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ABSTRACT. We define an order independent  version of default unification on typed feature 
structures. The operation is one where default information in a feature structure typed with 
a more specific type, will override default information in a feature structure typed with a 
more general type, where specificity is defined by the subtyping relation in the type hierarchy. 
The operation is also able to handle feature structures where reentrancies are default. We 
provide a formal semantics, prove order independence and demonstrate the utility of this 
version of default unification in several linguistic applications. First, we show how it can be 
used to define multiple orthogonal default inheritance in the lexicon in a fully declarative 
fashion. Secondly, we show how default lexical specifications (introduced via default lexical 
inheritance) can be made to usefully 'persist beyond the lexicon' and interact with syntagmatic 
rules. Finally, we outline how persistent default unification might underpin default feature 
propagation principles and a more restrictive and constraint-based approach to lexical rules. 

1 .  I N T R O D U C T I O N  

The utility of default feature specifications has been argued for in the 
domain of feature propagation and specification in syntactic theory (e.g. 
Gazdar, 1987; Shieber, 1986b), the analysis of gapping constructions (Ka- 
plan, 1987), and most frequently in inheritance-based accounts of lexical 
organisation (Boguraev and Pustejovsky, 1990; Briscoe et al., 1990; 
Vossen and Copestake, 1993; Daelemans 1987; Evans and Gazdar 
1989a,b; Flickinger et al., 1985; Flickinger, 1987; Flickinger and Ner- 
bonne, 1992; Krieger and Nerbonne, 1993; Shieber, 1986a and others). 
In this context, a frequent motivation for allowing default inheritance in 
the lexicon is to capture phenomena of blocking, or the overriding of 
regularities by subregularities (e.g. Calder, 1989; Copestake and Briscoe, 
1992; Briscoe et al., 1995). Approaches to formalising and implementing 
inheritance-based lexicons include utilising object-oriented programming 
techniques (Daelemans, 1987; Flickinger et al., 1985), knowledge repre- 
sentation languages (Pustejovsky and Boguraev, 1993; Flickinger, 1987), 
path-based inheritance (Evans and Gazdar, 1989a,b), overwriting tem- 
plates (Karttunen, 1986; Shieber, 1986a) and various definitions of default 
unification (Copestake, 1993; Russell et al., 1991, 1993). None of these 
approaches achieves the perspicuity and declarativity of subsumption- 
based approaches to non-default inheritance (e.g. Carpenter, 1992), since 
in all these accounts inheritance must be carried out in a predetermined 
order. 
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In order to provide an account of defaults which is more closely inte- 
grated with the usual monotonic operations on feature structures (FSs), it 
is natural to assume a notion of default unification. Most definitions have 
followed Kaplan (1987) in assuming that this is an asymmetric binary 
operation, with one default FS being regarded as adding consistent infor- 
mation to a non-default FS. The result is taken to be either a single FS or 
a disjunction of FSs. Carpenter (1993) reviews extant definitions of default 
unification and concludes that none provide a good underpinning for a 
perspicuous account of default lexical inheritance, because an inheritance 
hierarchy must be separately defined for which inheritance order must be 
stipulated, since default unification is not associative under any of these 
definitions. Apart from this, individual specifications of defaults which 
pertain to a class cannot be evaluated incrementally with an asymmetric 
operation because the information contributed by earlier defaults becomes 
non-default. Furthermore, non-associativity makes default unification un- 
suitable for use in situations where the application of defaults cannot 
be circumscribed. Order independence is not an essential property for 
operations on static hierarchies, although it is highly desirable, but it is 
necessary for applications where the order in which information can be 
accumulated is not predefined. 

In this paper, we address these problems by defining a symmetric, order 
independent version of default unification on typed feature structures. 
Order independence is one way of allowing a series of default unifications 
to be evaluated incrementally, and so the order in which information can 
be accumulated need not be predefined. The operation will extend pre- 
vious work on default unification (e.g. Bouma 1990, 1992; Copestake, 
1993; Carpenter, 1993; Russell et al., 1991, 1993) in that, following Young 
and Rounds (1993) we mark default information explicitly in feature struc- 
tures rather than treating default unification as an asymmetric operation 
on a defeasible FS and indefeasible FS. We call these FSs, where default 
information is explicitly marked as such, default FSs (or DFSs). In DFSS, 
the defeasible information, if it survives unification, persists as defeasible 
information, via the explicit marking. So we term this approach 'persistent' 
default unification. 

Young and Rounds (1993) define a version of persistent default un- 
ification, and provide a semantics via Default Logic (Reiter, 1980). The 
operation is order independent, but it has two limitations which restrict 
its range of linguistic application. First, the operation does not permit 
more specific default information to override less specific default infor- 
mation. Secondly, the operation is not defined over FSs that incorporate 
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default reentrancies. As Young and Rounds choose to formalise default 
unification within Default Logic, the most straightforward way of ex- 
tending their definition to one which prioritises defaults, would be to re- 
encode their definition in the extensions of default logic that are designed 
for prioritisation. But all these extensions deploy one of the following two 
strategies. Either the order of the application of default rules to the 
premises is constrained extralogically (e.g. Konolige, 1988), or prioritis- 
ation is introduced by translating the premises into the logic in a context- 
sensitive way. For example, if we have a class b which is more specific 
than a class a, and a defeasibly implies ~b while b defeasibly implies the 
incompatible information ~, and we wish to unify two FSs of classes a and 
b, then, and only then, we add the formula b ~ ~q5 into the translation 
of the premises. In this manner the order in which defaults concerning a 
or the defaults concerning b are considered will not affect the result (e.g. 
Brewka, 1991). 

Thus, extending Young and Rounds' operation to prioritise defaults via 
extending Default Logic, will require specifications on the order in which 
the default information in the two feature structures being unified is 
considered, or it will considerably complicate the translation of the FSs 
into the logic. Conditional logics for nonmonotonic reasoning have proved 
useful exactly because the prioritisation of defaults is defined by the axioms 
of the logic, and thus the priorities follow from the semantics of the 
defaults themselves (e.g., Boutilier, 1992; Delgrande, 1988; Asher and 
Morreau, 1991; Morreau, 1992). So conditional logics don't have to specify 
an order in which default rules are applied, nor do they have to invoke a 
context-sensitive translation. We will therefore use a conditional logic 
rather than an extension of default logic to prioritise defaults. 

In addition, we also extend persistent default unification to typed default 
feature structures (TDFSS) and to TDFSs containing specifications of defeas- 
ible reentrancy. We provide a translation of TDFSS into a conditional 
logic, define the default unification operation via the logical consequence 
relation of this logic, and prove order independence via this logical conse- 
quence relation. We also discuss the computational complexity of default 
unification in the framework we develop. We motivate allowing default 
specification to 'persist beyond the lexicon' in order to elegantly encode 
defeasible lexical semantic information and to support seamless interaction 
with principles of discourse interpretation. However, we begin with con- 
straint-based approaches to lexical organisation, motivating the utility of 
order-independent and persistent typed default unification as the oper- 
ation underpinning (default) inheritance in the lexicon. 
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Fig. 2. Schematic partial inheritance network. 

2. INHERITANCE-BASED LEXICONS AND DEFAULT UNIFICATION 

Recent unification/constraint-based accounts of the lexicon have largely 
moved away from a conception of the lexicon as an unstructured list of 
lexical entries towards a hierarchical or network, inheritance-based view 
in which lexical entries are defined via cross-classification of their similari- 
ties (see e.g. Pollard and Sag, 1987). Under  this view the lexicon is still 
seen by the syntagmatic component  as a list of lexical entries (represented 
as FSs), but generalisations concerning their structure are captured by the 
inheritance network. For  example, we may wish to define lexical signs, 
intransitive verbs and monadic predicates, as in Figure 1. We can specify 
that classes are in a partial order,  illustrated as a Hasse diagram in Figure 
2, so that there is a homomorphism between the partial order and the 
constraints on the classes. Under  these conditions, the constraint specifi- 
cations shown as AVMs in Figure 1 can be treated as being monotonically 
inherited and the constraint on a class can be calculated by unifying the 
constraints on its parents with its own constraint specification. The con- 
straint on monadic-intrans-verb is thus the AVM shown in Figure 3. 

The description of sleep can simply state that it is a monadic-intrans- 
verb with idiosyncratic values for phonology and semantics. Thus unifying 
the constraint for monadic-intrans-verb with the lexical description will 
allow us to construct the FS for sleep. As unification is an associative 
operation, partial orders/Hasse diagrams can be interpreted algebraically 
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or logically and no 'extralogical' ordering or procedurality is being 
smuggled into the theory (e.g. Carpenter, 1992; de Paiva, 1993; Smolka 
and A~t-Kaci, 1988; Zajac, 1993). Classes can be seen as simply being part 
of the lexical description language, however, in what follows we assume 
a typed feature structure framework where the classes are types (or sorts 
in the terminology of Pollard and Sag (1987)) which label FS nodes. 
Therefore, types are an integral part of the feature structure language. 
Nevertheless, most of our discussion of inheritance is applicable to both 
typed and untyped frameworks. 

Further abbreviation and generalisation can be obtained if the inheri- 
tance network is interpreted in a default fashion. Figure 4 gives a simple 
example of an inheritance hierarchy based on default inheritance. This 
data does not provide a convincing motivation for introducing the con- 
siderable extra machinery required to formalise default inheritance as 
opposed to a monotonic subsumption hierarchy - this can be found in the 
works cited above and in Sections 4 and 6. However, it does suffice to 
illustrate the weaknesses of current definitions of default unification re- 
garded as the operation underlying default inheritance. The intended 
interpretation of Figure 4 is that elements in bold represent types, with 
most general types at the top; thus psp-t-vb is a subtype of verb. The 
FSs in ArM notation associated with types represent default constraint 
specifications associated with such types. Furthermore, there is a subsump- 
tion ordering on values as indicated on the right with +u  being an atomic 
leaf type which is more specific than stg-vow. PST encodes the past tense 
suffixes of English verbs. PST encodes their past and passive participle 
suffixes. The full specification of verb will include much more information 
appropriate to regular verbs and each subtype will inherit this information, 
unless it is explicitly overridden by a specification on that subtype. Thus 
psp-t-vbs are specified to be identical to verbs, and thus fully regular 
except in their specification of the past tense suffix. Since, by default, PST 
is reentrant with PSP on verb, all the classes are meant to inherit this 
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Fig. 5. Indeterminacy of default unification. 

r een t rancy  constraint ,  except  psp-diff-vbs where  it is over r idden .  Thus  

walk, walked can s imply be  specified as verb ,  keep, kept as pst- t -vb,  strike, 
struck as stg-vb,  and break, broke, broken as psp-diff-vb.  1 

T h e  assumpt ion  beh ind  the use of  defaul t  unification in inher i tance  

hierarchies  is tha t  it is used ins tead of m o n o t o n i c  unification to const ruct  
the  constra int  on a class f rom its defaul t  const ra in t  specification and the 

constraints  on  its parents .  Thus  the FS associa ted  with ps t - t -verb  would be 
defaul t  unified with tha t  of  verb.  H o w e v e r ,  as it stands,  this example  is 
incoherent .  T h e  FS associa ted  with verb  specifies a defeasible  value and a 
defeasible  r een t rancy  be tween  two at t r ibutes .  A n  opera t ion  of  defaul t  
unification def ined to combine  this in fo rmat ion  with the conflicting value 

specification on  ps t - t -vb is p rob lema t i c  because  it is not  clear  which aspects  
of  the defeasible  in fo rmat ion  on  the  super type  constra int  should survive 
- the r e e n t r a n c y  or  the value or nei ther .  The  si tuat ion is r ep re sen t ed  in 

Figure  5 where  [~ deno tes  defaul t  unification of an indefeasible  FS with a 

defeasible  FS, indefeasible FS ~ defeasible FS (or  equivalent ly  here  of  a 
sub type  FS with a pa ren t  type  FS). (We use q- as equivalent  to unspecif ied.)  

1 We intend that the lexical hierarchy should interact with lexical rules which relates past 
tense and participle forms of verbs to base forms by changing the specification of VFOr~M 
values and phonologically adjoining the value of PsP or PST to the stem. Pollard and Sag 
(1987) describe this approach to lexical rules and Bird and Klein (1994) describe how 
morphophonological operations can be characterized in a constant-based formalism. 
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Fig. 6. Non-associativity of asymmetric default unification. 

The results shown are those using the definitions proposed by Carpenter 
(1993): the first (credulous) result is the set of maximally informative 
default extensions of the indefeasible FS, the second (skeptical) result is 
the generalisation of this set. 2 In Figure 4 it is now possible to see that 
different choices are required at different points: in all cases except psp- 
diff-vb we want the original defeasible reentrancy between PST and PSP to 
survive; with psp-diff-vh we want the reentrancy to be rejected in favour 
of the distinct values. Clearly, if we are to adopt a single consistent 
definition of default unification we must alter the hierarchy of Figure 4 
by explicitly specifying that the reentrancy is retained in pst-t-vh and stg- 
vb. One important design consideration in the definition of a useful default 
unification operation is the computational complexity of the resultant 
system. For this reason, in the case of such indeterminacies, we would 
prefer to adopt Carpenter's (1993) skeptical approach and define the result 
as the skeptical extension of the indefeasible or more specific information 
with (more general) default information; thus, avoiding indeterminacy in 
the outcome. 

But there is a general problem with the asymmetric definitions of default 
unification considered by Bouma (1990, 1992), Carpenter (1993), Cope- 
stake (1993) and Russell et al. (1991, 1993), because defeasible and indefe- 
asible information in FSs is not kept distinct. Instead, in each application 
of the operation one argument FS is treated as entirely defeasible and the 
other as entirely indefeasible, and the result is a 'normal' FS or set of FSS 
as in Figure 5. It is straightforward to see that none of these definitions 
is commutative - if we switch the order of the arguments in Figure 5 the 
result will be different because we also switch the defeasibility of the 
information in each FS. What is less obvious is that the results are also 
not associative. Figure 6 shows one example which illustrates this for 
Carpenter's credulous and skeptical operations. Thus, if we use a defi- 
nition of this type to implement default inheritance in a lexical hierarchy, 
we either have to define the result as the values obtained by considering 

2 The results given by some alternative definitions are discussed in Copestake (1993). Carpen- 
ter 's definitions treat path equality (reentrancy) information as having equal status with path 
value information, but there are alternative options where one or other is treated as having 
priority. 
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all possible orders (or their generalisation), which is clearly unattractive 
both for computational tractability and perspicuity, or we have to make 
an additional procedural stipulation of inheritance order. For example, 
we would, in general, obtain different results if we proceeded 'top-down', 
composing successively more specific default constraints, than if we pro- 
ceed 'bottom-up' adding successively more general default specifications 
(see Carpenter, 1993 for further discussion). 

