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Summary. The paper is dealing in its first part with 
a system-theoretical approach for the decomposi- 
tion of multi-input systems into the sum of simpler 
systems. By this approach the algorithm for the 
computations underlying the extraction of motion 
information from the optical environment by bio- 
logical movement detectors is analysed. In the sec- 
ond part it concentrates on a specific model for 
motion computation known to be realized by the 
visual system of insects and of man. These motion 
detectors provide the visual system with informa- 
tion on both, velocity and structural properties of 
a moving pattern. The last part of the paper deals 
with the functional properties of two-dimensional 
arrays of movement detectors. They are analyzed 
and their relations to meaningful physiological re- 
sponses are discussed. 

Introduction 

It is not my intention to describe here the develop- 
ment of the movement detector theory in chrono- 
logical sequence. I rather prefer to begin with an 
outline of the theory for the decomposition of sys- 
tems with many inputs and how they can in princi- 
ple be decomposed into a sum of simpler systems 
with less inputs. The decomposition theory is of 
importance in the context of this paper since the 
number of light receptors in eyes is usually very 
large whereas each elementary movement detector 
needs to have only two receptors as an input. From 
here I shall proceed to a specific theory of motion 
computation in which the input-output relation is 
mathematically formulated for its time average and 
as a function of time. The calculation of the time 
dependent detector response will be easily possible 
if one treats the detector problem in the framework 
of a spatially continuous theory. The same ap- 

proach is possible for the two-dimensional detector 
theory which will be outlined in the last part of 
the paper. The functional properties of arrays of 
movement detectors will be analyzed and their re- 
lation to physiological responses will be discussed. 

1. Decomposition of multi-input systems 
into the sum of simpler systems 

The velocity or position of an object or pattern 
moving in the visual field of an eye is not repre- 
sented explicitly at the level of the retinal input. 
Each photoreceptor only provides information on 
the time dependent local light flux. From this input 
the visual system computes motion information. 
How then do the signals from photoreceptors inter- 
act in order to obtain this information? 

This question relates to the algorithmic level 
of the problem. An algorithm is considered here 
as an operation on an input that yields a corre- 
sponding output. In formal terms, an algorithm 
can be thought of as a mapping, or operator, be- 
tween a space of input and a space of output sig- 
nals. In some cases it is rather easy to devise algo- 
rithms for a given computation and to plan corre- 
sponding experiments to check whether these algo- 
rithms are actually used. For this reason a general 
approach (Poggio and Reichardt 1973a, 1976a, b) 
has been developed in the past that represents a 
classification scheme for simple algorithms or sys- 
tems. In general, the operators of interest here are 
nonlinear; the extraction of motion information 
cannot be performed by a linear system (Poggio 
and Reichardt 1976b). 

The concept of nonlinearity, however, is much 
too general. One has to consider a specific class 
of nonlinear systems. Experiments on the housefly, 
Musca domestica, for instance, have revealed that 
in case of an evaluation of motion information the 
input-output relations are smooth and continuous. 
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Table 1. Decomposition of a Nonlinear, multi-input system 
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Y =ffx1(t-T1)x2(t-~2)h12(~1,r2)dZld~ 2 

A large class of multi-input systems can be decomposed into 
a sum of simpler systems, denoted by appropriate graphs. Each 
graph is a shorthand notation for an explicit mathematical rep- 
resentation. This power-series development of a system in a 
generalisation of a Taylor series development of a function 

There seems to be no decision or discontinuity in- 
volved in the fly's motion computations. In other 
words, the time signals received by the photorecep- 
tors are transformed continuously into the output 
function, which in the case of the fly might be repre- 
sented by the flight torque signal generated about 
the fly's vertical axis. The further considerations, 
therefore, can be restricted to smooth time-invar- 
iant operators with finite memory. 

It has been shown (Reichardt and Poggio 1981) 
that these smooth systems can be represented in 
a rather straightforward way and this representa- 
tion allows a canonical classification scheme. Rig- 
orous results (Palm and Poggio 1977) ensure that 
smooth functionals can be approximated by func- 
tional polynominals. Mathematical considerations 
lead to an explicit representation of the output in 
terms of the input and thereby we are able to com- 
pute properties of the output to  any given input 
function for a large class of systems. In Appendix A 
a few definitions and formulae are derived for n- 
input systems. 

In Table 1 a graphical representation of a sys- 
tem is shown, which in our case has many photore- 
ceptors as its inputs. A large class of these systems 
or their network implementations can be decom- 
posed into an additive sequence of simple canoni- 
cal systems which are denoted in Table 1 by appro- 

priate graphs. In a somewhat similar way, a signal 
can be decomposed into a series of orthogonal 
functions of which the Fourier components are 
only one example. This type of language represents 
an extension of linear system theory. For instance, 
linear systems are sufficiently described by the first 
type of graph in Table 1. To each system one may 
assign a degree (degree 1 for linear systems, degree 
2 for bilinear systems, and so on) and a p-order 
defined as the number of distinct inputs of the sys- 
tem. 

It is obvious that the p-order is always smaller 
to equal to the degree of the system. 

The important point is that specific properties 
of information-processing can be associated with 
each of these systems. For instance, systems operat- 
ing quadratically perform computations that linear 
systems certainly cannot. In particular, in the case 
of stationary images, it is rather easy to character- 
ize the types of images that can be discriminated 
by the various graphs. 

Besides a classification of the computational 
properties of a given system, it is also possible to 
characterize its functional properties. These points 
will become more evident in the present example 
of the analysis of algorithms used by the visual 
system of the fly to compute motion, position and 
relative motion information. The main theoretical 
considerations important for motion computation 
and for the design of critical experiments will be 
given in the following. 

2. Directionally selective motion algorithm 

If a system is to be defined as directionally selective 
for motion, it is required that it produces a direc- 
tion-selective time averaged response; that is, mo- 
tion in preferred direction must lead to a positive 
average response, whereas motion in the counter- 
direction must be either ineffective or result in a 
negative average response. Having defined the 
computation, one can then classify which graphs 
in the representation, given in Table 1, can imple- 
ment it, beginning with the simple ones of low de- 
gree and p-order. Table 2 shows that the first 
graphs that can implement the direction of motion 
are the two input, degree-2 graphs. In addition, 
they must at least contain an antisymmetric part. 

The problem now arises how to devise experi- 
ments that can tell whether the biological system 
under investigaion, i.e. our model system, the 
housefly Musca domestica, is using this simple algo- 
rithm or interaction, or whether more complex 
ones with higher p-order are implemented. Figure 1 
outlines the principle of such an experiment. Move- 
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Table 2. See text 

I UW 
1-input graphs (systems) are not 

direction selective. 

