear functions at To = 20~ for the fiber and binder differ significantly: 
at T = 60~ for example, their values differ by two orders of magnitude (aTa = 1.22"10 = , and 
aTm = 2.97"i04). As has already been noted, however, observance of the temperature~time 
analogy for the fibrous composite is determined not only by the difference between aTa and 
aTnl, but also to a large degree by the relationship between the yield values of the structural 
components and the magnitude of the reinforcing factor. To confirm this, we computed the 
yield of a composite with different values of ~ (in the 0.1-0.7 range) from relationship (9) 
for several temperature levels. To evaluate the effect of the difference between aTa and 
aTm, the computations were performed for two levels: actual (differing) functions of aTm and 
aTa were assigned in the first case (see Fig. 8), and aTm values equal to aTa were adopted in 
the second. It was found that the isochronic yield curves of a composite with a volumetric 
fiber content of from 0.3 to 0.7, which were computed for the conditions, differed one from 
the other by less than 2% in the temperature range from 20 to 90~ it was also found~nat 
only under smaller values of ~ did this discrepancy begin to increase markedly. In describ- 
ing the family of I(t, T) curves for organoplastic with ~ = 0.65, consequently, no nonobserv- 
ance of the temperature--time analogy could be determined, since the scatter of experimental 
data in the creep tests, as a rule, was appreciably greater. The temperature-~shear function 
derived from testing the organoplastic was therefore close to the aTa function (see Fig. 8). 
Thus, the question concerning the thermorheological complex behavior of the organoplastic 
under investigation may, of course, be of theoretical interest in virtually the entire criti- 
cal range of the reinforcing factor; for practical problems involving prediction, however, the 
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assumption concerning observance of the temperature~time analogy is totally acceptable for 
the composite. As is apparent fromFig. 7, the accuracy of the prediction in this case is no 
worse than the prediction from accelerated tests of the structural components. It is natural 
that the results of these accelerated tests be used to predict the creep of just the compo- 
site tested for a specific reinforcing factor. Where necessary, preliminary prediction of 
the creep functions of the fiber and binder and subsequent computation of the long-term creep 
of a composite with a different volumetric fiber content is preferable to varying ~. 
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