Young and Rounds (1993) provide a definition of default unification of 
FSs in which defeasible information is explicitly marked. This enables 
them to provide a definition which is both commutative and associative. 
However as we've mentioned, their approach is limited by two factors; 
firstly, their definition doesn't deal with reentrancy, so their operation 
would not support the overriding of reentrancy in Figure 4 on psp-diff- 
vb; secondly, they do not prioritise defaults. Thus, their definition is 
limited to cases of indefeasible values overriding conflicting defeasible 
ones. This would be adequate to capture the overriding of PSP on stg-vb 
in Figure 4. but not to allow this value to be overridden by that on psp- 
diff-vb, for example. We have argued in favour of extending their work 
by formalising default unification in a conditional logic, rather than an 
extension of Default Logic. This will enable us to introduce prioritisation 
of defaults into the operation, without constraining the order in which 
default information is accumulated into the result of unifying two FSs. 

3. P E R S I S T E N T  D E F A U L T  U N I F I C A T I O N  

In this section we present a definition of persistent default unification of 
typed feature structures (TFSs) which is order independent, allows for 
default reentrancy and has a built-in notion of specificity. We begin by 
defining typed default feature structures (TDFSs), which are more complex 
than normal FSs in order to incorporate both default and non-default 
information, and then informally describe persistent default unification 

< >  < >  

(V1) and illustrate its behaviour with examples. To formalise Vq we provide 
a translation function between TDFSS and formulae of a conditional logic 
in Section 5, and axiomatise the conditional logic so that the operation 
< >  

V] has the desired properties. 

3.1. Typed Default Feature Structures 

We assume a theory of TFSS which is similar to that of Carpenter (1992), 
Copestake et al. (1993) and Zajac (1993) in which types label nodes in 
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FSS (shown in bold in AVM diagrams but omitted where irrelevant). The 
definition of the type hierarchy (Type,  E_) is equivalent to that in Car- 
penter  (1992). However ,  we use a convention where more specific types 
are described as being lower in the hierarchy, thus Y is the most general 
type, and L indicates inconsistency. The hierarchy is a lattice, so any set 
of types will have a unique greatest lower bound or meet. Monotonic 
unification (R) of a set of TFSs is defined to result in an FS which has a 
type equal to the meet  of the types of the unified structures and is usually 

said to fail if this is ±.  However ,  in what follows, we will allow FSs to 
contain nodes which are typed ±.  We assume all TFSs are acyclic and we 
treat all values as intensional; that is, there can be more than one instance 
of any type in a TFS (see Carpenter  1992 for details). Treating values this 
way is more general than treating them as extensional: persistent default 
unification can handle both kinds of structures. On the other  hand, we 
leave open how the operation would have to be extended to handle cyclic 
structures. 

To define order independent  persistent default unification of TFSs we 
introduce a notation for TDFSS which, informally, contains a 'double'  TFS 
in which the left-hand FS specifies what is indefeasible and the right-hand 
FS what is defeasible. For  instance, the constraint associated with verb 
could be represented as (1), which makes explicit the fact that it is the 
reentrancy specification and value on PST which are default, rather than 
the presence of the attributes PST and PSP. 

(1) verb t 

PST : T 

PSP : Y 
] /r ~°,b~ ] /{(PST, {(+ed, verb)}), 

/ / LPSP/PST:: [ ]  [ ]  + ed / ( P S P ,  {(+ed, verb)})} 

The third element in the structure is a tail. Tails record the information 
we need from the history of default unifications a TDFS has undergone,  in 
order  to guarantee order  independence of the operation. For  each path, 
the tail contains value-specificity pairs, which record a default value that 
appeared on that path in a TDFS that was used to build the TDFS being 
considered, together with the type of the root node of that TDFS. The 
position of this root  type in the type hierarchy (which we assume to be a 
finite bounded complete partial order,  as defined in Carpenter  (1992; 11- 
13)) records the specificity of the default information. In general, during 
a series of default unifications, tails will record the values on paths of 
original TDFSS, together with the specificity of those TDFSS. For example, 
if a TDFS has a tail of the form: 



10 A L E X  L A S C A R I D E S  ET  A L .  

{(~, {{a, q), (b, t2}}), (qr', {(c, ta), (d, t4)})} 

then this means that to produce this TDFS we unified: a TDFS that had a 
root type tl and defeasible path 7r : a; a TDFS that had a root  type t2 and 
defeasible path 7r: b; a TDFS that had a root type t3 and defeasible path 
• r '  : c; and a TDFS that had a root type t4 and defeasible path 7r' : d. The 
relative order  of q, t2, t3 and t4 in the type hierarchy determines the 
relative specificity of the paths 7r : a, 7r : b, ~-' : c and 7r' : d respectively. 
As will become clear below, keeping track of this information is the cost 
we pay for being able to define default unification as an order  independent  
operation. We will refer to the initial specifications of defaults as the initial 
knowledge base (KB): for any FS in the initial KB the tail will just contain 
the path value information present which is defeasible; i.e., it appears in 
the defeasible FS, but is strictly more specific than the indefeasible FS. We 
may refer to such information as strictly default. Note that we recorded 
the values on both the equivalent paths PST and PSP in the tail of  (1). Path 
equivalences themselves are not recorded in tails, however. A fourth 
element in a TDFS is a tag shown as a superscript on the root  types of the 
FSs. This is used to identify TDFSs to aid the translation to conditional 
logic. We will normally omit indices in this section, since they do not 
affect the results of the default unification operation. 

We can make some convenient abbreviations, so that the 'double'  AVM 
notation can be factored across individual paths into a single AVM represen- 
tation where we have Indefeasable Value/Defeasible Value which in turn 
can be abbreviated to Indefeasible Value where Indefeasible Value is the 
same as Defeasible Value, and /Defeasible Value where T/Defeasible 
Value, without ambiguity. We can also omit the tail, when it can be 
determined from the default FS. Thus (1) can be represented as (2). 

(2) verb 1 
PST : / m  + ed 

PSP : / m  

Using this notation our new version of the default inheritance hierarchy 
introduced in the previous section is shown in Figure 7. 

In the formal definition of TDFS below, we ensure that in a well-formed 
TDFS the indefeasible specification subsumes the defeasible specification; 
that is, defaults add information to what is known indefeasibly. However ,  
it does not specify any relationship between the FSs and the tail. This 
relationship in the TDFSS for the initial KB is conventionally defined as 
above, and the way tails are merged during unification will be defined by 
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Fig. 7. Partial default inheritance hierarchy (new version). 
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the unification operation itself, rather than via the definition of TDFSs. 
This means there are some TDFSs that are well-formed, but which would 
never be in an initial KB, nor constructed via unification from those TDFSs 
in the initial KB. 

Firstly, we reiterate Carpenter 's (1992) definition of a type hierarchy, 
on which the definition of TDFSs rests. 

DEFINITION 1. Type Hierarchy. A type hierarchy is a finite bounded 
complete partial order (Type, r-). 

This guarantees that any set of types will have a unique most general 
unifier, which will be ± in the case of inconsistent types. We now define 
tails, and then TDFSS. 

DEFINITION 2. Tails. A tail is a set of pairs, where 

* The first member of the pair is a sequence of features (i.e. a path); 
• The second member of the pair is a set of pairs of types. 

DEFINITION 3. Typed Default Feature Structure. A typed default fea- 
ture structure defined on a set of features Feat, a set of types Type in a 
type hierarchy (Type, ~_) and a set of indices N is a tuple (3-, i, Q, ~ ,  3, 0), 
where: 

® 3 - i s  a tail. 
• i ~ N is the tag of the TDFS. 

• Q is a finite set of nodes, 



12 A L E X  L A S C A R I D E S  E T  A L .  

• ~ E Q x Q  
( ~  are the root  nodes of the indefeasible and defeasible TFSs). 

• 0 : Q ~ T y p e  is a partial typing function. 
• 6 : Q × Feat  ~ Q is a partial feature value function, 

such that if (nl, n2) = ~ then 

. 

2. 

3. 
4. 
5. 

na and n2 aren ' t  6-descendants. 
All members  of Q are &descendants of nl or n2 (but not both). 
There  is no node n such that 6 . . .  (3(n, FI), /72).  • • Fk) = n. 

0 ( n 2 )  = 

If  n E Q is a &descendant of nl, and 0(n2) ~: ± ,  then there is an 
isomorphic m ~ Q that is a &descendant of n2. That  is: 

(a) I f / ~ ( . . .  (6(nl, F~), F2) • • • Fk) = n, then 
6 ( . . .  (6(n2, F~), F 2 ) . . .  F~,) -- m; and 

(b) O(m) E O(n). 
(1, 2 and 3 ensure that we have two DAGS rooted at n~ and n2, and 
4 and 5 ensure that defeasible information is at least as specific as 

indefeasible information).  

In the above definition, there is an FS containing the indefeasible infor- 

mation rooted at nl, and another  containing the defeasible information 

rooted at n2. Constraints 1, 2 and 3 on 6 ensure that we have two rooted 
DAGS. Constraints 4 and 5 ensure that the defeasible information entails 
the indefeasible information (as long as the root  of the defeasible part  

isn't  ± ,  in which case nothing consistent can be said about  what normally 
holds of the TDFS). Note in particular that  constraint 5a ensures any 
indefeasible reentrancy is also present  in the defeasible DAG. There  are 
no constraints on the relation between a tail and the DAGS in the definition 
of TDFSS, but we will specify below how tails are constructed, as part  of 

the logic of default unification. 

3.1.1. A Detailed Example 

(3) is a TDFS, which is indexed 1 (as shown by the superscript on the root 

type). 
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(3) 
I t  i G : a {(F. H, {(a, t)}), 

: [G : a] F : H / < H ,  {<c, t>}>} 

:b  H : e  

Or using the abbreviated AVM notation, we obtain (4): 

4 [ti 
:b/e ~I  : [!] 

A tuple that describes this TDFS is (3-, 1, Q, (nl, ns), 6, 0), where 

1. 3-= {(F. H, {(a, t)}), (H, {(c, t)})} 
2. Q = {n~, n2, n3, n4, ns ,  n6, n7, n8}. 

3. ~ (n l ,  F )  = n2, (~(n2, G)  = n3, ~ (n l ,  H )  = n4, ~(ns,  F )  = n6, ~ (n6 , G)  = 

n7, d(n6, H)  = nT, 6(n5, H)  = ns. 
4. O(nl) = t, 0(n3) = a,  0(/'/4) = b ,  0(ns)  = t, 0(n7) = a,  0(n8) = c. 

The two rooted DAGS can be drawn pictorially as follows: 

n n5 

n2 n4 n6 n8 

r~3 

n7 

Note that for the TDFS to be well defined, c must be a subtype of b. 
This TDFS could have been part of the initial KB, since the value-type 

pairs in the tails match exactly the strictly defeasible information in the 
defeasible FS. If the tail were totally unrelated to the information in the 
FSs - for example, it specified values on paths that don't appear in the 
FSs - then it is a well-defined TDFS, but it would never be generated from 
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< >  

the initial KB via the unification operation • defined below. We abbreviate 
the part of the tail for a path 7r, for a TDFS tagged 1, to ~.a. For example 
F .  Ha = {(a, t)} in this example. 

3.2. An Informal Definition of ~] 

We have assumed requirements for default unification which correspond 
to those in Copestake (1993), adapted because we are assuming persistent 
defaults with the addition of order independence and specificity. We want 

our definition of ~ to meet the following criteria: 

1. Default information must always be consistent with non-default infor- 
mation. 

2. Default unification behaves like monotonic unification in the cases 
where there are no conflicts in the default information. 3 

3. Default unification never fails when the non-default information is 
consistent. 

4. Default unification returns a single result, deterministically. 
5. Default values can be given a specificity ordering, such that defaults 

associated with a more specific class take priority over those associ- 
ated with a more general class. 

6. Default unification can be described using a binary, order indepen- 
dent operation. 

The first five criteria can be understood to apply globally to a set of 
TDFSS which are to be unified. In contrast, the last criterion is necessary 
because we assume that we cannot, in general, expect to have all this 
information available at once. In principle, this would be possible for a 
static inheritance hierarchy, although in practice it would seriously con- 
strain possible implementations and would make the operation much less 
perspicuous than monotonic unification. Furthermore, defaults have utility 
in applications where there is no definite point at which it is possible to 
decide that no further relevant information will apply. 

But the assumption of a binary operation is problematic since by the 
very definition of nonmonotonicity, one cannot in general divide the prem- 
ises into groups, work out the inferences from those groups, and expect the 
inferences to survive the whole. The only way to gain order independence, 
therefore, is to ensure that each time the binary operation is performed, 
it is influenced by the necessary pieces of information that are 'outside' 

3 As we will see in Section 5.5, the definition of conflict is more complex because of tails. 
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the immediate  context,  of the FSs it is unifying. Tails cover  this necessary 

information by recording sufficient information for us to define R so that  

it has all the desired properties.  
We now informally describe the operat ion which we define logically in 

Section 5. We also prove that this operat ion meets  the above criteria in 

that section. 
Let  F1 = I I /D1/T 1 be a TDFS, and so I1 is the indefeasible TFS, D1 the 

defeasible TFS and T 1 the tail. Similarly for F2. Then F12 =aefI12/Dlz/T~2 
=def F1 R F2 is calculated as follows: 4 

1. The Indefeasible Part: 

112 = 12 V1 Iz. 
That  is, the indefeasible TFS is the unification of the indefeasible 

parts of the arguments.  
2. Defaul t  Reentrancies  and Paths: 

They all survive in D~z. 
7/-r 7g r We use ~ to indicate reentrancy,  and ~-'~D1 means ~-~  is true 

q,l.! t in D1. So if ¢r ~D1 or ~r ~02 ~" , then ~-~D12 ~ '"  If  adding all the 
reentrancies in D1 and D2 gives a cycle, then as in normal  unification, 
D~z is 2 and we ' re  done. If  not, then note that paths also survive, 
because for any path ~-, ~r --~ or; the defeasible values are then calcu- 

lated according to step 4 below. 

3. Tails: 
We calculate T 12 as follows: 

For  each path ~- which has a value in T a or T z, ~T 12 is the union of 

~r '1 and ~.,2, for all or' that are reentrant  with ~r in D12.  

#~  = { # , 1  : (#) ~ (#,)} u {,#"~ : (#) ~1~ (~')} 

Note we already know which paths are reentrant  because we 've  done 
step 2. Also note that ~.12 C ~r 1 U ~.2, because ~r ~ 7r. 

4. Default  Values: 
These are calculated via the tail T 12, and each path ~r is considered 

separately. 

For any path  ~r which has a value in D1 or D2, the default value on 
it in D12 is the unification of the following: 

Indef  Indef~ 2 is the unification of the indefeasible values in I12 on all the 

paths that are reentrant  with ~r in D12 

Indef~ 2 = IN{4,=, : (~r') =,lZ ~b=, A (Tr} ~0~2 (~"}} 

4 Note that  we sometimes abbreviate  the index 1/x 2 to 12, when there 's  no confusion. 
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Where (~r') =h2 th=, means that 112 has a or' path, and the value on this 
path is 4~='. 

Spee Spec~ 2 is the set of values in 7r 12 that are associated with the maxi- 
mally specific types, and are also compatible with Indef~ 2 
Spec~ 2 = {~b : (¢, t,> E 7r 12 and V(th', r , , )  ~ 7r 12, t+, I~ t4, and ¢ 
Indef ~ 2 -4= .1.}. 