Response R(~)~ cos 

Y 
A 2-inputs, symmetric graph (system) 

is not direction selective. 

Af~)~ cos 

A 2-input, antisymmetric graph (system) 

is direction selective and constitutes 

the simplest graph (system) that can 

compute directional motion. 

A(~)~ s i n  

Direction selectivity: Properties of graphs (systems) for 

2-input sinusoidal stimulation 

I 
Input sl= sin(~t) 
Input s2= sin (Cot+q)) 

SYSTEM I 

I Response R(t) 
Fig. l. Sinusoidal stimulation of a pair of photoreceptors 

merit of a sinusoidally contrasted grating is simu- 
lated by flickering two bars sinusoidally with a 
phase shift ~b in front of the fly's eye. One may 
ask for the time averaged output  of each subsystem 
represented by a graph in Table 2, as a function 
of the phase angle q~ while the frequency (stripe 
periods per second) is kept constant. Positive phase 
is equivalent to mot ion to the right and negative 
phase to mot ion to the left. It is rather easy to 
show that the average output  depends on the phase 
in a manner  that is characteristic for each graph 
represented in Table 2. For  instance, 1-input sys- 
tems, irrespective of order, have an output  that 
does not distinguish phases of different sign. How- 
ever, for second-order, antisymmetric, 2-input 
graphs the phase dependence of the output  is pro- 
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Fig. 2. Mean torque response of a test-fly elicited by two 2.7 ~ 
wide vertically oriented filament lamps whose intensities are 
sinusoidally modulated and phase shifted with respect to one 
another. The phase lag is defined as positive if the luminance 
modulation of the right lamp follows that of the left lamp. (Yes) 
designates the half-difference of the reactions induced by the 
two lamps and represents the direction-sensitive component of 
the mean optomotor response (modified from Pick 1974) 

portional to sin 4}. In general this is not true for 
higher-order terms. The basic question is, how does 
a test-fly react under these experimental condi- 
tions ? 

A typical experiment (Pick 1974) to demon- 
strate the phase dependence is outlined in Fig. 2. 
The flying test-fly is fixed to a flight-torque com- 
pensator (see e.g. Fermi and Reichardt 1963), and 
its torque is measured. Since flies and other organ- 
isms tend to follow movement  in the environment 
in order to stabilize their retinal image, positive 
torque implies that their movement-detecting sys- 
tem measures movement  to the right. Conversely, 
negative torque implies detection of movement  to 
the left. The experimental results plotted in Fig. 2 
show that a) When a movement  to the right (left) 
is simulated, the time averaged response is positive 
(negative). This observation, of course, excludes 
subsystems which can be represented by 1-input 
graphs, b) The phase dependence, in good approxi- 
mation, is proport ional  to sin ~b. 

These findings and many other experimental 
results imply that the algorithm for directional 
movement  computat ion can be characterized in 
terms of 2-input degree-2 graphs. 

3. Specific interactions underlying 
movement computation 

Antisymmetric, second order interactions are a 
minimal model for movement  computation.  In 
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other words, they are the interactions of lowest 
degree which can compute oriented movement. 

Interestingly, second-order interactions are also 
optimal in terms of the so called resolution limit. 
It is well known that the resolving power and acu- 
ity of the eye is determined by the angular separa- 
tion and the angular sensitivity distribution of the 
individual receptors, respectively (G6tz 1964; Rei- 
chardt 1969). One can show in agreement with the 
Shannon sampling theorem (see equation (6A) in 
Appendix A), that a periodic array of equidistant 
receptors can resolve uniquely the direction of 
movement of a periodic grating (wavelength 2 only 
if 2 > 2. A x, where A x denotes the distance between 
two receptors. The resolution limit 2 = 2. A x is al- 
ready obtained by second-order interactions be- 
tween neighbouring receptors. In this case (equa- 
tion (6A)) the time average of the direction sensi- 
tive optomotor response is proportional to the so 
called geometrical interference term 

;d~ ~ sin (2n. A x/2). (1) 
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Fig. 3. Relation between wavelength 2 of a moving periodic 
grating and its most efficient velocity w. The maximum reac- 
tions, either positive (e) or reversed (o), are determined by the 
contrast frequency co = w/Z and not  by the pattern velocity w. 
As a consequence the torque reaction can be factorized into 
R(co, 2)=C(co)I(2), that  is, co-curves have similar shapes for 
different 2 and vice versa (modified from Eckert 1973) 

Nonlinearities of higher order than the second may 
introduce artificial sampling intervals greater than 
the ones physically present in the system: as wide- 
angle interactions, they can, but must not necessar- 
ily, impair rather than improve the resolution limit 
set by the sampling theorem (Thorson 1966a, b; 
Poggio and Reichardt 1973b; Buchner 1974; 
Geiger and Poggio 1975). 

Second-order interactions are not only minimal 
and optimal; they also have a number of other 
characteristic properties (Poggio and Reichardt 
1973b; Buchner 1974; Geiger and Poggio 1975), 
than can be tested experimentally. 

(a) Measurements of the equation describing in- 
terference function (see equation (6 A)) and its com- 
parison with independent data about the topology 
of the interactions, is consistent with second-order 
nonlinearities. Equation (6A) cannot, however, di- 
rectly distinguish between multiple spacings and 
nonlinearities of order higher than the second. This 
difficulty can be circumvented by a two-input stim- 
ulation. In this case the experimental data shown 
in Fig. 2, clearly suggest second-order interactions 
(N = 2) for the direction-sensitive component ;e~. 

(b) The mean of the direction-sensitive optomo- 
tor response shows the property of phase invar- 
iance. One can rather easily show that different 
temporal Fourier components in the input func- 
tions never interfere in the mean output for interac- 
tions up to the second-order. As a consequence 
of this superposition property the mean response 
does not depend upon the relative phases of the 

spatial Fourier components of an arbitrary pattern 
moved at constant speed in front of the photorecep- 
tors. The property of phase invariance, characteris- 
tic of second-order interactions, leads to the strik- 
ing experimental result that two quite different pat- 
terns elicit an identical mean optomotor response 
;d~ (Varjfl and Reichardt 1967; G6tz 1975). In gen- 
eral, for higher-order nonlinearities phase invar- 
iance and superposition do not hold! 

(c) A third property can be conjectured on the 
basis of the essential homogeneity and the re- 
stricted spatial range of second-order interactions: 
the interactions between the different channels 
should have the same frequency dependence. In 
other words the coefficients in equation (6A) 
should satisfy 

h* (co) = ~, h* (c9) for all n, (2) 

where the ~, are stimulus dependent factors. This 
leads to the following property of the mean re- 
sponse 

;as(CO, 2)= T(co) I(2) (3) 

where the function T(c0) must approach zero if ei- 
ther co ~ 0 or co -~ oe (G6tz 1975). Figure 3 shows 
that this is indeed the case: the response depends 
upon the frequency co/2n=w/2 rather than upon 
the angular velocity w (Kunze 1961; G6tz 1964, 
1972; McCann and MacGinitie 1965; Eckert 1973; 
Buchner 1984). Equation (3) again shows the essen- 
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tial simplicity of the interactive structure underly- 
ing movement computation. Psychophysical exper- 
iments indicate that in humans perceived velocity 
of a horizontally moving stripe pattern depends 
both on 2 and w (Diener et al. 1976). Moreover, 
several other criteria indicating the performance 
of motion evaluation in humans have been shown 
to depend, under stationary conditions, on contrast 
frequency rather than on velocity alone (motion 
aftereffect: Pantle (1974), Wright and Johnston 
(1985); directionally selective adaptation: Tolhurst 
(1973); contrast sensitivity of moving gratings: Kel- 
ly (1979); contrast threshold of directional selectivi- 
ty: Burr and Ross (1982); Anderson and Burr 
(1985)). This suggests that movement detection in 
the fly and in humans is based on essentially the 
same principle algorithm. One further point is 
worth mentioning. If a movement detection system 
does not satisfy equation (3) this does not necessari- 
ly imply the presence of nonlinearities of an order 
higher than the second: spatial inhomogeneity of 
the channels' transfer properties may account for 
any such deviation. 

In summary, the direction-sensitive computa- 
tion is satisfactorily characterized in terms of a reg- 
ular pattern of second-order interactions between 
pairs of photoreceptors. In principle, linear terms 
may be present as well. Although they do not affect 
the mean output of the movement detector, they 
may play a significant role with respect to its dy- 
namics. 

4. Models of selective motion computation 

Psychophysical, behavioural and electrophysiolog- 
ical data have suggested a few specific models of 
selective motion computation (Reichardt 1957, 
1961; Barlow and Levick 1965; Thorson 1964, 
1966a, b; Foster 1971; Grfisser and Grfisser-Cor- 
nehls 1973; van Doorn and Koenderink 1976, 
1982a, b; van Santen and Sperling 1984, 1985; 
Adelson and Bergen 1985; Wilson 1985). Clearly 
the formalism discussed before is not a model of 
movement computation. Its aim is to illustrate how 
the design of such a theory may begin, which con- 
straints must be taken into account and which 
classes of functional models can be experimentally 
distinguished. One of the first models of movement 
computation was proposed by Hassenstein and 
Reichardt (1956) and outlined in more detail by 
Reichardt (1957, 1961) and Hassenstein (1958, 
1959). The scheme, which depends upon evaluating 
the cross-correlation between signals from two vi- 
sual elements or neuro-ommatidia, could originally 
account for the antisymmetric mean optomotor re- 
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Fig. 4a--e. Representation of the o 
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~erations of movement detec- 
tors. Undirectional (a, b) and bidirectional movement detectors 
(e) consisting of two light receptors, signal delay e in one or 
two channels and elementary signal multiplication stages M. 
As in Fig. 3 the preferred direction of movement is shown by 
the arrows 

sponse of the beetle Chlorophanus; it has led to 
predictions which where experimentally verified, 
also in other insect species (Reichardt and Varj6 
1959; Varjfi and Reichardt 1967; Reichardt 1969). 
Other versions of the orginal Chlorophanus model 
were proposed in different contexts (Thorson 
1966a, b; Kirschfeld 1972) and, most importantly, 
with respect to motion perception in man (van 
Doorn and Koenderink 1982a, b; van Santen and 
Sperling 1984, 1985; Wilson 1985). They are in fact 
correlation models characterized by the time aver- 
aged output 

Yes = j" W(co) Sa (co) $2 ( - co) d co (4) 

where W(co) is an odd, imaginary function, reflect- 
ing the overall filter properties of the network; 
$1 (co) and $2(c0) are the Fourier transforms of the 
time dependent inputs. It can be shown that the 
class of correlation models is the most general re- 
presentation of second-order interactions, if the 
mean direction-sensitive output is considered. In 
terms of the classification used before it is also the 
simplest scheme capable of selective motion evalu- 
ation. 

The operations of these correlation type move- 
ment detectors have been studied for a long time. 
Until more recently they have been investigated 
only under the condition that time averages of their 
responses were taken. A simplified version of a mo- 
tion detector of the correlation type and its decom- 
position into elements responding from left to right 
and from right to left motions is shown in Fig. 4a-c. 
The major simplification of the detector made here 
relates to the low pass filtering of the input signals 
which are approximated for convenience by a delay e. 

I consider here the case that a one dimensional 
contrast pattern F (x) is moved with constant veloc- 
ity w across an individual detector so that 
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F = F ( x T - w t ) .  If the input of the left receptor (see 
Fig. 4 c) due to a moving pattern is given by 

+oo 

St( t )= ~ 1/2.ave i~'' (5) 
v = --(3(3 

and that of the right receptor input by 

+oo 

S2(t)= Z 1/2.a, ei~"e i~r (6) 
v =  - o o  

with a~ the coefficients of a Fourier representation 
of F and with q5 the phase shift between the two 
input signals. If H(co)= e i~o describes the frequency 
response of the detector filters, simple calculation 
leads to the time average detector response to mo- 
tion from left to right. 

+co  

/~ = y, l a~12 sin (v ~o e). sin (v 4)) (7) 
~=o 

with (a = 2 ~. A x/2 and ~o = w/2. The response/~ of 
the specific model is proportional to the geometri- 
cal interference term sin (v. qS), which corresponds 
to equation (1) and, in addition, depends on w/2 
the contrast frequency of the pattern. The superpo- 
sition property and the property of the phase invar- 
lance of Fourier components synthesizing the pat- 
tern F which has been mentioned already under 
(b) in section 3 is obvious from equation (7). Most 
important, however, the structure of equation (7) 
is in accordance with equation (2) which was origi- 
nally derived from equation (6A) for second-order 
interactions. 