Comp Comp~ 2 is the set of values in ~.12 that are individually compatible 
with Indef~ 2 and each value of Spec~ 2 
Comp~ 2 = {~b : {¢, t,~) E ~.12 and Vv E Spec~ 2, v ~ 4) 4= ± and ~b [~ 
Indef ~ 2 4= i }. 

Some explanation of the steps 2, 3 and 4 are in order. First, step 2 ensures 
all reentrancies and paths survive, regardless of the indefeasible and defe- 
asible values involved. 

It is possible to extend the logic so that defeasible reentrancies can be 
overridden, but this comes at a cost in computational complexity, as 

<> 

discussed in Section 4.1. The operation that extends V] in this way is 
defined in Lascar±des and Copestake (1995). Second, step 3 merges tails 
so that the cr and zr' parts of the new tail are equal if 7r' is reentrant  
with ~r. We must construct new tails this way, so that the defeasible values 
as defined in step 4 produce a well defined TDFS. If we did not add 7r' 
parts where ~-' is reentrant  with it to the ~r-part of the new tail, then step 
4 would not guarantee that the defeasible values on defeasibly reentrant  
paths were equal. 

Finally, we explicate Indef, Spec and Comp in step 4. First, Indef 
ensures that the defeasible value on a path is at least as specific as the 
indefeasible value on that path. It's also at least as specific as the values 
on the paths with which it's defeasibly reentrant.  This is essential for the 

results of [-1 to be a well-defined TDFS. Without this, the defeasible values 
are not guaranteed to be both at least as specific as the indefeasible ones, 
and equal on defeasibly reentrant  paths. Second, Spec and Comp use only 
the values from the tails, and not the values in D1 and D2. This feature 
yields order  independence; this is proved in Section 5. Spec ensures values 
associated with most specific types survive, but only if they were compat- 
ible with the indefeasible information. If we did not ensure compatibility, 
then indefeasible information would not override defeasible information; 
rather we would get the value L when they conflict. The set Comp ensures 
that compatible information on more general types also survives. This is 

<> 

necessary for both order independence,  and ensuring that ~ reduces to 

when no conflicts arise. Again, this is proved in Section 5. It also means 
that values that originated from more general TDFSS than those used to 
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construct Spec, which are incompatible with the values in Spec, do not 

survive. This ensures that ~ incorporates specificity. The more specific 
defaults will survive in Spec, and block the more general conflicting de- 
faults from being in Comp. 

These steps can be carried out in the order specified, and each step 
produces a deterministic result. Nothing in step 2, for example, is depen- 
dent on the results of step 4. Furthermore, note that one can do step 4 
path by path in any order: the value calculated at one node does not affect 
the value of another node. The one exception is when the reentrancies in 
D1 and D 2  produce a cycle. In this case, the logic in Section 5 yields the 
result that D12 = ±. 

It is possible to illustrate the persistent default unification of any two 
TDFSS using this informal definition. 

Defeat of Defeasible Modus Ponens 
Where t2 I-- tl and a [-7 b = J_ 

[~  : [G : a ] ] / { }  ~ [ ~ :  [G : / b ] ] / { ( F "  G'  {(b, t2)})} 

F:  [ G : a ]  

To show that the above holds, we work through each step of the 
<> 

definition of [-7 in turn. We concentrate on the value on the F .  G path; 
the root type of the two TDFSS in the result is calculated in a similar 
fashion. 

1. The indefeasible F .  G value is a m T = a. 
2. All defeasible paths and reentrancies survive (there are no defeasible 

reentrancies). 
3. F .  G 12 = F .  G 1 U F .  G 2 = {(b, t2)}. 

4. The defeasible F-  G value is the unification of: 
Indef a 
Spee { } (because b is incompatible with a). 
Comp { }. 
which is a. 

Specificity 
The following example demonstrates the prioritisation of defaults. 
Where t2 r- tl and a R b = 3-. 
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[tF : [G : /a]]/{(F" G, {(a, q)})} 

~ [ t 2  ]/{(F" G, {(b, t2)})} 
F:  [G :/b] 

]/ : [ a  :/6] {(F. G, {(a, q), (b, t2)})} 

Again, we concentrate on just the F .  G path. 

1. The indefeasible value on F .  G is 7- [7 7- = T. 
2. The defeasible reentrancies and paths survive. 
3. The F .  G 12 tail is F .  G 1 U F .  G 2 = {(a, tl), (b, t2)}. 

4. The defeasible value on the F .  G tail is the unification of: 
Indef Y 
Spee {b} (because b is associated with a more specific type (namely 
t2) than a is (namely q), and b is compatible with T). 
Comp {b} (a is not compatible with b and so a is not in this set). 
which is b. 

The Nixon Diamond 
We now show what happens where there is no prioritisation between 
conflicting defaults. Where a [7 b = ± 

[tF : [G : /a]]/{(F" G, {(a, q)})} 

< ['; ] /  [7 : [ a  :/b] {(F- G, {(b, t2)})} 

]/ : [ 6 : / ± ]  {(F. G, {(a, tl), (b, t2)})} 

Again, we concentrate just on the results on the F-  G path. 

1. The indefeasible value on F .  G is T R T = T. 
2. The defeasible paths and reentrancies all survive. 
3. The F .  G 12 tail is F .  G ~ U F .  G 2 = {(a, q), (b, t2)}. 
4. The defeasible value on the F .  G tail is the unification of: 

Indef 7- 
Spec {a, b} 

(since both are as specific as possible) 
Comp { } 



O R D E R  I N D E P E N D E N T  D E F A U L T  U N I F I C A T I O N  19 

(a is incompatible with b and b with a) 
which is 2 .  

The value on the default node is ± ,  indicating that nothing coherent  can 
be said about the default information. This value could be overridden by 
a subsequent default unification, however,  by a default F .  G value that 
was associated with a more specific type than both tl and t2. 

Reentrancy 
Since reentrancy always survives, we also get ± to be the default value 
when the indefeasible values on defeasibly reentrant  paths are incompat- 
ible. 

Where a [7 b = Z 

It=:} [! ]I ] ?5 : / IN = a/ r -n± 

:/ITI G b/ITI 

We calculate the values on just the F path here; the one for G is similar. 

1. The indefeasible value on F is a. 
2. All default reentrancies survive; so F--~ G survives. 
3. The F 12 tail is F 1 U F 2 U G 1 U G 2 = •. 

4. The default value on the F path is the unification of: 
Indef The indefeasible value on F and G 

a [ q b = Z  
(must do this for TFSs to be well defined). 
Spec { } 
Comp { } 
which is ±.  

This examples clarifies the motivation for defining Indef in the way we 
do. If we did not unify the indefeasible values on the paths that are 
defeasibly reentrant  with F, then we would not obtain a well-defined TDFS 
via the operation: either the defeasible values on the F and G paths would 
be different in spite of the defeasible reentrancy, or the defeasible value 
on F would not be at least as specific as the indefeasible value. Since 
defeasible reentrancies always survive, and indefeasible values can only 
get more specific with subsequent unifications, the value L in this case 
could not be overridden in subsequent unifications, in contrast to the 
Nixon Diamond case above. 

As a further example, we consider the inheritance hierarchy shown in 
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Figure 7. We do not need to make any stipulation of top-down versus 
bottom-up inheritance order to be able to calculate the inherited constraint 
specification using this definition of default unification. The constraint 
on pst-t-vb, for example, is determined by default unification with the 
constraints on its supertypes. 

1) 

1 ~ 2 = 2 R 1 =  

pst-t-vb r- verb 
v e r b ]  [pst-t-vb ] 
P S T : / [ ] + e d  2) [ P S T : / + t l  

1 1 

PSP: / [ ]  LPSP : T J 

pst-t-vb ]/{<PST, {(+t, pst-t-verb), (+ed, verb)}), 
PST:/[~ + tl/(PSP, {(+t, {(+t, pst-t-vb), (+ed, verb)})} 
PSP :/[~ J 

Inheritance hierarchies are discussed in more detail in Section 4.2. 
So far we've shown how the definition works. We now informally de- 

monstrate why tails are required for order independence. We do this via 
two more examples. 

3.2.1. Keeping Track of Specificity 

Consider another version of the hierarchy given in Figure 7, such that we 
have the constraint specifications shown in (5). 

(5) psp-diff-vb r- stg-vb r- verb 
[verb ] I'stg'vb l [psp'diff'vb" 

1) /PST:/+ed 2) PST:/+o 3) /eST:T 
LPSP : / + e d /  LPSP : /+oJ  LPSP : +en 

Here, verb is specified to necessarily have two attributes PSP and PST both 
with default values +ed, stg-vb has +o for both attributes, and psp- 
diff-vb has +en for PSP. We will assume that the latter specification is 
indefeasible, although making it defeasible would not affect the order 
dependence of the result discussed below. We can also assume that the 
user has made no stipulation about PST for psp-diff-vb but that the con- 
straint specification is well-typed, so that its value for PST is 7-, although 
the results would be the same if we simply assumed PST was absent. 
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- stg-vb ] 
1 ~ 2 =  PST : [ + o /  

[ P S P :  /-boJ~ 
: psp-diff-vb ] 
:PST : / - b o |  

P S P : - b e n [  

I psp-diff-vb 7 
I PST : /Ted] 
i PSP : - t -en~ 

psp-diff-vb I 
( 1 ~ 3 ) ~ - ~ 2 =  | P S T ,  / + e d ]  

L PSP:  - b e n J  

Fig. 8. Order dependence if specificity is driven by the root type. 

1 0 3 =  

1 0 2 =  

(17~ 2) 7~ 3 = 

1 0 3 =  

(1 ~ 3) ~-~ 2 = 

PSP : /+o J / 
psp.diff-vb ] / 
PST: /+o | / 
PSP : Ten ] /  
psp-dlff-vb [ ! 
PST : /Ted]  / 
PSP : Ten j - 
psp-diff-vb ] / 
PST, /+o | /  
PSP ,+en  J/ 

{(PST, {(+o, stg-vb}, {Ted, verb}}), 
(PSP, { {+o, stg-vb}, {-bed, verb} }} } 

{ (PST, { (-bo, stg-vb}, (-bed, verb} }}, 
(PSP, {(+o, stg-vb), (-bed, verb}}}} 

{(PST, {(-bed, verb}}}, (PSP, {(Ted,verb)})} 

{{PST, { (-bo, stg-vb}, (-bed, verb}}}, 
(PSP, {(-bo, stg-vb), (-bed, verb}}}} 

Fig. 9. Order independence through tails. 

Suppose that, instead of having tails, we defined specificity to be driven 
by the root type of the current feature structure. This is a reasonable idea, 
since types persist in the FS (in contrast with template names in PATR-II 
and similar systems). Unfortunately it would result in order dependence, 
as shown in Figure 8. This occurs because a constraint which invokes a 
general value on a path is promoted in specificity: namely, the information 
that PST = Ted is promoted in specificity when unifying 1 and 3. It starts 
as a default on a FS of type verb, and becomes a default on a FS of type 
psp-diff-verb, with nothing to distinguish it from the value of PSP which 
was actually stipulated. Intuitively, one needs to record for each path in 
each TDFS, the specificity of the TDFS from which that path's value origin- 
ated. And it must be the original specificity that determines which defaults 
survive during unification. Our use of tails to record the original specificity 
achieves this, as shown in Figure 9. 
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3.2.2. Keeping track of  specificity and values 

For many examples, including that just shown, we do not need such 
complex tails. In Section 5.6, we describe a sublanguage for which the 
information that must be retained to give order independence is just the 
original specificity for a given path. We could do this by associating an 
index with each path, represented below as an integer superscript, and 
having a specificity order on indices, which mirrored the specificity order 
on the original root types. But tails are doing more than this, since they 
are also recording the original values, and the next example illustrates 
why this is necessary for the full language. 

t3r'-tlr--t2 3 F  1I--2 ar--b d P b  =c  d ~ a = ±  

< >  

We want [q to reduce to typed Unification when there's no conflict 

between the FSs to be unified. So 1 R 2 must be as follows: 

: la I 

< >  < >  

And (1 [q 2) ~ 3 is determined by the fact that indices must determine 
which default survives when there is conflict: 

Similarly, 2 R 3 must be as below, if ~ reduces to monotonic typed 
unification when there's no conflict: 

:/c 3 

< >  < >  

And so (2 R 3) [-1 1 is again determined by the specificity of the indices, 
since there is conflict: 

This is different from (1 ~ 2) ~ 3. 
The problem is that sometimes the specificity of the default path deter- 

mines the result in unification: specifically, when two defaults conflict, and 
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one originated from a more specific TDFS than the other. On the other 
hand, because we want default unification to reduce to monotonic typed 
unification when there is no conflict, the values on the paths can also 
sometimes determine the results of persistent default unification: specifi- 
cally, when there's no conflict. The above example shows that these two 
factors don't work independently, and therefore unless the dependence 
between them is recorded in some way, order dependence will result. 

This example demonstrates that the indices don't record enough infor- 
mation from the unification history. We must also keep track of values 
that have been 'overridden', because they must sometimes influence the 
result of subsequent unifications. This is achieved by tails, as shown briefly 
below, and in more detail in Section 5.4. According to the above definition 

<> 

of gq, the results are as follows: 

1 ~ 2 =  [~  : / a ] / { ( F ,  {(a, tl), (b, t2)})} 

(1 ~ 2) R 3 = F : / e  {( , {(a, q), (b, t2), (d, t3)})} 

2 ~ 3 = [ ~  : / e j / { ( F , { ( b ,  tz),(d, t3)}) } 

(2 ~ 3 ) ~ 1  = It3 ]/{(F, {(b, t2), (d, t3), Ca, q)})} 
L F : / e  / /  

In this informal presentation of persistent default unification, we have 
not proved properties such as order independence. This is done in Section 
5. There are two limitations to the operation as we have defined it. Firstly, 
specificity is determined by an inheritance hierarchy which allows only 
strict inheritance links between the types rather than defeasible ones. We 
leave open how we could extend the prioritisation of defaults to cases 
where the priorities themselves were default statements. Secondly, al- 
though any node in the FS may be typed, the operation does not take 
account of any indefeasible type constraints which may apply and thus the 
result may not be well-formed. We discuss this issue in detail in Section 
4.4, and Lascarides and Copestake (1995) extend the operation defined 
here, to overcome this limitation. 

4. EXPLOITING PERSISTENT DEFAULT UNIFICATION 

In this section, we briefly cover a number of topics concerning the im- 
plementation of persistent associative default unification and its integra- 
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tion in a> representat ion language. We first describe an algorithm for com- 

puting Fq and show that it is of polynomial  complexity, then discuss inheri- 
tance hierarchies and how TDFSs can be converted into TFSs. At  this 
point, we can compare  persistent default unification to asymmetric default 

unification and show the latter corresponds to a special case of persistent 
default unification combined with the conversion of persistent default to 
non-default  FSs. Finally, we make  some remarks  on well-formedness with 

respect to a type system. 