5. Continuous approach 
to the motion detector model 

So far, the time averaged response of the correla- 
tion model for motion computation has been de- 
scribed. Theoretical insights into the dynamics of 
the detector and its comparison with experiments 
are of course only possible if for arbitrary moving 
patterns the detector inputs can be related to its 
output as a functin of time (Reichardt and Guo 
1986). This has been done by means of a continu- 
ous approach. The distance between adjacent re- 
ceptors is thereby assumed to be infinitesimally 
small. This approximation holds if the highest spa- 
tial Fourier-Component of the moving pattern is 
large compared with dx, the separation of two ad- 
jacent receptors. This condition is usually fulfilled 
in a natural environment. 

Here it is assumed that a one-dimensionally 
contrast modulated pattern F = F ( x )  is moved in 

front of a detector array. The individual detectors 
are oriented in x-direction and a coordinate x* 
is associated to the array. Under these conditions 
the following expression holds 

F = f ( x * )  with x * = x + s ( t )  (8) 

where F represents the contrast pattern function 
and s(t) a time dependent spatial displacement of 
the pattern. Consequently, d s(t)/dt describes the 
instantaneous pattern velocity. It is shown in the 
Appendix B that the signal output of a motion de- 
tector at position x is given, in a first approxima- 
tion, by the expression 

dD (x, t) = - e. d s (t)/d t. S (x, t) d x (9) 

with 

S ( x , t )  = ( 6 / 7 / 6  X)  2 - -  F (5 2 F/6 x 2. (10) 

In the continuous approach, the output of the ele- 
mentary detector may be expressed as a response 
density dD(x, t)/dx. Higher approximations of the 
response density can be derived from a generalized 
theory which has been recently established (Egel- 
haaf and Reichardt 1987). The generalized theory 
represents an approximation of n-th order, pro- 
vided that the pattern F(x) can be developed into 
a convergent Taylor series. Interestingly, in (9) the 
pattern velocity appears as a separate factor. The 
response of the elementary detector is only different 
from zero if ds/dt~=O and (aF/c~x)2q=F.aeF/ax 2. 
The second condition is usually fulfilled. One ex- 
ception consists of a pattern given by an exponen- 
tial function F = F o e  +a(x+s(')) Of course, the re- 
sponse of the detector also disappears when the 
pattern is not contrast modulated that is if F = Fo 
=const.  Another interesting case is a pattern of 
the type F=A+_C(x ,  t) with C = B e  -a2(x+s(t)? 

which at the level of the detector output leads 
through equation (9) to an:expression graphically 
represented in Fig. 5 with parameter settings speci- 
fied in the legend of the figure. The result shows 
that the detectors stimulated by the central part 
of the particular contrast function signal motion 
in accordance with the direction of pattern motion 
whereas the detectors stimulated by the peripheral 
parts of this function provide signals of apparent 
counter motion. This predicted property, unknown 
until recently, has meanwhile been tested in behav- 
ioural experiments. In these tests a one-dimension- 
al periodic pattern was moved behind a slit to pro- 
vide stimulation only to a restricted area of the 
compound eye of a test-fly. In this way spatial inte- 
gration can, in principle, he prevented from affect- 
ing the time course of the response. A computer 
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Fig. 5. The response of a linear array of differentially sized 
movement detectors to a one-dimensional moving contrast pat- 
tern. F (x, t) = A 4- C (x, t) with C = B e- a2 (x - w~)2 with w the veloci- 
ty of motion; the parameter settings are a = 10 2, A = 1, B = 0.2. 
Looking at the detector output channels we observe a signal 
which moves with the pattern velocity w. The calculated output 
functions of the movement detectors surprisingly consist of two 
parts, one which signals the sign of pattern motion in a correct 
way (+ in the diagram on the left, - on the right), whereas 
the other part signals apparent counter motion ( -  in the dia- 
gram on the left, + on the right). However, when the integral 
over all the individual motion contributions is taken, the sign 
of the integrated detector outputs correctly reflect the actual 
direction of motion of the pattern 
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Fig. 6. Response of an array of motion detectors to a moving 
contrast function. Upper diagram: A one-dimensional contrast 
F(x, t)=A + B sin k(x--wt) is moving with constant velocity 
w from left to right. Lower diagram: Response of a movement 
detector to the moving contrast function, shown in the upper 
diagram. The response has the same period and phase as the 
stimulus but partly (its negative parts) signals an apparent 
counter-direction of motion (to the left and not to the right) 

s i m u l a t i o n  o f  t he  m o v e m e n t  d e t e c t o r  r e s p o n s e  to  
m o t i o n  o f  a o n e - d i m e n s i o n a l  s i n u s o i d a l  c o n t r a s t  
p a t t e r n  is s h o w n  in Fig .  6. T h e  s i n u s o i d a l  p a t t e r n  
is m o v i n g  f r o m  left to  r i g h t  w i th  c o n s t a n t  v e l o c i t y  
a n d  the  r e s p o n s e  o f  the  d e t e c t o r s  is p l o t t e d  in  the  
l o w e r  p a r t  o f  F ig .  6. T h e  r e s p o n s e  to  t he  m o v i n g  
p a t t e r n  F ( x , t ) = a + B s i n k ( x - w t )  is p e r i o d i c ,  
h o w e v e r ,  p a r t s  of  the  r e s p o n s e  p rof i l e  a r e  n e g a t i v e  
w h i c h  m e a n s  t h a t  these  d e t e c t o r s  s igna l  a n  i n v e r t e d  
r e s p o n s e  w i th  r e s p e c t  to  the  d i r e c t i o n  of  m o t i o n .  
F r o m  these  e l e m e n t a r y  tes ts  i t  fo l lows  t h a t  the  in-  
s t a n t a n e o u s  d e t e c t o r  r e s p o n s e  s t r o n g l y  d e p e n d s  o n  
the  s t r u c t u r e  o f  the  m o v i n g  p a t t e r n  w h i c h  m i g h t  
even  l e a d  to  s i gna l l i ng  a n  a p p a r e n t  i n v e r s i o n  of  
the  d i r e c t i o n  o f  m o t i o n .  T h e  c o r r e s p o n d i n g  expe r i -  
m e n t a l  r e su l t  is s h o w n  in Fig .  7. A s i n u s o i d a l l y  
c o n t r a s t e d  p a t t e r n  is m o v e d  a r o u n d  a tes t - f ly  
w h i c h  is f ixed  in  a f l i g h t - c o m p e n s a t o r  a n d  the  
t o r q u e  r e s p o n s e  o f  the  fly is m e a s u r e d .  T h e  m o v i n g  
p a t t e r n  is seen b y  the  fly o n l y  t h r o u g h  a slit. T h e  
r e s p o n s e  r e c o r d e d  in  the  left  p a r t  o f  the  d i a g r a m  
c o r r e s p o n d s  to  m o t i o n  f r o m  left to  r i gh t  (R) a n d  
in the  r i gh t  p a r t  to  m o t i o n  f r o m  r i g h t  to  left (L). 
O n e  c a n  eas i ly  see t h a t  the  p e r i o d i c  r e s p o n s e  of  
the  t o r q u e  s igna l s  s h o w s  a z o n e  of  o v e r l a p  b e t w e e n  
the  two  r e s p o n s e s  to  r igh t -  a n d  l e f twa rds  m o t i o n .  
Th is  r e su l t  is in a c c o r d a n c e  w i th  the  p r e d i c t e d  re-  
s p o n s e  a n d  the  s i m u l a t i o n s  s h o w n  in Fig .  6. T h e  
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Fig. 7. Optomotor responses of fixed flying test-flies (Musca do- 
mestica), as indicated in Fig. 2) to a moving environment. In 
these experiments the cylindrical environment consisted of a 
striped pattern with sinusoidal contrast modulation in horizon- 
tal direction which was moved for 20.48 s to the right (R) and 
for the same time to the left (L). During the motions the velocity 
was constant and its contrast frequency amounted to [w/RI 
=0.19 s 1. The test-flies were exposed to the specific environ- 
ment where each compound eye was looking through a slit 
of 8 ~ width which was cut into an opaque white cylinder in 
order to prevent spatial integration of the visual system as much 
as possible. The experimental result follows roughly the theoret- 
ical prediction shown in Fig. 6. Note that the responses to right 
(R) and left (L) motion are partly overlapping in strength as 
a consequence of the periodically changing sign or direction, 
Fig. 6 
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time averages in both the computer simulation and 
the corresponding experiment signal the correct di- 
rection of motion. 

6. Outline of a two-dimensional theory 
of movement computation through an array 
of motion detectors 

In the preceding section it has been shown that 
second order motion detectors (or arrays of it) ex- 
tract both velocity (the term d s/d t in equation (9)) 
and structural properties of the pattern (the term 
S(x, t) in equations (9, 10)). It is therefore conceiv- 
able and has meanwhile been tested experimentally 
(Reichardt and Guo 1986) that pattern information 
is entering the visual system through the motion 
detectors. In order to understand especially the 
pattern specific properties in detail one has to de- 
velop a two-dimensional theory of movement com- 
putation at the level of the motion detectors before 
one can actually deal with the problem at the level 
of spatial, physiological integration. 

To this end I am considering here a two-dimen- 
sional contrasted pattern F(x, y) that is moving 
relative to the two-dimensional detector array with 
a velocity vx = d Sx (t)/d t, Vy = d sy (t)/d t. Under these 
circumstances F = F(x  + s:,(t); y + s/t)) .  For sake of 
simplicity, it is assumed here that the detectors of 
the array are oriented orthogonally, namely in x- 
and in y-direction. Quite similar, as has been 
shown in Appendix B for one dimension in detail, 
the velocity vector v is, in a first approximation, 
related to the output vector v* by the linear rela- 
tion 

V* = C l l  Vx+C12 Vy 

* - ( I 1 )  /3y --C2a I)x21-C22 Uy 

which may be written in compact tensorial form 
like 

v*=  T(x,y, t).v(t) where 

T=  [cll C12] w i t h  the elements 
LC2a C22J 

(12) 

ca a = -- e [(3F/3 x) 2 - F 6 2 F/6 x 2] 

C22 = --/~ [-(6 El6 y)2 __ F 6 2 F/6 y2-] 

C 12 = - -  e [ (~ F/6 x.  3 F/(5 y - F 62 F/6 x 6 y] 

c21 = - e [(6 F/3 y" 6 F/b x -  F 62 F/6 Y 6 x] (12A) 

depending in a highly nonlinear fashion on the pat- 
tern F. Since c12=c21, the tensorial relation (12) 
is symmetric and consequently T has real eigen- 
values and eigenvectors (Reichardt 1985). A de- 

tailed account on the two-dimensional continuous 
detector theory will be published elsewhere (Rei- 
chardt, in prep.). 

A good example to demonstrate some of the 
properties of equation (12) is a pattern of the type 

F(x, y) = A + B f ( x )  g(y) with 

f ( x ) = e  -~2:~2 and g(y)=e  -b2y2. (13) 

For parameter values of, for instance b 2= 1/3a z, 
the gaussian contrast pattern is plotted in Fig. 8 a. 
If the pattern is moved with constant velocity in 
x-direction one gets at a particular instant of time 
for the two-dimensional array of x-detectors the 
response profile which is plotted in Fig. 8 b. As al- 
ready pointed out in connection with Fig. 6, those 
x-detectors which receive inputs from the periphery 
of the gaussian pattern produce negative responses. 
This means that they signal apparent motion of 
the pattern which is opposite to the real motion. 
Figure 8 c contains the responses of the y-detectors 
to pattern motion in x-direction. The response 
shows a typical feature of the tensorial relation 
after equation (12): The y-detector responses are 
different from zero in spite of the fact that the pat- 
tern is moved orthogonally to the orientation of 
the y-detectors. A combination of the representa- 
tion shown in Fig. 8b and Fig. 8c is given in 
Fig. 8 d in terms of the x-, y-dependent local vector- 
ial responses of pairs of detectors. Again, in spite 
of the fact that the pattern is moved in x-direction, 
most of the local vectorial responses point into dif- 
ferent directions, depending on pattern properties 
such as local gradients and symmetry. These fea- 
tures become even more apparent when the pattern 
is rotated by, for instance, 30 ~ (see Fig. 9a) but 
is still moved along the x-direction of the detector 
array. The local vectorial responses to this pattern 
are represented in Fig. 9 b. 