4.1. Implementation and Complexity 

The algorithm for computing the results of persistent default unification 
< >  

(•) can be described in terms of the informal definition given in Section 
3.2. I t  involves the following steps: 

1. Construct an indefeasible FS by monotonic  unification. 
2. Construct a FS for the defeasible reentrancy by monotonic  unification 

of the reentrancy information in the defeasible parts of the input FSs. 

3. Merge the tails. 

4. Calculate the defeasible FS values. 
< >  

By examining the informal definition of ~ (and the conditions on the 
logical axioms in Section 5) it is obvious that these steps can be carried 
out in this order  because no step depends on the results of any later one. 
The first two steps have the same order  of complexity as monotonic  
unification which is near  linear in the number  of nodes in the input FSs 
(e.g. Carpenter ,  1992). 5 

The third step, the calculation of tails for each path 7r, involves con- 

structing the union of the value/specificity pairs for each tail for each 
path ~r' which is equivalent to it due to reentrancy. 

~-~ = {'r, " '1 : <~) ~.o,~ {~'}} u {~'~ : {~) ~o,~ <~')} 

At first sight it appears  that the resulting tail could contain more  value/ 
specificity pairs than were in the originals. However ,  information about  
reentrant  paths can be amalgamated,  because tails for reentrant  paths will 
be equivalent and reentrancy accumulates monotonically in the default 
FS. In fact, we can modify the notation, so that the first member  of each 

5 Assuming types on nodes, requires an extra step in the algorithm over the untyped case 
to find the greatest common subtype, but since we are assuming that this is unique, this just 
adds a lookup overhead which will depend on the number of types. For the moment we 
ignore the extra complexity which arises for well-typed unification, see Section 4.4. 
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element in a tail is a set of reentrant paths rather than a single path, for 
example, instead of (6) we can write (7) if F, G and H are reentrant: 

(6) {(F, {(a, t)(c, t}}), (G, {(a, t), (c, t)})(H, {(a, t), (c, t)})} 

(7) {({F, G, H}, {(a, t)(c, t)}) 

In this case, the maximum number of tail elements (i.e. path set/value set 
pairs) is equal to the number of nodes in the default result FS. Merging 
tails involves using set union to construct each such element, where the 
maximal number of value/specificity pairs in each value set will be the 
number of TDFSS in the original KB which are being unified. In practice, 
tails will normally be much smaller than this implies, because we only 
keep track of default values which are more specific than the non-default 
values in the original KB. Furthermore, although for simplicity we de- 
scribed tails so that they can contain values which are inconsistent with 
the non-default values in the TDFS, such values never have an impact on 
the unification by the definitions of Spec and Comp. So in practice, they 
could be removed from the tail. 

The final step is the calculation of the default FS values. For con- 
venience, we repeat the earlier definition of the three values to be unified: 

Indef The indefeasible value: 
Indef~ 2 is the unification of the indefeasible values in 112 on all the paths 
that are reentrant with 7r in D12 
Indef 12 = ~{¢,~, : (~r') =,12 ¢,~' A (~r) ~D12 (It')} 

Spec The most specific default values: 
Spec~ 2 = {q5 : (¢, t~) E ~.12 and V(4Y, ¢+,) ~ Ir 12, t+, ~ t+ and ~b m 

Indef 2 ±} 
Comp The compatible default values: 

Comp~2{ch:(¢,t+){ETr 12 and V v ~ S p e c  12, vm~b4=l and ¢[7 

Indef 4: ±} 

Note that the defeasible value of a path can be determined without refer- 
ence to the defeasible values on other nodes or to previous defeasible 
values on any node: the result is just dependent on the indefeasible struc- 
ture, the reentrancy and the tail. Thus the result can be calculated individ- 
ually for each node and subsequent calculations of defeasible values on 
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different paths will not alter the result. The worst case complexity is where 
there is maximal reentrancy, since this gives the longest tails. 6 

We will derive the complexity for a node in a default FS with p paths 
leading to it, after k FSs from the original KB have been considered, which 
gives a maximum tail length of t = kp: 

1. Spec is the set of the maximally specific values in the tails, excluding 
those which are incompatible with the non-default FS. Constructing 
this set involves O(t 2) comparisons for specificity and t type un- 
ification checks with the non-default values in (a). 

2. Comp is the set of all values in the tails which unify with every 
member  of Spec and with the non-default value. This involves 0 0 2 )  
type checks. 

3. The final step is to unify together all the members of (b) and (c) 
with the non-default values. This is O(t) in the number  of type 
unifications. 

Thus if we have n nodes in the resulting FS, the overall complexity of the 
calculation of the default values is O(ntZ). So, although the complexity 

of ~ is worse than that of monotonic typed unification, none of the steps 
for each node in the result involves complexity worse than O(t 2) in the 
length of the tails, and these will normally be short. 

It is worth noting that it is not actually necessary to calculate default 

FS values at each step if we know we are applying a sequence of 
operations: the intermediate results are irrelevant, since the values on the 
default FS can be calculated by looking at the indefeasible FS, the default 
reentrancy and paths and the tails. (This is formally proved by Lemma 1 
in Section 5.5.). So, for each step apart from the last one within a sequence 

of ~ operations, the only essential overhead compared with monotonic 
typed unification is calculation of the default reentrancy and merging the 
tails. 

4.2. Inheritance Hierarchies 
< >  

In inheritance hierarchies such as that shown in Figure 7, ~ can be used 
to implement inheritance in a straightforward way. A type t will have a 
constraint C(t) which is calculated by persistent default unifying its con- 

6 If we allow reentrancy to be overridden by default values, as in Lascarides and Copestake 
(1995), interactions can occur between nodes, and the algorithm to compute this version of 
default unification has exponential complexity in the worst case. See also Section 4.4, for 
discussion of imposing well-formedness conditions, in which nodes could interact. 
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straint specification with those of its supertypes. Because of order indepen- 
dence, this is equivalent to defining the constraint to be the persistent 
default unification of the constraint specification with the constraints of 
the immediate supertypes. For example, 

(8) C(pst-t-vb) = C(verb) ~ r pst-t-vb 1 
LPST : / + t d  

= r pst-t-vb 1/{(PST' {(+ed, verb), (+t, pst-t-verb)}}, 
/PST:/m + t / (PSP, {(+ed, verb), (+t ,  pst-t-verb}})} 
1 / 
LPSP/m 

For type hierarchies, we follow the convention that the type of a constraint 
specification FS is the type being defined and therefore the correct speci- 
ficity order is built into the operation automatically. But if we were defin- 
ing inheritance of classes in an untyped framework, all that would be 
necessary would be to define tails so that instead of types defining the 
specificity of values we used a tag which reflected the partial order of 

<> 

classes in the inheritance hierarchy. Nothing in our definition of V] apart 
from this initial instantiation depends on specificity being determined by 
a type hierarchy. Multiple inheritance in either case needs no special 
stipulations, although clearly if a type or class has two or more immediate 
parents these will not be ordered with respect to one another and therefore 
any conflicts in the default parts of their constraints will lead to nodes 
with value L. 

Most previous work on default unification has assumed that defaults do 
not persist outside the lexicon, and that syntactic and semantic specifi- 
cation can be couched entirely in terms of monotonic constraints as is 
done in current HPSG, for example. Within our current framework this 
would mean we have to 'convert' persistent defaults which have survived 
a series of default unifications into indefeasible specifications. For exam- 
ple, the morphological specifications in Figure 7 must not remain default 
at the point when the resulting FSS are utilised in parsing, otherwise a 
+ing phonological form may unify with an FS default specifying a +ed 
suffix. In many cases of lexical inheritance, default inheritance is for 
convenience of description, and the ultimate objects of the description are 
intended to be monotonic TFS. For pst-t-verb, for example, we want to 
be able to derive the TFS: 
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pst-t-vb 1 
PST : []  + t 

PSP : []  

We therefore need to define an operation which combines the defeasible 
information with the indefeasible structure, which we can apply when we 
know that all necessary default unification operations have been carried 
out, for example at the interface between the lexicon and the syntagmatic 
component. This operation, however, is not an integral part of the defi- 
nition of persistent default unification, since it is only relevant to its use 
where defaults are used to describe objects which are treated as ordinary 
TFSs with respect to some other level of processing. In fact, in Section 6, 
we will assume that some classes of defaults persist beyond the lexicon, 
while others are encapsulated within it. (Even for the latter class, persis- 
tence within the lexicon is important, because it allows defaults to be 
accumulated incrementally, without the sensitivity to textual order in de- 
scriptions found in most previous uses of lexical defaults.) For expository 
convenience we will describe the operation as converting the entire TDFS 
into a standard TFS, but this easily generalises to the case where only part 
of the default FS is made indefeasible. 

It should be clear from Section 2 that any operation which makes 
default information non-default cannot be applied within a series of default 
unifications without the result being order dependent, so it only makes 
sense to apply the conversion after all applications of ~ within a given 
module, such as the lexicon. We refer to the conversion operation as 
DefFill, because it fills in the non-default structure from the default infor- 
mation and is thus roughly analogous to the Fill operation which is applied 
to make a TFS well-formed with respect to a type hierarchy (cf. Carpenter 
1992). We first give a definition of DefFill, and then explain why it takes 
this form. 

We define DefFill(F), the result of converting a TDFS F into a TFS, as 
the result of unifying the non-default part of the TDFS with a FS derived 
from the default part, by ignoring all nodes which are typed _L, all nodes 
which have features and atomic types and all &descendants of these nodes. 
With respect to reentrancy, we only incorporate it into the non-default if 
there is no inconsistent node either before or after the reentrant node 
being considered. 

DEFINITION 4. Let F=defI/D/T. Then DefFill(F) is the most general 
TFS which satisfies the following: 
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/[]  
/ []  

a n b = . l _  

f: :tl F : 

G [] 

Fig. 10. Reentrancy causing value conflict. 

1. DefFill(F) E I, i.e. it is subsumed by the indefeasible part of F. 
2. If mi the root node of DefFill(F) and n2 is the root  node of D then 

for all consistent paths 7r 0(6(¢r; ml)) = 0(6(¢r, n2)). 
3. For  all consistent paths ~- and ¢r' such that ~(~-', n2) then, if all 

paths ~-- z'" are consistent, 6(7r, ml) = 3(Tr', ml). 

Where we define a path 7r to be consistent if there are no (possibly empty) 
paths ~r' and ¢r" such that 7r' .  7r" = 7r and either 

• n 2 ) )  = ± 

• O(8('n",n2))= a where a is defined to be 
6(f, 6(¢r', n2)) is defined for any feature f.  

an atomic type and 

Because of the condition that all values on the nodes in the default FS 
must be consistent with those in the non-default FS, the TDFS tO TFS 
conversion operation essentially involves adding in the default values to 
the indefeasible part of the TDFS ignoring nodes typed with 3_ and all their 
&descendants (because 3_ implies everything, and therefore we cannot 
assume anything about nodes which follow J_). However ,  the definition 
above reflects two complications, the first concerning reentrancy, and the 
second a (very weak) notion of well-formedness. 

The problem with reentrancy is that it is retained in the default FS even 
if there is a clash of indefeasible values, and therefore we cannot guarantee 
that reentrancy is compatible with the non-default structure if there is any 
node typed 3- which is a &descendant of the reentrant  node. For  example, 
consider Figure 10. We need to discard the reentrancy from the default 
FS when constructing the TFS, and for this particular case we can therefore 
add nothing to the non-default  structure. Unfortunately,  we cannot distin- 
guish between cases such as this where the reentrancy is incompatible 
because of the indefeasible values and those where reentrancy is compat- 
ible with the indefeasible structure, but there has been a clash of default 
values which is unrelated to the reentrancy. An example of this is shown 
in Figure 11. The distinction between 3- caused by conflict in indefeasible 
values and conflict in defeasible values (in this case on the same path), 
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arqb=_l_ 

/[!I : [ ]  H : b  = 
: m  

J] H :e ..1_ : i f ]  I ,  
{<F. H, {<b,t), (a,t)}), 
<C. H, {@, t>, <~, t>}>} 

Fig. 11. Values conflicting independently of reentrancy. 

cannot be deduced simply by looking at the tail since a conflict between 
the indefeasible values c and d might also have been present. 

We have adopted the approach of ignoring default reentrancy on a node 
which is typed ± or has ± as a successor, even though this implies 
that information which could have been incorporated from the default is 
neglected in some cases. The only other option would be for the DefFill 
operation to itself carry out a check for compatibility with the non-default. 
We currently think this is less attractive, both theoretically, because this 
is making DefFill do work which should properly be part of the logic of 
persistent default unification, and practically, because it would need to 
check all possible combinations of default reentrancy with the non-default 
FS, an operation which is potentially of exponential complexity. The result 
of converting the TDFS in Figure 11 to a TFS is shown in Figure 12 (this will 
be obtained irrespective of the compatibility of c and d). The reentrancy 
between paths F-I and G.I is retained because the corresponding node in 
the default FS had no descendants marked with Z, but the reentrancy 
between F and G and between F.H and G-H is lost because F.H/G.H 
was marked ±. 

The well-formedness problem is that ~ in general yield a TDFS with a 
default component which :is well-formed, even ignoring _1_ nodes. The result of 

does not necessarily conform to even the weakest notion of well- 
formedness: that there are some atomic types for which no features are 
appropriate. (We will discuss stronger notions of well-formedness with 

[IL 1 : I-I:: C 

m e  

Fig. 12. Loss of reentrancy when nodes are typed 3_. 
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respect to a type system in Section 4.4.) Thus, as things stand, our system 
is too weak to be able to define an analogue of untyped FS systems, where 
nodes which have (atomic) values cannot also have features. For  example, 
if t r- t ' ,  then 

even though for some types a we want to be able to exclude as not well 
formed FSs such as: 

< ~  

One possibility, of course, would be to attempt to define r-q so that 
structures like this were excluded. But it is not clear that this is possible 

without order  dependence.  For  example, suppose we instead defined [q 
so that the result of the example above was the following: 

['F:,.] 
It is then not clear what to do about cases where there is reentrancy, such 

a s :  

EtF ,.I F: ,,o . , °  

The reentrancy cannot simply be lost, because then further default 
unification with a FS with a more specific type than t which 'reinstated' 
the path F .  G would result in order  dependence.  Fur thermore although 
it may intuitively look reasonable to drop the feature G if the atomic type 
is preferred,  what we have here is not a conflict between values but a 
conflict between a value and a path. It seems preferable to regard the 
imposition of well-formedness conditions as part of the operation of incor- 
poration of default information into the non-default FS. It is, after all, 
clear that the default part of a TDFS is potentially always ill-formed as a 
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FS since it admits nodes typed 1,  so it seems unreasonable to impose any 
stricter well-formedness conditions. 

With respect to the very weak notion of well-formedness described so 
far, the resulting T F S  will be well-formed. The notion of typing normally 
implies stricter well-formedness conditions and we consider some of these 
in Section 4.4 below. But first we briefly examine how our definition 
of persistent default unification relates to previous definitions of default 
unification as priority union. 