In a special class of patterns the off-diagonal 
elements of the tensor in equation (12) disappear. 
This class may in principle be found by setting 
the off-diagonal elements zero which leads to the 
following differential equation 

6F/3x .  3F/by  = F.  62F/gx  6y. (14) 

A solution of equation (14) is given by patterns 
which are separable into purely x- and y-dependent 
components 

F (x, y) = f ( x )  g ( y )  (15) 

where the background illumination A in equa- 
tion(13) is 0. For this class of patterns equa- 
tion (11) is reduced to 
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--1 J Fig. 9a, b. Computer  simulation of arrays of orthogonally off- 
ented pairs of elementary motion detectors. The orientation 
of the detectors is in the x- and y-directions, respectively, a 
The same contrast pattern as described in Fig. 8a, but  rotated 
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x 
Fig. 8 (a-d). Computer  simulation of arrays of orthogonally ori- 
ented pairs of elementary motion detectors. The detectors are 
pointing in either the x- or the y-direction, a An asymmetric 
gaussian contrast  pattern whose long axis is pointing in x-direc- 
tion. b The response of the two-dimensional arrays of x-detec- 
tors to the motion of the contrast  pattern in x-direction at 
a particular instant  of time. The response profile indicates that 
those detectors which receive their inputs from the flanks of 
the pattern respond negatively, that  means they signal an appar- 
ent motion of the pattern in the wrong direction, e The re- 
sponses of the arrays of y-detectors to the motion of the contrast  
pattern in x-direction. The response profile indicates that  the 
y-detectors respond to motion perpendicular to the orientation 
of the detectors, d The picture shows the local vectors generated 
by the contrast pattern in a at the outputs of pairs of x- and 
y-detectors when the pattern is moved in x-direction. The local 
vectors point into different directions in spite of the fact that  
the pattern is moved in x-direction. Mathematical  integration 
in x and y, however, leads in this case to a resulting vector 
parallel to the velocity vector 

by 30 ~ b The picture represents the local vectors at the outputs 
of individual pairs of x- and y-detectors when the pattern is 
moved in x-direction. The local vectors point into different di- 
rections. In this case the resulting vector obtained by integration 
of the individual reponses deviates from the direction of the 
velocity vector 

v * = c ~ l  vx a n d  * -  (16) Vy --C22 IJy. 

The v- and v*-vectors will usually point  into differ- 
ent directions, except if cl ~ = c22 , a condi t ion  which 
leads to the even more restricted class of patterns 
such as 

F (x ,  y)  = e (r176 x~ + ~ ~ ~ + r e(~o y~ + c, y + c~) (17 )  

with Co, cl,  c2 arbitrary coefficients. This pattern 
class generates local detector output  vectors v*(x, 
y, t) that are point ing into the same direction as 
v(t). 

Interestingly, patterns according to (17) do 
practically not  exist in reality since a contrasted 
environment  always contains some background il- 
lumination,  so that natural patterns may in general 
be described by the expression 

F (x ,  y)  = A + F (x ,  y)  (18) 

with A a constant  and F(x, y) a contrast modula-  
t ion function. Therefore, an arbitrary pattern gen- 
erates at the level of the movement  detector out-  
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puts local vectors which generally point into direc- 
tions different from the direction of the velocity 
vector v of the pattern. This implies that in almost 
all cases it is hardly possible to derive satisfactorily 
the true direction of motion of a pattern from the 
activity of local motion detectors. 

7. Local versus global features 
of a two-dimensional array of motion detectors 

The experimental results and the theoretical con- 
siderations of the previous sections have shown 
that individual motion detectors are not only ex- 
tracting velocity but, in addition, also respond to 
structural information of the pattern moved. A re- 
markable consequence of these properties is that 
individual detectors and arrays of individual detec- 
tors may signal incorrect information with respect 
to the velocity of a moving pattern and its direction 
of motion. The deviations of the local response vec- 
tors from the direction of pattern motion may 
cover the entire angular range. Therefore, it is quite 
clear that some kind of spatial integration of the 
individual detector responses is of fundamental im- 
portance to organize these responses in such a way 
that the representation of movement information 
allows to act, and to react, in a meaningful way 
towards a visual environment of objects that are 
moving relative to the detector array. 

It is known that the physiological integrations 
of the detector responses in x- and in y-directions 
are of essentially nonlinear nature. In spite of this 
very fact it is interesting to inquire - at least from 
a theoretical point of view - how much meaningful 
information is already gained when the detector 
outputs are integrated mathematically in x and y. 

To this end let us assume that a pattern of finite 
size is moved in front of an infinitely large two- 
dimensional array of movement detectors whose 
output signals are integrated along the x- and y- 
directions. Under the assumed conditions integra- 
tion of the tensor leads to the expression 

~[. T d x  dy 
(g)F/g)x) 2 6F/6x.cSF/6y , 

=2-]'~ 6F/6y.3F/dx(6F/6y)2 ax dy. (19) 

According to Schwarz's inequality the determinant 
in equation (19) of the integrated elements is always 
positive and disappears only if 

6 r /6  y = k. ~F/~ x (20) 

with k a constant. A solution of the differential 
equation (20) leads to patterns which belong to the 

class 

y) = F(x  + ky). (21) 

These patterns do not change along lines x + k y  
= const, and are therefore one-dimensional. Except 
for this class of patterns the matrix of the tensor 
elements in equation (19) is not singular and has 
an inverse so that the velocity vector v is related 
to the global reaction vector v* by one-to-one cor- 
respondence. The direction of the global reaction 
vector is pattern dependent and apart from special 
cases, different from the direction of the pattern 
velocity vector. 

These few considerations already show that lin- 
ear integration of the output of motion detectors 
does certainly not solve the problem to create a 
strictly meaningful global detector representation 
of the output of an array. The solution may be 
based on the physiological integration by the so 
called Figure-Ground Discrimination system 
which physiologically integrates the detector out- 
puts in two dimensions (Reichardt and Poggio 
1979; Reichardt etal .  1983; Egelhaaf 1985a-c; 
Reichardt and Guo 1986). Much is known about  
the integration in x- and less about  the integration 
in y-direction. The processes involved are highly 
nonlinear. They are explaining behaviourally mea- 
sured and electrophysiologically recorded cellular 
data and have led to an understanding of two prob- 
lems: The invariance of the response to different 
sizes of a moved pattern and the dynamic discrimi- 
nation of object (figure) and ground without binoc- 
ular clues. 

Concluding remarks 

In the 1950s it was not clear at all whether the 
algorithmic solution for local movement computa- 
tions would hold also for other insect species. 
Meanwhile convincing evidence has been acquired. 
Even more surprising are recent psychophysical 
findings in man which suggest a system of move- 
ment detectors seemingly not different (at the al- 
gorithmic level) from the correlation detection 
mechanism, discussed here in some detail (e.g. van 
D o o m  and Koenderink 1982a, b; van Santen and 
Sperling 1984; Wilson 1985). 

In the early days when the work on the move- 
ment detector problem began, I tended to believe 
that the pattern sensitive effect on the detector out- 
put has no significance for the perception of the 
visual world. In those days the explanation was 
accepted that this property (orginally only known 
for the time average of a detector output) reflects 
an unwanted byproduct of imperfect biological 
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motion detection mechanism. Meanwhile, an ap- 
proach to the time dependent solution of the detec- 
tor problem has been given (Reichardt and Guo 
1986), and it seems more realistic that motion de- 
tectors provide the visual system with both velocity 
and pattern specific information. As a consequence 
two different sensory properties are handled simul- 
taneously by one and the same detector channel. 
The significance of this feature and its conse- 
quences are by far not yet fully understood. 

Attempts have been made to clarify the move- 
ment detector operations not only at the algor- 
ithmic but also at the cellular level. In this connec- 
tion the work of Riehle and Franceschini (1984) 
should be mentioned. These authors have shown 
by recording from a movement sensitive large field 
neuron and by stimulating individual light recep- 
tors, that the multiplication scheme of the correla- 
tion detector, as derived originally from quantita- 
tive behavioural experiments, is implemented by 
the visual system of insects. The large field neurons, 
however, integrate the responses from many mo- 
tion detectors so that the cellular composition and 
the type of synaptic interactions responsible for lo- 
cal motion detection is still an unsolved physiologi- 
cal problem. 

Future research in the area of motion detection 
has not only to answer, for instance, some topologi- 
cal questions, such as whether pairs, triplets or even 
higher order combinations of detectors are operat- 
ing together. The main problem, however, after 
having solved the functional properties of the de- 
tector's operations, is the spatial physiological inte- 
gration of the detector output signal. 

Once this problem will be solved and provided 
that our considerations also hold for the visual sys- 
tem of bees, it can not be excluded that the two- 
dimensional detector theory might play a crucial 
role for a deeper understanding of the classical 
work of Mathilde Hertz in the area pattern dis- 
crimination in bees. The one-dimensional detector 
theory (Reichardt and Guo 1986) together with the 
spatial integration of the detector outputs by the 
fly's visual system has recently led to a possible 
understanding of the discrimination category figur- 
al intensity, which originally has been termed by 
M. Hertz (1929a, b). The properties of this catecory 
can be related to the on-diagonal elements cl 1 and 
c2z of the tensor in equation (12). M. Hertz has 
in addition provided evidence that bees are dis- 
criminating patterns also in accordance to a second 
category which she called figural quality. I think 
it would in this context be interesting to look for 
the influence of the off-diagonal elements c12 and 
c21 on the properties of pattern discrimination. 

It has been mentioned before, that the Figure- 
Ground Discrimination system of insects is one of 
the physiological integrators with highly nonlinear 
properties. It spatially integrates the data collected 
from many movement detectors and selects coher- 
ent signals from those regions of the visual environ- 
ment which represent objects or patterns moving 
independently of each other and relative to a pat- 
terned ground. After what has been said before, 
it should be clear that these selections are made 
by evaluation of time and space coherent signals 
- a very consequence of the properties of the move- 
ment detectors as described before. An understand- 
ing, therefore, of a complex information processing 
problem, such as Figure-Ground and Pattern-Dis- 
crimination, requires a deep insight into the two- 
dimensional movement detector problem and its 
consequences. 

Appendix A 

In this section a few definitions and formulae are 
given for the specific case of a system with n photo- 
receptor inputs. The transformation of a moving 
pattern into the time-dependent receptor output 
depends on the pattern itself and on the relative 
motion between pattern and photoreceptors. Only 
a one-dimensional array of receptors is considered. 
The results obtained here can be used to interpret 
experimental data and to characterize the underly- 
ing interactions. 

The system is assumed to have a n-th order 
polynomial representation which is given by equa- 
tion 

y ( t ) = g o +  g* s i + ~ g  *z sisjd- ... + 
i = 1  i , j  

d- ~ gi ""  i*N si . . .  SiN with  
i l  . . .  i N  

+ ~ + cro 

gi "'" i*e lSi  "'" Sil = I I gi "'" il("Cl "'" l) Sil 
- - o o  - - o o  

(t--z1)... s i , ( t - - z , )dz ,  ... dzt. 
(1A) 

This might be considered as a straightforward gen- 
eralisation of the well known convolution integral. 
The input functions s i(t) are defined as 

&(t)=Ii( t)--Io,  (2A) 

where Io is the light intensity value around which 
the representation (1 A) is valid. Receptor i has the 
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spatial coordinate xi and an angular sensitivity p 
= p o ( X - X i ) .  The input functions si(t) can be ob- 
tained from the actual stimulus, a space- and time- 
dependent light intensity distribution which is de- 
termined by the transmission function of the pat- 
tern, by its motion, by the possibly time-dependent 
illumination and by pi(x). General formulae 
(Geiger and Poggio 1975) provide, for various stim- 
ulus configurations, the coeffecients bij which char- 
acterize the Fourier series of si(t) in the basic fre- 
quency 09* 

si(t) = ~ bij e ij~'*' (3 A) 
J 

i being the unit imaginary number. 
Application of equation (1A) to yield the net- 

work output is then straightforward. For instance, 
the average output is given by 

n n 

37 = go + Z Gi (0) bi, o + Z Z Gij (q o*,  
i i , j  q 

--q09") bi, q bj, _q 
n 

+ Z Z G,jh(q09*, p09*, 
i jh  pq  

�9 ( - - p - q )  09*) bi,q.bj, _p q+ .... (4A) 

Inspection of the above equation shows that qua- 
dratic interactions satisfy the important property 
of superposition in the average. Fourier compo- 
nents do not interfer in the time averaged output. 
We consider now two cases which are needed in 
the paper. 

1) Sinusoidal grating with spatial wavelength 2 
moving at constant speed w. The basic frequency, 
called contrast frequency, is here 

co* = 2 re/2. w (5A) 

and the average output for motion in one direction 
in front of equally spaced receptors (xi - x~_ 1 = A x) 
is for the right eye 

Y = 37ds + 37di, Y = 37d~-- 37di 
N* 

37ds = ~ h* (09) sin In. 2 re. d x /k]  
n = l  

N* 

37ai = Z k*(09) cos [n2rc .Ax /2]  +k*(09) (6A) 
n = l  

where 37d~ and 37d~ are the direction-sensitive and 
the direction-insensitive components of the average 
output. N* depends both on the degree of nonlin- 
earity of the network and on the maximum distance 

of interacting receptors. The reduced kernels h* (09) 
and k* (09) are derived, for n -  1, from antisymmet- 
ric and symmetric components of the crosskernels 
G, respectively; the self-kernel generate, together 
with crosskernels of the order > 1, the terms k~ (09). 
They depend not only on 09 but also on Io and 
on the effective contrast of the pattern (function 
of actual contrast of Po and of 2). Interestingly, 
N* alone does not characterize the order of the 
network since it depends also on its topology. The 
interference function 37d~ is an odd function in 1/2, 
while 37di is even in 1/2, with period 1/A x. In 37es 
the first zero crossing, for 1/2 increasing from zero, 
occurs for 2 > 2 . A x .  Thus the response has the 
same sign as the direction of movement if 2 > 2. A x, 
quite in agreement with Shannon's sampling theo- 
rem. Interestingly, the limit 2 = 2. A x is obtained 
if only second-order interactions are present (Pog- 
gio and Reichardt 1973b; Buchner 1974). 