4.3. Persistent Default Unification and Priority Union 

The asymmetric or priority union class of definitions of default unification 
can now be seen as very special cases of R combined with the default 
incorporation function defined above. Apart from Copestake (1993) and 
Grover et al. (1994), all definitions of priority union of which we are 
aware have involved untyped feature structures. This is equivalent in the 
current formulation to having a type lattice which is completely flat apart 
from T and L, and consists of a series of atomic types corresponding to 
values and a single non-atomic ty<p>e, r The priority union, [7 of two FS X 

Y corresponds to DefFill(X' [7 Y') where X'  = X' /X ' /Tx  and Y' = 
T/Y' /Tv (i.e. X '  contains only indefeasible information and Y' only defe- 
asible information) and X'  and both have type t (so there is no specificity 
order). Of the definitions surveyed in Copestake (1993), the closest to the 
behaviour of ~ in this special case is Carpenter's skeptical version of 
default unification. One case where Carpenter's definition does give differ- 
ent results is shown in Figures 13 and 14. 

The disparity in results is a consequence of the treatment of reentrancy 
in ~ and in DefFill, since skeptical default unification retains the maximal 
information possible, whereas our definition sometimes results in poten- 
tially viable information being lost. The advantage of our current version, 
even considered purely as an implementation of priority union, is that it 
is computationally tractable, whereas computing the results using Carpen- 
ter's definition potentially involves checking all possible combinations of 
default information for consistency. 

= [ 

Fig. 13. Default unification by Carpenter's definition. 
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I : - I -  

DefFill( [! ] 
: T  

t 

T I 

[! / 

[] 

, [ ]  

t 

F 

I , N  

:: T 

Fig. 14. Persistent default unification followed by DefFill. 

4.4. Well-formedness 

A variety of different notions of constraints in typed feature structure 
systems have been proposed, for example by Carpenter (1992), Zajac 
(1993), Copestake et al. (1993) and Gerdemann and King (1994). The 
ramifications of fully integrating default unification with any one of these 
systems are considerable. Rather than discussing a particular proposal in 
detail here, we introduce some of the general issues which have to be 
considered and outline an approach, which while somewhat restrictive, is 
adequate for the examples described in this paper. 

We first consider well-formedness of TDFS as a whole. Type hierarchies 
with constraints differ fundamentally from untyped inheritance systems 
such as templates in that type constraints on FSs are generally assumed to 
apply uniformly, however the typed FS arises, whereas templates only 
apply during a preliminary processing phase associated with the evaluation 
of FS descriptions. If we consider a description of a template as inheriting 
from two template FSs the result will be subsumed by their unification, 
just as a subtype of two types will have a constraint which is subsumed 
by the unification of the constraints on its parents. But while templates 
are restricted to the descriptive metalanguage, types are a part of the 
object language. Thus, if we define two templates, Intrans-verb and Mon- 
adic as shown in Figure 15 and define Monadic-stative-intrans-verb to 
inherit from both of them, this does not affect the result of unification of 
two FSs which happen to be equal to the template descriptions. In contrast, 
consider the type system also shown in Figure 15 which implies that any 
time two FSs of types intrans-verb and monadic are unified, the result 
must be of type monadic-stative-intrans-verb and therefore, to be well- 
formed, must be subsumed by its constraint, which can be more specific 
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Intraus-verb 
< SYN CAT • = verb 
< SYN SUBJ SYN CAT • = np 

Monadic 

< SEM PRED • = pred 

< SYN SUBJ SEM • = < SEM PRED ARG1 • 

Monadic-stative-intrans-verb 

Monadic Intrans-verb 

< SEM PRED • = stative 

intrans-verb 

monadic 

--~ [ SYN 

--+ [ SYN 

SEM 

monadlc-stative-int rans-verb -+ 

CAT : verb ] ] 

[ PLIED : pred ] 
[ARC1 : m I 

moo,,d,o^,n,roo, vorb^[s ,,, tP,, Os,a ,vol] 
Fig. 15. Templates and types. 

than the unification of its parent constraints. So typed unification defined 
simply as a version of untyped unification augmented with the calculation 
of greatest common subtypes for each pair of input nodes does not return 
a result which respects all type constraints. In general, an extra step may 
be needed for each node,  of unifying in the constraint on that node's type. 
Well-typed unification, [Nt can be defined in these terms (see Carpenter,  
1992:92). 

The approaches to typing FSs mentioned above assume that every node 
in a FS is typed, and that monotonic constraints can be stipulated with 
respect to any of these types. In this paper, we have limited the notion 
of a default constraint so that the root node of the constraint FS is typed 
but we do not allow embedded nodes in constraints to carry types which 
independently have their own default constraints. Since constraint FSs can 
be of arbitrary size, this does not prevent any subpart of a FS being default, 
but it does avoid the complex interactions between different sources of 
defaults which would otherwise be possible. We also assume that the root 
type of the default part of the TDFS is equal to the root type of the non- 
default. Under  these conditions, calculation of inheritance as described in 
Section 4.2 will give a TDFS which is well-formed in that it is subsumed 
by the indefeasible part of the constraint on its type, and incorporates all 
possible information from the defeasible part, but this is only true because 
we know the type of the result beforehand and are already unifying in its 
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constraint. 7 To ensure persistent default unification always returns a result 
which is well-formed by this definition, an extra default unification oper- 
ation may be required, just as it is in the monotonic typed unification 
case. We thus define a well-formed default unification operation ~t: 

DEFINITION 5. FS1 ~tFS2 = (FS1 ~q FS2)~ C(O(nl)) where nl is the 
root node of the indefeasible part of FS1 [-] FS2 and C(t) gives the TDFS 
representing the constraint on t. 

Clearly, since this is just another ~ it is irrelevant at what stage it is 
carried out within in a series of default unifications. This is not completely 

< >  

analogous to the [-qt operation described above, because there is no need 
to consider nodes internal to the root node and recursively apply their 
constraints. 

We return now to the question of typing with respect to a series of 
monotonic constraints on nodes other than the root. The concept of an 
atomic type given in Section 4.2 is an example of an appropriateness 
condition which restricts the range of features possible as transitions from 
a node of a given type. This is a very weak example of an appropriateness 
condition: an atomic type has no appropriate features, but all features are 
possible for all non-atomic types. In general, however, we want to be able 
to state stricter conditions than this, which will apply in addition to the 
subsumption condition mentioned above, and which will affect all typed 
nodes, not just root nodes. The most straightforward case is where we 
can stipulate the appropriate features for a type, and for each feature 
independent of type we can stipulate an appropriate value. This can be 
implemented as part of the incorporation operation in a manner analogous 
to the atomic type stipulation discussed in Section 4.2. If we find a node 
which has a feature which is not appropriate for its type (or any of its 
subtypes) we ignore that node when constructing the TFS. 

This notion of typing is adequate for the examples discussed in this 
paper. However it is a weaker version of the appropriateness conditions dis- 
cussed by Carpenter (1992), because we do not allow values to be stipulated 
by types. Difficulties arise once we allow types to affect values 

7 In the monotonic  case, well-formedness is usually described in terms of subsumption:  a 
constraint on a type will subsume any well-formed FS which has  a root  node of that type. 
Obviously we cannot  define well-formedness of  TDFSS by subsumption,  since constraints may  
have default components .  However,  the definition in the monotonic  case could be rephrased 
as a condition that  a well-formed vs is unchanged  when  it is unified with the relevant 
constraint,  and an equivalent  definition applies here: any well-formed TDFS will be unchanged  
by the result of  persistent  default unification with the  constraint on its root node type. 
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on successor nodes, because we lose independence between node values. 
Consider the following appropriateness conditions: 

t3-o [G :t2] 
t4 ~ [G : t S] 

(where t4 r-t3 and thus t5 r--t2) and suppose that we have to convert the 
following TDFS to a TFS: 

[F :  [ ~ / ~ 6 / t 7 ] ]  

If the appropriateness conditions on t3 or t4 induce a conflict with the 
type on F.G the result is potentially indeterminate. For example, assume 
t2 is compatible with both t6 and t7, t5 is compatible with t6 but 
t5 IN t7 = ±. In this case, the TFS which results from incorporating both 
defaults is not well-formed (9), but there multiple well-formed possibilities 
according to whether we accept t4 in preference to t7 (10), t7 instead of 
t4 (11) or neither default type (12). 

(10) 

(11) [: E:,,l] 
(12) 

The result most in accord with our previous assumptions would be (12), 
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but this means that DefFill cannot be computed without considering all 
the interactions of appropriateness conditions, which becomes particularly 
complex when we consider examples with reentrancy. Thus, the interac- 
tion of constraints and defaults is not straightforward, but we will not 
attempt to resolve the problem here, since the options depend on the 
precise assumptions made about typing, and are essentially independent 

of the ~ operation itself, under the assumption that this is not required 
to return a well-formed FS. The only definition of typed default unification 
of which we are aware which does explicitly address the issue of interaction 
of default and type constraints is that in Copestake (1993). This treats 
default unification as an operation to be constrained by a type system, 
not integrated with it, and is in any case somewhat inelegant. We therefore 
leave open here the issue of how to integrate our definition of persistent 
default unification with a full type based constraint system. However, 
Lascarides and Copestake (1995) propose an extension to persistent de- 
fault unification, which can be integrated in a straightforward manner with 
such a system. 

5. THE L O G I C  O F  P E R S I S T E N T  D E F A U L T  U N I F I C A T I O N  

The rest of the paper can be understood without readin<g> this section. 
However, specifying the logic which defines the operation [7 allows us to 
prove that it meets the criteria we specified in Section 3.2. We will translate 
TDFSs into a modal language with well-defined syntax and semantics; 
define the axioms of the logic, and the accompanying logical consequence 
relation; define the operation R in terms of this logical consequence 

<> 

relation; and then prove that [-] has the properties specified in Section 
3.2. 

5.1. Translating TDFSS into a Modal Language 

We will use a conditional logic to axiomatise R. We use a modal language 
to describe the paths in the FSs (cf. Blackburn, 1992). We introduce 
four conditionals into the language, which will be used to represent: (i) 
indefeasible paths with values; (ii) indefeasible reentrancies; (iii) defeas- 
ible paths with values; and (iv) defeasible reentrancies. Indefeasible paths 
will be translated as: 1 ~* (~r)a, where 1 is the tag of the TDFS, 7;" is a path, 
or sequence of features, and a is a type. Semantically this means that the 
TDFS 1 indefeasibly entails the path (~r)a, and for any path (¢r)b indefeasi- 
bly entailed by this TDFS, a E b. So in a sense, (~r)a is the (Tr)-prime 
implicate. Non-default reentrancies will be translated as: 1--~(~') 
(~r'), where --~ is the material conditional, and ~ is the Kasper-Rounds 
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connective for defining reentrancy (Kasper and Rounds, 1986). Default  
paths will be translated as 1 ~ (Tr)a. Semantically, this means that the 
TDFS 1 defeasibly entails (~')a, and if it defeasibly entails (Tr)b, then a I-- b. 
Finally, default reentrancies are translated as 1 > (~') ~ (~"). Semantically 
this means that the TDFS 1 defeasibly entails the reentrancy between paths 
(~-) and (or'). Note that this doesn't  preclude other  reentrancies involving 
these paths also being entailed by the TDFS. 

We first define the syntax and semantics of the modal language 5gpa,, 
< >  

in which ~ will be modelled. 

The Syntax of  ~' pa, 

1. Types t, t', a, b, -F, L . . . are WFFs. 
(Types in a TDFS will be translated into these WFFs). 

2. Indices 1, 2 . . . .  are WFFs. 
(The index in a TDFS will be translated into these WFFs). 

3. If 1 is an index, then ] is a term. 8 
4. If ~" is a path of features, and a is a type, then (~r)a and [Tr]a are 

WFFS. 

5. If ~" and ~" are paths, then (~') ~ (Tr') is a WFF. 
6. If 05 and ~0 are WFFs, then so are, 05 A 0, 05 ~ ~ and 05 > ~0. 
7. If 1 is an index and (Tr)a is a path, then 1 ~ (~-)a and 1 ,,~ (~-)a are 

WFFs.  

We will also occasionally use [-q in the syntax of the language, for no- 

tational convenience, a M b will be shorthand for that value c which is the 

value of a [-7 b according to the type hierarchy (Type,  t-). 
A further notational convention we will use is: A 4* B for (A ~ B) 

Z .9 Similarly for A -¢~ B, A =~ B, and A ;b B. 

We also use R to refer to the infinum of sets of types. For  example, if 
X = {a, b, c}, then we will write E1 X for a E1 b ~ c. And if Y = {d, e}, then 
we will write X [-1 Y for a f-q b ~ c [~ d ~ e. 

The Semantics of  ~pa, 
A model for the language 5fpau is a tuple (W, , ,  RF, R ~ , . . . ,  I), where: 

• W is  a (non-empty) set of nodes; 
• • is a function from W × ~ ( W ) ,  where ~ (W)  is the power set of W. 

s The term i will correspond to the tag on a TDFS. 

9 Strictly speaking, the language contains two I s ;  one which stands for logical inconsistency 
- which is the one used in A -4. B - and the other which stands for the most specific type 
in (Type, E__). 



O R D E R  I N D E P E N D E N T  D E F A U L T  U N I F I C A T I O N  39 

The constraints on • will be determined by the axioms of the logic 
that we define shortly. These axioms will determine how defaults 
behave during unification. 

• R F ,  R e ,  • • • are accessibility relations on W (one for each feature in 
Feat). 

The constraints on these relations will be determined by the axioms 
of the logic that we define shortly. They ensure that TDFSs are double 
DAGS, f o r  example. 

• I is the interpretation function, which assigns each type in Type and 
each tag in N a member of ~(W).  

If ~- is a sequence of features F 1 . . .  Fn, then (~-)= ( F 1 ) . . .  (Fn), and 
R,~ = RFa . . . . .  R F . .  

We now define the semantics of the WFFs of the language. 

1. Where ~b is a type or tag [[4~]M(n) = t rue  iff n ~ I(~b). 
2. For any feature F,  [[(F)Cb~M(n) = true  iff 

there is an n' such that n R F n '  and [[ch]]M(n') = true .  

3. For any paths 7r and 7r', ~(~")~ (~r ' ) ] ]M(n)= t rue  iff n ' R = n  iff 
n ' R = , n ,  and 
there exists an n' such that n ' R = n .  

4. [[4~ > qJ]M(n) = t rue  just in case , (n,  ~&]M) C___ ~0~M" 
5. Ill ~ (~)a]](n)  = t rue  just in case [1 ~ (~r)a]](n) = t rue  

and if [1 ~ (~r)b]](n) = t rue  then ~a] C Ibm. 
6. [1 ~ (Tr)a]](n) = t rue  just in case [1 > (~r)a]](n) = t rue  

and if [1 > (1r)b]](n) = t rue  then [a] C_ ~b~. 

The semantics of (Tr)q5 correspond exactly to that given in Blackburn 
(1992), and the semantics of (Tr)~ (~") corresponds to that given in 
Kasper and Rounds (1986). These formulae can be used to define FSs, as 
explained in Blackburn (1992). FSs are a particular kind of DAG, and 
formulae of the form (Tr)q5 A (Tr')~0 ̂  • • • describe such DAGs, as long as 
appropriate constraints are imposed on the accessibility relations and ~ .  
This is because Kripke models are directed graphs. For example, the FS 
in (13) describes a DAG, which is denoted by the formula ( F ) a  ^ 

( G ) a  A ( F )  ~. ( G ) ,  under certain assumptions about accessibility (such as 
( F ) a  entails [F]a). 