2) Two-input networks with sinusoidal inputs. 
If 

sl (t) = L1 sin (09 t) 

s 2 (t) = LA sin (a~ t + qS) (7A) 

then 

~= 
1 / 2 N  1 / 2 N  

Z k2n(09) cosnqS+ ~ h2n(09 ) s i n n ~  
n = O  n = O  

where N represents the maximum even degree of 
nonlinearity of the network. Again the reduced ker- 
nels h2,(09) and k2,(09) are derived from symmetric 
and antisymmetric components of the kernels G. 
Under the condition kN(09)+0, the dependence of 
the average output ~b characterizes uniquely N and, 
thus the order of nonlinearity of the system. 

Appendix B 

If the contrast of a moving pattern changes in only 
one dimension it may be described by the expres- 
sion 

F(x ,  t) = F [x  + s(t)] (1 B) 

where F is the pattern contrast function, x a space 
coordinate, and s(t) a time dependent displace- 
ment. Accordingly, ds( t ) /d t  represent the time de- 
pendent pattern velocity. F has the important 
property 

6/6 x .  F [x  + s (t)] = 6/6 s- F [x + s (t)]. (2 B) 

If the two light receptors that are feeding a move- 
ment detector are located at x-positions x, and x2, 
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respectively, the input to receptor 1 is given by 

F [xl + s(t)] and to receptor 2 by F [x2 + S (t)]. (3 B) 

If x 2 -  x l = A x is sufficiently small, the F Ix2 + s (t)] 
function may be approximately derived from the 
F[x~+s(t)]  function by adding the first term of 
a Taylor series developed around x~, so that 

F[ x  2 +s(t)]  ~ F [ x 1  +s(t)]  +(6F/CSx)~=~, dx, (4B) 

where dx replaces A x. 
Considering the functional structure of an ele- 

mentary movement detector we get at the filter out- 
put of the two channels in Fig. 4 

i 
m o o  

m o o  

h ( t - q ) F [ x l  +s(tl)] dtl and 

h ( t - q )  { F i x  1 + s(r/)] + g)/csx. F[x~ 

+s(q)]  dx} at  l (5B) 

with h(t) the responses of the filters to a Dirac- 
function 6 (t). The expressions in (5 B) can be rewrit- 
ten in a short version: (h,F) and (h , (F+6F/Sx)) .  
The detector response is the difference of two prod- 
ucts: (h* F) ( f  + 8 F/8 x.  d x) - (h* ( f  + 6 F/8 x.  d x)) F, 
which finally leads to the expression 

dD(x, t)-- {(h, F)--(h,  SF/Sx) F} dx  (6 B) 

with dD(x, t) the time dependent detector output 
at x and ~D(x, t)/dx the detector response density. 

The properties of the filters are approximated 
here by a small delay e. With this assumption equa- 
tion (6 B) reads 

dD (x, t) = {F Ix + s ( t -  e)]" 8/8 x. F Ix + s (t)] 

-- F Ix + s (t)]. a/c5 x- F Ix + s (t -- ~)] } d x. 
(7B) 

For  small e, F[x+s( t - -e )]  may be approximated 
by a Taylor term in e 

F Ix + s (t -- e)] = F Ix + s (t)] - 8/6 s" F Ix 
+ s(t)] ds(t)/dt- 

= F Ix + s (t)] - 6/8 x. F Ix 

+ s(t)]" ds(t)/dt. 

and correspondingly, 8/8 x F [x + s ( t -  ~)] = 3/ 
6 x {F Ix + s (t)] - 8/8 xF  Ix + s (t)]- d s (t)/d t. ~}. 

For dD (x, t) we finally get the expression 

dD (x, t) = { IF - 6F/8 x. d s (t)/d t. el. 6 F/8 x - F 
. 8 / S x [ F - S F / b x . d s ( t ) / d t . e ] }  dx  

o r  

d D  (x, t)/d x = - e. d s (t)/d t {(c5 FIb  x) 2 - F .  82 F / 8  x2}. 
(8 B) 

Equation (8B) represents the first approximation 
of the response density of an elementary movement 
detector at position x when excited with a moving 
pattern. 

The one-dimensional continuous detector 
problem has recently been treated in n-th approxi- 
mation (Egelhaaf and Reichardt 1987). For  these 
calculations it has been necessary to assume that 
the F(x) function can be developed into a conver- 
gent Taylor series. The higher approximations of 
the detector output contain higher order terms in 
s(t) and in F but the factorization in s(t)- and 
F(x+s(t))  terms is maintained as in the case of 
the first approximation equation (8 B). 

In a similar way as shown here for one dimen- 
sion, the responses of a pair of elementary move- 
ment detectors have been calculated in first ap- 
proximation to solve the two-dimensional detector 
problem (Reichardt, in prep.). In these calculations 
it has for simplicity been assumed that the two 
elementary movement detectors of the pair are ori- 
ented in x- and in y-directions, respectively. Desig- 
nating with 

F (x, y, t) = F [ x  + sx (t)); y + s, (t)] (9 B) 

a two-dimensional contrast function that is moving 
in a direction given by the pattern velocity vector 

v = (vy (t)J with Vx -- d sx(t)/d t and Vy = d sy (t)/d t and 

j%* (x, y,Y' t)t)}j designating with the vector v * = | v . ( x ,  the 

outputs v* of the x-detector and with v* of the 
y-detector, the two vectors v(t) and v*(x, y, t) are 
related by a two-dimensional tensor. Detailed cal- 
culations lead to the result that the tensorial rela- 
tion between the two vectors is given by the expres- 
sion 

[ (6F/6x)2-F62F/c~x2 

=[CS F/S y/.  cSF/cs x -- F.  62 F/6 y 8 x 

6 F/S x . 6 F/cs y -  F . SZ F/~S x S y] 

The tensor matrix is symmetric and consequently 
has real (x, y)-dependent eigenvalues and eigenvec- 
tors. 
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