(13) I F :  Uqa 
G : m ]  

The necessary axioms for ensuring this representation of FSs is an accurate 
one are defined below. 



40 A L E X  L A S C A R I D E S  E T  A L .  

5.2. The Translation of TDFSS into ~pdu 

The translation from TDFSs into "~pdu is defined in terms of two translation 
functions: one that takes reentrant  nodes as arguments, and the other that 
takes nodes which are assigned a type as arguments. The tails do not 
undergo a translation procedure.  Rather,  there will be definitions that 
explain how the tails are constructed, both in the initial KB and when 
default unification is performed. The tails will then play a part in defining 
the axioms on the conditional ~ .  But the tails themselves are in the 
metalanguage of ~pdu. 

The translation of the FSs is a bijection, and therefore has an inverse. 
Each TDFS is translated into -% ~-~, > and ~ rules, with the tag in the 
antecedent.  For example: 

1. 1 ~ (Tr) ~ (It ' ) ,  
2. 1 ~ (Tr)a. 
3. 1 > (Tr) ~ (~"). 
4. 1 ~ (Tr)a. 

When unifying two TDFSS tagged, say, 1 and 2, we translate the two 
TDFSS into rules of the above form. The axioms of the logic will then 
generate new ---~, ,~-, > and f f  rules, with the tag 1 A 2 in the antecedent 
(as before,  we will sometimes abbreviate the tag 1 A 2 to 12). Using the 
inverse translation on these formulae, and the definition of how a tail is 

by the ~ o p e r a t i o n ,  which is given below, we produce transformed the 

resulting TDFS, TDFS1 17_ TDFS2. 
The translation on nodes is defined as follows: 

DEF INI TI ON 6. Let  (9 ,  i, Q,(rl ,  r2), 6, 0) be a TDFS. Then the transla- 
tion of this TDFS is defined in terms of two functions ~1 and z2, which are 
defined as follows: 

• ~1 : Q1 ~ ~pdu, where 
Qa = {n E Q : 3 paths it, ~" such that n = 6@1, ~r) = 3@1, ~ ' )  or n = 
6(r2 ,  = 6( r2 ,  

and 

{i ~ (7r) ~ (7#)} 
71(n) = {i > (~-) ~ (qr')} 

• ~'2 : Q2--~ ~pa~, where 

If n = a(rl, ~-) = a(rl,  7r') 

If n = 6@2, It) = 6@2, 7r') 

Q2 = {n E Q: o(n) is defined.} 
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and 

= ~ { i  ~ ( o r ) 0 ( n ) :  6(rl, or) = n }  

or2(n) [{i ~ (or)O(n): 6(r2, or) n} 
If n is a &descendant  of  rl  

If n is a ~-descendant  of  r2 
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5.2.1. An Example of Translation into ~pdu 
The  t ranslat ion of  the TDFS (14) is (14').  

(14) It i [G a,O] " / H : ~  

• b / c  

I{(F. H, {(a, t)}), (H,{(c, t)})} 

A tuple that  describes this TDFS is ( 3 ,  1, Q, (nl ,  ns), 6, 0), where:  

1. 3 -=  {(F- H ,  {(a, t)}), (H,  {(c, t)})}. 

2. Q = {nl, n2, n3, n4, ns, ns, n6, n7, ns}. 
3. ~ (n l ,  F )  = he, 6(n2,  G )  = n3, 6(/'/1, H )  = n4, 8(n5, F )  = n6, 

6(n6, G) = n7, 6(n6,  H )  = n7, 6(F/5, H )  = ns.  

4. O(na) = t, 0(n3) --- a, 0(n4) ---- b ,  0 ( n 5 )  = t, 0(n7) = a, 0(ns) = c. 

(14')  

F .  H 1 = {(a, t)} 

H 1 = {(c, t)} 

lk ,~ t  

1 ~ (F ) (G)a  

1 ~ (H)b 

1 > (F)(G) ~ (F)(H) 

l ~ t  

1 ~ (F)(G)a 

1 ~ (F)(H)a 

1 ~ (H)c 
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5.3. The Axioms of  the Logic 

We now define the axioms of the logic, so that we can infer new con- 
ditionals from the translations of the TDFSS TDFS 1 and TDFS2 to be unified. 
The new conditionals, together with the new tail as defined below, will 

be the translation of the TDFS TDFS1 [-~ TDFS2. We will later see that one 
cannot take an arbitrary theory of ~pau, and determine whether it specifies 

a TDFS; although this won' t  matter  given the way N is defined. See Section 
4.4. 

The Axioms on Features and Reentrancy 
The following axioms are consistent with those given in Blackburn (1992), 
and Kasper and Rounds (1986): 

PN A Possible Path is a Necessary One 
F (F)~b - ,  [F]4~ 

A R E  Adding Reentrancies 

F (Or)  ~ < # ' )  ^ ( # ' )  ~ ( # " ) )  - - ,  ( # )  ~ (#") 

R E T  Reentrancy and Top 

FOr) ~ ('rr')---> ((Tr) T A ( 'n")T)  
F ('n') ~-" ('n') <-> ('n')T 

R EV Reentrancies and Values 

k ((rr)#, ̂ O")g' ̂  <~') ~ 0"9) -* ((~)(~ ~ g') ̂  <~")(#, ng,)) 

AC L Acycles 
F ( (~1  ~2)  -~ (~2 ) )  --" ± 

These ensure that the modal semantics does indeed describe the FSs in 
the definition of TDFSS in the appropriate way. For  example, as long as 
the accessibility relations are constrained so as to model PN, each DAG 
in the model contains at most one 0r)-arc - just like FS DAGS); and by 
AR E,  reentrancies are transitive. The semantic constraints corresponding 
to R E T  and R EV ensure the DAG in the Kripke model is isomorphic to 
one containing node sharing, when the paths are reentrant.  And by ACL,  
cycles are disallowed. 

We also assume the axioms on --->, familiar from first order  logic. 

The Axioms of  ,~  
The axioms on ~ and ~ ,  determine how the indefeasible information in 

< >  

the TDFSs combines under the operation •. 
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The first axiom PI1 and PII '  ensure that the path in the consequent of 
a ~- rule is the most specific path. The last three axioms TU1, TU2 and 
TU3 ensure that, together with PI1 and PI I ' ,  ,~. corresponds to typed 
unification. 

PI1 The First Prime Implicate Axiom: Part 11° 

1 ,,~ (Tr)a 

(1 ~ (~-)b) ~ b = a 

PII '  The First Prime Implicate Axiom: Part II 

1 ~ (~-}a 

(1 ~ (7r)b) ~ (a --~ b) 

1 ~ (Tr}a 

TU1 The First TU Axiom 

1 ,~  (rr)a 

(1 ~ (¢r) ~ (or')) + (2 -# (~r')T) 

(1 ^ 2) -+ (Tr)a 

TU2 The Second TU Axiom 

1 ~ (rr)a 

2 ,~  (Tr' }b 

i --, <Tr> ~ <~-'> 

(1 ̂  2) ~ <~'>(a ~ b) 

TU3 The Third TU Axioms 

1 --+ (~r>± 1 --+ A_ 
and 

1 -+ A_ 1---~(Tr>i 

TU1 and PII '  ensure that the following holds: 

Ft l  F] t ( l ^2 ) -  

l_F[tl:a]~[ ~ : b l = [ F :  b 

TU2 and PII '  ensure the following holds: 

lo One could replace b = a in PI1 with a ~ b; the resulting axiom would be equivalent. 
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[tlRt~21^2) 7 

: N a  ~ : N b  = G ' m  

TU2, TU3 and PII '  ensure the following holds: where a [7 b = _k: 

< >  

These axioms ensure that step 1 in the informal description of 77 holds. 

That is, the indefeasible part of FS1 ~ FS2 is/2 [7/2. 
We now consider the axioms for >,  the definition of tails, and the 

axioms for ~ .  These will determine the default aspect of the definition 

of 

The Axioms on > 
Given the semantics of >,  we have the following two axioms: 

CR Closure on the Right 

A > B  

~- B---~C 

A > C  

AND The And Condition 

A > B  

A > C  

A > ( B  ^ C) 

In addition, we add the following, and a corresponding semantic con- 
straint on ,:11 

R_E1 The First Reentrancy Axiom 

1 -- ,  ( ~ )  ~ ( ~ ' )  

1 > (Tr) ~ (Tr') 

In other words, any reentrancy in the indefeasible DAG has a correspond- 

11 For  the purposes of brevity, we will not define the semantic constraints on * that  corre- 

spond to the axioms on > and ~ .  
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ing reentrancy in the defeasible DAG. This is in line with the isomorphism 
constraint between the DAGS in the definition of TDFSs. 

There  is one more axiom involving > and reentrancy, which will tell us 
which defeasible reentrancies survive unification: 

RE2 The Second Reentrancy Axiom 

1 > <~-> ~ <rr'> 

(i ̂  2) > 

RE2 entails that the definition of ~ will be one in which default reentran- 
cies always survive, even when there 's  incompatible indefeasible infor- 
mation (in which case the default value on the reentrant  node is ±) .  That  
is, it corresponds to step 2 in the informal definition specified in Section 
3.2. If the reentrancies in 1 and 2 produce a cycle, then by RE2, A R E  
and CR, (1 ^ 2) > ±.  The definition of a PDU  deduction below ensures 
that in this case, the defeasible part of the unified TDFS is L. 

The Definition of  Tails 
Tails are defined in the following manner: 

• Let  the TDFS TDFS1 be in the initial KB; we call such TDFSS basic 
TDFSS. Then for any path zr in TDFSI: 

qr I = {(a, t): where 1 ~ t, 1 ~ (~r)a, 1 4-  (~)a} 

That  is, these tails record just the information that is defeasible but 
not indefeasible, together with the root  type (specificity). 

• The following rule tells us how to construct new tails from old ones, 
during unification: 

-rr' 7 / . t l  .7./.I2 W "I^2 U (IA2)>(~)~<~'> U 

This corresponds exactly to the instructions in step 3 of the informal 
<> 

definition of R given earlier. 

When unifying TDFSl with TDFS2, the 7r-part of the new tail is formed by 
set union on the tails ~r '1 and ~.,2 for all zr' that are reentrant  with ~r. 
So, in particular, ~1 U ~.2 C ~12 (since ~- is reentrant  with itself). These 
two definitions ensure that the tail of a TDFS contains all the strictly 
defeasible values on the original TDFSS that were used to build this TDFS, 
together with the specificity information. We will see that this definition 
of tails guarantees the following result: 
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: / m a  {(F,{(a, t)}), ~ : / m e  

: /[~ (G, {(a, t)})} : / m  J 
H : b  

{(G, {(c, t)}), 

(H, {(c, t)})} 

] : / [~a  [7 b [-1 c - -  / {(F, {(a, t)(c, t)}), 

: / [~ / (G, {(a, t), (c, t)}) 

H : b/[]] (H, {(a, t),(c, t)})} 

Note that in the above, (H, {(b, t)}) is not in the tail of the LHS TDFS, 
because the path H :  b is indefeasible (as well as defeasible). Because of 
this, it is not in the tail of the result either. But the values in the F, G 
and H parts of the tails are expanded in the result, because of the reen- 
trancy, which determines which sets to unify in the resulting tail. If we 
defined ~r 12 to be 7r* U 7r 2, then in the above, F 12 =/: H 12. So we would 

< >  

not get a well-defined TDFS in this example of m, because the axioms on 
~ ,  which are defined using the tails, would fail to see that the default 
values on F, G, and H must agree. 

The Axioms on 
Having defined tails, we are finally in a position to define the axioms on 

, which will ultimately determine which default paths in a TDFS survive 
< >  

the [7 operation. There are three axioms: the first ensures that the path 
in a consequent of a ©-rule is the most specific; the second and third 

define the ~ operation for default paths. 
PI2 The Second Prime Implicate Axiom 

1 ~ (7r)a 

(1 ~ (~r)b) --) b = a 

CON Consistency 

1 ~ (7r)a 

(1 > (at) ~ (~-')) ~ (2 7- (~r')T) 

(1 A 2) :/" (7rxTr2) ~ (~'2) 

(1 A 2) ~ (zr)a 
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PDU The Persistent Default Unification Axiom 

Where 

1 ~ (¢r}a 
2 © <rr')b 
1 > <~-) = <=') 
(1 ^ 2) :b {~rl ~r2) ~ @r2) 

(1 ^ 2) ~ @r)(Spec~ 21-1 Comp~ 2 F! gO 

= N {~=, : 1 ^ 2 ~-, <rri )q*=, and (1/~ 2) > @r> ~ <~r, )} 
Spec~ z = {4, : (gb, t+) E ~r 12 and V<~b', t,~,) E "/r 12, t4/[/~ t4~ and 
Cn ~÷ _t_} 
Compi 2 = {~b: <gb, t4, ) ~ ~r 12 and Vv e Speci 2, v IN ¢ 4= ± and 

4,n~+ ±} 
Spec stands for Specificity; and Comp for Completeness. 

CON and PDU are used to work out default values on paths, in the 
case where the reentrancies didn't  yield a cycle. CON is analogous to 
TU1; it ensures that the result of the unification operation in (15) is (16) 
rather than (17): 

r t l  N t(21^2)- 
(16) / F : / "  

LG : /b 

Ftl N t(21^2)- 
(17) / v : / T  

L G : / T  

But why is the PDU axiom defined in the way it is? Let's first look at 
the sets Spec~ 2 and Comp~ 2 (we will refer to these as Spec and Comp 
when there is no confusion). Spec~ 2 picks all the values in the tail ~r 12 that 
originated from the most specific TDFSs, and that are compatible with the 
indefeasible information. This is equivalent to the set (b) in the informal 

description of N given earlier. Note for now that Spec will help get the 
specificity results we require. Suppose a tail contains <a, ta) and (b, tb). 
This means that the TDFS with this tail resulted from the default unification 
of (at least) the two TDFSS which contained respectively the strictly default 
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information 7r:a and root type ta, and strictly default information zr :b 
and root type tb. Now suppose that a [7 b = ± and ta r- tb. Then b ~ Spec. 
But a will be in Spec, as long as (i) ta was at least as specific as all the 
other specificity information in the ~r 12, and (ii) a is compatible with the 
indefeasible information. And if a ~Spec, then b ~ Comp, since 
a ~ b = ±. So the PDU axiom will ensure that b will be overridden by a, 
as specificity requires. The Nixon Diamond, therefore, will correspond to 
a case where Spec contains two elements that are incompatible. They must 
have been associated with types that were unordered with respect to each 

< >  

other. The result of [7 in this case will be (or)±. 
The set Comp~ 2 contains all the values in the tail that are compatible 

with those in Spec~ 2 - i.e., the values associated with the most specific 
types - and the indefeasible information. This is equivalent to the set (c) 

in the informal description of ~ given earlier. This enables a value that 
has been overridden previously by specificity, to now be re-inherited into 
the result. Therefore, a specific value on a general type constraint can 
survive unification when it is compatible with the most specific type con- 

straints. As mentioned earlier, allowing this to happen is essential if V7 is 
to reduce to typed unification when no conflicts arise. It is also essential 
for preserving order independence in the example in Section 3.2 that 
illustrated that recording only specificity information from the unification 
history is insufficient. 

In the definition of Spec and Comp, we remove all the values that are 
incompatible with ~, in order to ensure that indefeasible information 
always overrides defeasible information, when there is conflict. So, for 
example, if a VI b = _1_, then: 

Io .,c] Io 
= [ t(21"2) ] /{(F.  G, {(b, t2), (c, h}})} 

LF: [G : a/c] J 

Suppose we didn't remove the information from Spec and Comp that 
is incompatible with the indefeasible information, and suppose t2 ~ h and 
h ~ t2. Then Spec would be {b, c}, and so the PDU axiom would give 
(1 A 2) ~ (F}(G)_I_, rather than (1 A 2) ~ (F)(G)c. Conflicts between val- 
ues of equal specificity would thus result in failure, despite the indefeasible 
evidence which can resolve them. 

Finally, the indefeasible information unifies with Spec and Comp ensur- 
ing that the result produces a well-defined TDFS. This information is the 
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unification of all the indefeasible values on paths that, by default, are 
reentrant with (~'). This looks mysterious at first. The motivation for it is 
illuminated by the following considerations. First, we must unify Spec and 
Comp with (at least) the indefeasible information ~0,~ such that 
(1 A 2 ) ~  0r)0, , .  To see this consider the following: 

a b ? 
_L 

t I 

LG : IrTl J 

/{(F, {(c, t)}), (G, {(c, t)})} 

If the PDU axiom were defined so that (1/x 2)~(F)(SpeClF 2 
ComplF2), then since in the above F 12= {(c, t)} and (1 ^ 2 ) , ~ ( F ) a ,  
Spec i2= 0 and Comp i2= O. So (1 A 2 ) ? ( F ) T .  But by PI2, 3- is the 
most specific value on the defeasible F-path, and by REV, we must infer 
(1/x 2) ~ (G)3-. So for the result to translate back into a well-defined 
TDFS, we must have 3-E_a, and 3- t -b ,  since the values on defeasible 
paths must entail those on indefeasible paths. Therefore, 3 - E a  IN b. 
So 3- E I .  This contradicts our type hierarchy. So, we must unify the 
indefeasible information 09 with Spec and Comp in the PDU axiom, to 
ensure the result can be translated back into a well-defined TDFS. 

In fact, we unify much more with Spec and Comp. The reason we need 
to unify Spec and Comp with ~b as defined above is because the value on 
the default path must be more specific than every indefeasible value on 
the paths with which it is reentrant. Otherwise, the result again will not 
be a well-defined TDFS. Unifying Spec and Comp with just ~b=, such that 
(1 A 2 ) ~  (~')0= does not guarantee this. If PDU were defined so that 
(1 A 2) ~ (F)(SpeclF 2 ~ CompaF 2 [-] ~.IF) , where (1 ^ 2) ~ (F)qtF, then in 
the above example, we would infer (1 A 2) ~ (F}Z, and (1/x 2) ~ (G)c. 
So by REV and PI2, c = 2 ,  contradicting our hypothesis about t h e t y p e  
hierarchy. 

To see that we must remove all values from Spec and Comp that are 
<> 

inconsistent with ~9, consider the above example of F], but with the follow- 
ing type hierarchy: 



5 0  A L E X  L A S C A R I D E S  E T  A L .  

a b 

d e 

_k 

If we only removed values from Spec~ 2 and Comp~ 2 that were incompat- 
ible with G~, then PDU would yield (1 ^ 2) ~ (F>(a [T b), and 
(1 ^ 2) ~ (G>(a [7 b N c). So, via REV and the prime implicate axiom 
PI2, d = _1_, contradicting our hypothesis. 

The Tag Axioms 
Finally, we need to provide axioms on the tags or indices, that ensure 
that when the logic predicts that 1 and 2 have identical paths and reentran- 
cies, they are the same tag, and hence name the same TDFS. This is done 
as follows: 

TAG The Tag Axiom 

• If for all 7r, 7r' and for all ~b: 

(1 ,,,'-, (~> ~b) <--+ (2 ,,"-," (Tr>~b) 
(1 ~ (rr> ~ <It'>) <--+ (2 ~ (¢r> ~ (Ir'>) 
(1 f f  (Tr)~b) ~ (2 ~ (~r)qS) 
(1 > <~') ~ ('rr')) ~ (2 > ('tr) ~ (Tr')) 
Then 

We require this, in order to ensure that ~ is a function, and is commuta- 
tive, as we will demonstrate below. The tag axioms ensure that if the logic 
produces exactly the same paths, then the TDFS they correspond to is the 
same. 

5.4. Examples 

In Section 5.5 we will prove that the above axioms make ~ order indepen- 
<> 

dent, and also ensure that [7 reduces to ~ when there's no conflict between 
the TDFSs. But first, we will illuminate how the above logic works, by 
means of specific examples. In each case, the task is to translate the TDFSs 
to be unified into the conditional logic, and then to use the above axioms 
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to generate new ~ ' ,  ~ ,  > and ~ rules, which will be translated back into 
TDFS notation via the inverse translation function. 

To demonstrate the equivalence between the informal description of 
< >  

Vq given earlier and the formal specification given here, we use the same 
examples as earlier. 

The Defeat o f  Defeasible Modus Ponens 

Consider the following example of ~:  Where t2 r-- tl and a R b = 1 .  

1 1 • Eo Io:, l  
{(b, t2)})} 

The above TDFSs are translated into the following formulae of ~pa,: 

1 ~'~ q 
1 ~ (F)(G)a 
1 ~ t l  
1 ~ (F)(G)a 
2 ~ t 2  
2 ~-* (F)(G)T 
2 ~ t 2  
2 ~ (F)(G)b 

Using the axioms, we gain the following results: 

(1 A 2 ) ~ ( F ) ( G ) a  TU1 and PII '  

By the definition of tails, Spec~F2.O and 12 Compe.o we have: 

F-  G a2 = {(b, t2)} 

Spec~2c lz = CornpF.c = 0 

So 

(1 A 2) ~ (F)(G)a PDU 

Therefore: 

F : , [G : a] : [G :/b] 

= [t~ A2' ] 
L F : [ G  : a] I{(F. G, {(b, t2>}>} 
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Specificity 
Consider the following example of ~ :  Where t2 [-tx and a 7q b = 3_. 

[t~ ] /{ (F-G,  {(a, q)})} ~ 
F : [G :/a] 

t2 ]/{(F'G,{(b, t2>}>} 
F:  [G :/b] 

The above TDFSS are translated into the following formulae of 5qpa.: 
l ' ~ t l  
1 ~- (F)(G>T 

1 ~ t ~  
1 ~ (F)(G)a 
2,~t2  
2 ~-~ (F ) (G)T  

2 ~ t 2  
2 ~ (F)(G>b 

And the tails are defined as follows: 

F.  G 1 = {(a, tl>} 

F .  G 2 = {<b, t2>} so 

F. G 12 = {(a, tl), (b, t2)} 

Spec% = {b} 

ComplvZG = {b} 

Using the axioms, we gain the following results: 

(1 A 2),-'~ t2 TU2 and PII '  
(1 ^ 2)~--<F>(G>T TU2 and PIY 
(1 a 2) ~ t2 PDU 
(1 ^ 2) ::> <F)(G)b PDU 

Therefore: 

• [O :/a]]/{F" G, {(a, t,)})} 

[o :/b]]/{(F G, {<b, t=>}>} 
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rt( ~ ̂ 2~ ] 
= ' I F  : [G :/b] /{(F. G, {(b, t2)})} 

General Values on Specific TDFSS 
In Section 3.2 we gave an example to motivate the need to record the 
original specificity information for each feature:value path during the 
unification process. Here  we go through an equivalent case in detail: 

(1) [~ :/a]J/{(F,{(a, tl)})} 
:[G 

: [G  

t3 r'-t2 E t l  
a F ' b = c  
a ~ b = Z  

<> 

We now show that under the above definition of [-3, the result is order 

independent.  We will calculate (1 ~ 2) ~ 3, and (1 ~ 3) H 2. 
First, the translations of the above TDFSs produce the following: 

1 ~ (F)a 
2 ~ (F)b 
3 ,,,-,. (F)c 

And the tails are defined as follows: 

F 1 = {(a, q)} 

F 2 = {(b, t2)} 
F 3 = 

We first calculate 1 ~ 2. F 12= {(a, tl), (b, t2)}. And by TU2 and PII ' ,  
(1 ^ 2 ) , ~ ( F ) T ;  that is the path F :  T is indefeasible information. So 
Spec~v 2 = {b}, and Comp~ z = {b}. And therefore by the P D U  axiom, 
(1 ^ 2) ~ (V)b. 

Now we calculate (1 ~ 2) ~ 3. F (12)3 = {(a, tl), (b, t2)}, and by TU2 and 
PII '  ((1 ^ 2) ^ 3) ~-  (F)c. So Spec9 2~3 = (b} and Comp~ 2>3 = {b}, and by 
the P D U  axiom ((1 ^ 2) ^ 3) ~ (F)b. So: 
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(1 ~ 2) ~ 3 : [ t(3~2)3 ]/{{F, {(a, t,), (b, t2>}}} 
[_F : e/b_l ' 

Now we calculate (1~  3) ~ 2. By the definition of tails, F 13 -- {(a, h)}. 
And by TU2 and PII', ( l^3), ,~,(F)c.  So Spec~3={a} and 

Comp~ 3 = {a}. And so by PDU, (1 ~ 3) ~ (F}a. 
Now, F (13)2 = {(a, h), (b, t2)}. And by TU2 and PII' 

( (1  ^ 3)  A 2) ~'~ (F}c .  S o  Spec~ 3)2 = {b} (since t2 F-h), and 
Comp~ 3)2 = {b}. So by the PDU axiom, ((1 A 3) ^ 2) ~ (F)b. So again: 

<> F*(12) 3 q 

(1 R 3)[-]2 = [F 3 J/{(F, {(a, h}, (b, t2)}}} 

Recording Specificity and Values 
We now turn to the example introduced in Section 3.2, which demon- 
strated that keeping track of only the specificity information of the original 
default paths was insufficient to guarantee order independence: 

(1) [~ .  : /a]]/{(F, {(a, tl}}}} 
• [ G  

(2) [~:  [G: /b]]  I{(F' {(b, t2)})} 

(3) [~ : c][{(F, {(d, t3}})} 

t3 I ' - t l  I"  t2 

al-b 
dF-lb=c 
d F q a = l  

We show that our logic for ~ guarantees order independence for this 

sample. As before, we calculate (1 ~ 2) ~ 3, and (2 ~ 3) ~ 1. 
First, the translations of the above TDFSs produce the following: 

1 ~ (F)a 
2 ~ (V)b 
3 ~ (F)d 

By the definition of tails, F 12 = {(a, h), (b, tz}}, and by TU2 and PII', 
(1 ^ 2) ~-- (F)T. So Spec~ 2 = {a}, and therefore Comp~ 2 = {a, b}. So by the 
PDU axiom, (1 ^ 2) f f  (F}a. 
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N o w ,  F (12)3 = {(a, fi), (b, t2), (d, t3)}, and by TU2 and PI I ' ,  
((1 ^ 2) ^ 3) ~-* (F)T.  So Spec 02)3 = {d} and therefore, 
Comp9 2)3 = {d, b}. So by the P D U  axiom, ((1 ^ 2) ^ 3) f f  (F)c. 

Now we calculate (2 ~ 3 ) H  1. By the definition of tails, F 23= 
{(b, t2), (d, t3)}. And by TU2 and PII ' ,  (2 A 3),~'*(F)T. So Spec 23 = {d} 
and therefore, Comp 23 = {b, d}. So by the P D U  axiom, (2 ^ 3) f f  (F)c. 

Again by the definition of tails, F (23)1 = {(b, t2}, (d, t3}, (a, tl)}. And by 
TU2 and PII ' ,  ((2 ^ 3) ^ 1)~* (F)T.  So Spec~ 3)1 = {d}, and therefore, 
Comp(F 23)1 = {b, d}. So by the P D U  axiom, ((2 ^ 3) ^ 1) ~ (F}c. Hence: 

( 1 ~ 2 )  H 3  = (2 ~ 3 )  H 1 

F~-(13)2 q 

= LF/~:/c II{(F'_I {(a, q), {b, t2), (d, t3)})} 

Reentrancy 
We now examine a simple example involving reentrancy: 

aVqb=_L 

: /{} :/m / { }= /F  :a/m± / {}  
L G IF] LG : b / [ ]  

When translating the input TDFSS, we obtain the following formulae: 

1 ,~  <F>a 
1 ~ <G}b 
2 > (F) = (G) 

And the tails are: F* = G t = F 2 = G 2 = ~ .  

The inferences are as follows: 

(1 ^ 2) > <F> ~ <G> 
(1 ^ 2)~-<F>a 
(1 ^ 2 ) ~  <G)b 

RE2 
TU2 and PII '  
TU2 and PII '  

Furthermore,  calculating the 6 such that (1 A 2) ~ (F)6 involves apply- 
ing the P D U  axiom. That is, 6 is calculated via the tails. F 12 --  G 12 = ~ .  

So SpecXF 2 = Comp~F 2 = 0. So by the P D U  axiom, 6 = Spec gl Comp I-1 q*, 

where q, = F] {a, b}. Hence by PDU,  (1 ^ 2) = (F)_L. Hence 1 ~ 2 is as 
defined above. 
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5.5. Theorems and Proofs 
<> 

We have so far given the axioms of the logic in which IN is axiomatised, 
and we have illustrated how the logic works via some simple examples. 

<> 

We should now prove that the version of [-7 that the logic defines does 
indeed have the properties we desire. 

First, we define precisely the logical consequence relation ~,,p~, in terms 
< ~  

of which I-1 is defined: 

DEFINITION 7. PDU Deduction ~pa~,. A PDU deduction T from the 
translation of two typed default feature structures FS1 and FSz - written 
respectively as r(FS1) and r(FS2) - is a sequence of lines in which every 
line of r(FS1) U r(FS2) occurs and for every formula of the form 1 
(~r) or 2 ~ (~r)~b, there is a formula of the form (1 ^ 2) ~ (~r) X' as a line 
in T, and similarly for -% ~-~ and > ;  or (1/x 2) > 3, and (1 ^ 2) -# 3, and 
the above conditions hold for just -+ and ,,~; or (1 ^ 2) -+ 3, and (1 ^ 2) 
>3- .  

DEFINITION 8. FS1 ~] FS2 = FS3 iff r(FSI), r(FS2) ~"pd,, r(FSa). 

Note that ~pa,, is neither closed on the right, nor supraclassical: 

• F1, Fz~pdu F3 and F3 ~ F4 doesn't entail that F1, F2 ~"~pduF4. 
• F1, Fz ~ F3 doesn't entail that F1, Fzb, pd~F3. 

Also note that if for one reason or another one can infer (1 ^ 2) ~ 3, 
or (1 ^ 2) > J_ (e.g., the reentrancies in 1 and 2 yield a cycle in the inde- 
feasible part or defeasible part respectively), then the corresponding TFS 
in the result will be 3,. 

Using the above definitions, we prove the following lemmas and theor- 
ems: 

L E M M A  1. If l f f ( q r ) a  then a = S p e c ~  INCompa=lqO where 

~b= I--1{~' : 1,,,-}(~r')g/ and 1 > (~r) ~ (rr')}. 

Note that this lemma implies that if (1 ^ 2) ~ (~-)& then 6 is determined 
by the tails, and not the defeasible TFS of the TDFSS. We now prove this 
lemma. 

Proof. By induction on the number of unifications to get 1. 
Base case: Where 1 is a TDFS in the initial KB, either: 
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1. 1 ~-, (¢r}a and "/r 1 = 0; or  

2. 1 ^,* (~r) 4',,, a I- 4'=, and ~r* = {(a,t}}, where  l ~ t .  

Cons ider  the first case. Then  4, = a because  for  all rr '  such that  1 > 
(rr) ~ (~r') and 1,,,* (~r ')4",  a E_ 4,'. Fo r  suppose not ,  then  there  exists a 
4,', such that  1 ~ -  (~r')4, ' ,  1 ~ (~r~)a by  R E V ,  and a ~ 4,'. This contradicts  
the definit ion of  TDFSs, and the way they are t ranslated into LFpdu. So 4' = 
a. So since ir 1 = 0, a = Spec~ [q Comp~ r-1 4,, as required.  

Now consider  the second case. T h e n  by R E V ,  the definit ion of  TDFSS, 
and the t ranslat ion of  TDFSS into 5¢pd,, we know that  for  all 4,' such that  

1 ,,~ (~ ' )4 , '  and 1 > (~r) ~ (Tr'), a E 4,'. So a E 4,. A n d  since ~r' = {(a, t)}, 
Spec~ = Comp~ = {a}. So a = S p e c ~  Comp~V1 4,, as required.  

The Inductive Step: Assume the result  holds for  n unifications, and 1 is 
ob ta ined  by n + i unifications. So i = 3 ^ 4, where  3 and 4 where  ob ta ined  
by ~<n unifications each.  Now,  1 ~ (~r}8 must  have been  der ived f rom 3 
and 4 by  C O N  or P D U .  If it was der ived by P D U ,  then  the result  holds 
by the definit ion of  P D U .  

So suppose 1 were  der ived by CON.  Then:  

3 ~ (Tr)a 
(3 > (or) ~ (~r')) --+ (4 :b (~r ' )T)  

(3/x 4) :/- ( T r 1 " B ' 2 )  ~ {'/T2) 

So if 3 > (rr) ~ (~r'), then  77" ' 4  = 0 ,  and the reentrancies  in 3 and 4 don ' t  
p roduce  a cycle. By  the induct ive hypothesis:  

a = Spec~ [-1 Comp 3 V7 4,3, 

where  

4, 3 = IS { 4 " 3  : 3 ^,-- ( r r ' ) 4 '  '3 and 3 > (~r) ~ (~r')} 

By  definition: 

' r3  9 T r 4  ,yj.34 = U ; A 4) >.(.n-)~ (ar,)"~" U 

We now show that  (3/x 4) > (zr) ~ (~r') i f f3  > (~') ~ (~") .  T he  if-condit ion 
follows f rom RE2.  Now consider  the only if condit ion.  Suppose  that  
(3/x 4) > (~-) ~ (~-') and 3 ~ (~-) ~ (~-'). By the following premise  of  C O N  
- (3/x 4) ~k ( ~ ' ~ 2 )  ~ (zr2) - we can assume that  3/x 4 doesn ' t  yield cyclic 
reentrancies .  So, there  must  be a ~'1 and ~2, where  ~'~ :P ~'2, and 3 > 
(~r) ~ ( rq ) ,  4 > (Irl} ~ (¢r2), and 3 > (~r2) ~ (~ ' ) .  Fo r  otherwise  by RE2,  
(3 ^ 4 ) : b ( T r ) ~ ( ~ - ' ) .  But  this contradicts  our  assumptions,  because  
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3 > (rr) ~ (Tq), and 4 ~ (~'a)th, where  ~b E_ T. So (3 ^ 4) > (~-) ~ (~-') 
only if 3 > (~-) ~ (rr'}. So 

{rr ' :  (3 ^ 4) > (rr) ~ (~r')} = {~-' : 3 > (rr) ~ (Tr')} 

And  by  assumption,  for all ~r' such that 3 > (~r) ~ (~r'), rr '4 = ~1. So 

rr' r3 71.3 "/g 3 4  ~ "  U 3 > ( ~ )  ~ ( ~ , } " / T  = 

N o w  consider  7r' such that 3 > (Tr) ~ (7r'). Then (3 ^ 4) ~ .  {~r')~0' iff 3 ,~. 
{~r') q,', because  by the premises,  4 4  (¢r ' )T.  So: 

{~0' : (3 ^ 4),,,-, {~r')q,' and (3 ^ 4) > (or) ~ (~r')} = 
{~0' : 3 ~'~ (rr'} 0 '  and 3 > (rr) ~ (it ')} 

Spec~ = Spec3= 
Comp~ 4 = Comp~ 

So 

a = Spec~ [7 Comp~ F] ~O 

as required.  [] 

<> <> 

L E M M A  2. ~ is a function. That  is, F1 R 1"2 is a unique TDFS. 

Proof. Suppose  not.  Then r(Fx) and r(F2) yield ei ther 

1. (1 ^ 2) > (~r) = (rr ')  and (1 ^ 2) :b(rr) ~ (~r'); or  
2. (1 ^ 2) > (~r) ~ (~r'}¢, (1/~ 2) ~{~r)q,, and ¢ ¢ ~; or 
3. (1 ^ 2) ~,+ (~r)a, (1 ^ 2) © (Tr)b, and b g: a; or  
4. (1 ^ 2)--+ (~r) = (~r') and (1 ^ 2) :b (~r) ~ (rr ').  

Case 1 is impossible by  the axioms of  the logic. Case 2 isn't possible by 
L e m m a  1. Case 3 is impossible by  L e m m a  1, and case 4 is impossible by 
RE1 .  [] 

<> 

L E M M A  3. [q is commutat ive .  

Proof. P D U ,  C O N ,  TU1,  T U 2  and the reent rancy axioms do not  distin- 
guish the commuta t ive  order.  So for all rr, ~r', and ~: 

(1 ^ 2) ~ (~r)~b 
(1 ^ 2) > <~r) = (~r') 
(1 A 2 ) ~  <ir>q5 

iff (2/x 1) ~ (Tr)~b 
iff (2/x 1) > (~r) ~ (~r') 
iff (2/x 1),,'-, (rr)~b 
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(1 ^ 2) ~ ( T r )  ~ (~r') iff (2 A 1) ---~ (lr) ~ (¢r'} 

So by the tag axioms, ~ = ~ " 1 .  A n d  the re fo re  F1 ~ F2 and F2 R F1 
have identical  paths,  reent rancies  and tags. 

F u r t h e r m o r e ,  

'n A2 = U (~'A 2) > < ~ ) ~ ( ~ ' )  "a' ' l  U 7r '2 

= U (~'A 1) > ( ' r r ) ~  ('a") 7TI2 U "B " r l  

= ~T 21 

So F1 ~ F2 a n d  F2 ~ F~ also have identical  tails. T h e r e f o r e  

F 1 R F 2 = F 2 ~ F 1 .  [] 

<> 
L E M M A  4. ~ is associative. 

Proof. We need  to show: 

1. ((1 A 2) A 3) ~ (~r)~b iff (1 A (2 ^ 3)) ,¢~ (zr)~b. 
2. ((1 A 2) A 3) ~ (~r) = ( ~ ' )  iff (1 ^ (2 A 3)) ~ (It) --~ (zr ').  
3. ((1 A 2) ^ 3) > (~') ~ (~r') iff (1 A (2 ^ 3)) > (~') ~ (~r'). 
4. 7"/" (12)3 = '77" 1(23).  

5. ((1 ^ 2) A 3) ~ (~r) 6 iff (1 A (2 ^ 3)) © (~r)~b. 

Cases 1 and 2 hold because  typed  unification is associative, and the axioms 
on  ~ and --> mode l  typed  unification. 

We now show Case 3: that  the defaul t  reent rancies  are associative. So, 
suppose that  ((1 ^ 2) A 3) > (Tr) ~ (~-'). Then  by RE1  and RE2,  this holds 
iff: 

(a) 

(b) 

Suppose  Case (a). 

(a)i. 1 > (It) 
ii. 2 > (Tr) 

A n d  also, since (1 ^ 

(a)iii. 
iv.  

(1 A 2) > (~r) ~ (~rl), 3 > (7T1) ~ (q'/'2}, and 
(1 A 2) > (~r2) ~ ( I t ' ) ;  or  
3 > (~r) ~ (~rl), (1 ^ 2) > (~rl) ~ (~r2), and 3 > (¢r2) ~ {Tr'). 12 

T h e n  since (1 ^ 2) > (~)  ~ (~rl), this holds iff: 

(~rs), 2 > ("/T3) ~ '  (~T4) , and 1 > ( 7 T 4 )  -~,  ('?T1) ; or  
("B'3) , 1 > (zr3) ~ ('/7"4) , and 2 > (,'/7'4) ~ ('W1). 

2) > (~rz) ~ (~r'), case (a) holds iff (iii) or  (iv) hold: 

1 > (~r2) = (rrs), 2 > (Ir5) ~ (7r6) and 1 > (Ir6) - (~");  or  
2 > (~r2) ~ (~rs), 1 > (~5) ~ (93"6) and 2 > (,'/2-6) ~ ("B'¢). 

12 We allow for the possibility here that there are identities between 7r, "~'1, ~T2, and 7r'. 
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Suppose (i) and (iii) hold. Then by RE2 and AND:  

( 2  A 3 )  > (('TJ'3) "~ (q'~'4) A (q'l 'l) ~" (ql'2) A ( ' r rs )  ~ ('rJ'6)) 

A n d  by RE2 and AND:  

(1 n (2 n 3)) > ((~') ~ (~r3) n ("B'4) ~ (7r4)  ~ ("/T1) A (qrl) 
( ' / r2) A ( ~ 2 )  = ( ' / r5) A (7}'5) 

~- (7/'6) A (7}6) ~-~ (33"t)) 

So by A R E  and CR, (1 A (2 A 3)) > (~') ~ (Tr'). 
The other  permutat ions  of ( i - iv)  are symmetric  to this case. And  the 

case for (b) is symmetric  to case (a). So ((1 A 2) A 3) > (~') ~ (~r') entails 
(1 A (2 A 3)) > (Tr) ~ (~-'). The argument  that  (1 A (2 A 3)) > (Tr) --~ (Tr') 
entails ((1 A 2) A 3) > 0r)  ~ (~") is similar. Hence  reentrancies are associ- 
ative. 

Now we prove 4: 7r (12)3 = 7r 1(23) 

qr(12)3 , ,  ~" t12 ,./r t 3 
= U ((1A2)A3)>0r)~(~- , )Tr  U 

, , , n - '  t 3  / ,  , - r r "  rtl 
= U ((1A2)A3)>(-rr)~(~-,)~/]" U ~U (1A2)>(~,)~(~-,,)Tr U I"~ "tt2) 

Now if (1 A 2) > (~r') ~ (~'"), then ((1 A 2) A 3) > (Tr') --~ (~-") by RE2. 
So if in addit ion ((1 A 2) A 3) > (Tr) ~ 0 r ' ) ,  then by A R E  and A N D ,  
((1 A 2) A 3) > (~') ~ 0r").  So since (1 A 2) > (Tr') ~ 0 r ' ) ,  

71 "p "17"" I f l  ,77.112 
U ((1A2) A3)> (~ )~ (q r ' )U  (1A2)>(~-')~(Tr")~" U 

, , , r r '  i1 7ri2 = U ((1A2)A3)>(~}~(Cr')~" U 

Hence  

7r(12)3 , , -rr' rl  7rt2 7rt3 = U ((1A2)A3)>(~-)~(Tr,)"/r U U 

By a similar argument:  

at' t l  "77" t2 U ,/./.t3 "7] "1(23) = U ((1A2)A3)>(~r)~(-tr')qT U 

But  {Tr': ((1 A 2) n 3) > (7r) ~ (~-')} = {~r' : (1 a (2 A 3)) > (~') ~ (St')}. 
So 7r (x2)3 = ~.~(23). 

Now we prove 5 : ( (1  A 2) A 3) © (~')4~ iff (1 A (2 A 3)) ~ (~-)~b. 
Suppose ( ( 1 A 2 )  A 3 ) ~ ( T r ) 6 1  and ( 1 A ( 2 A 3 ) ) ~ ( ~ r ) 6 2 .  Then by 

L e m m a  1: 

~1 = Spec 02)3 [~ Comp 02)3 [-] {l~i : ((1 n 2) n 3) > (7r) ~ 0r i )  

and ((1 A 2) A 3) ~ - ( ~ ' / ) ~ }  
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= Spec~ TM [] C o m p ~  TM F] {Oi (1 A (2 A 3)) > (Tr) ~ (qT'i) 

and (1 a (2 n 3 ) )~*  (~ ' i )0i}  

<> 

So [q is associative. [] 

<> 

T H E O R E M  1. [] is an o rde r  i ndependen t  function.  

Proof. Follows immedia te ly  f rom L e m m a s  2, 3 and 4. 

T H E O R E M  2. The  Typed  Unificat ion Proper ty .  Suppose  
(1 A 2) >(~')  --~ ( ~ T i )  , 1 ~ i ~< n and if (1 a 2) > (7r) ~ (~-') then  7r' = ~ri for  
some i, 1 ~< i ~< n. 

Le t  

(o = {xl  : l ~ (~ri)x~ , l <~ i <- nI U 

{x2i : 2 ~ (rri)x 2, 1 <~i <- n} 

and 

(1 A 2) ~ (7r)6 

Then  if 6 ¢ _1_ and ~ ~b =P L,  then  6 = V] qS. 

Proof. By L e m m a  1, (1 A 2) ~ (7r}& where  

6 = Spec 12 m Comp~ z ~ 

where  

= V] {Oi : (1 A 2) ,w~("lri)~ti, 1 <~ i <- n} 

F u r t h e r m o r e  for  1 ~< i ~< n, by L e m m a  1: 

x I = Spec~i [] CompS,  f] X~ 

where  

and 

where  

X~ = R {~'~ : 1 > (~-,) ~ (Trj) and 1 ~ (~-j)~')} 

2 Spec2i Vq Co~p2 i  n x 2 X i 
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2 Xi = n {~2 : 2 > (~-,) ~ <Tr/> and  2 ~'- (71"j>~ 1}  

So by TU1,  T U 2  P I I ' ,  A R E  and R E V :  

~0= n {X) ,X~ : 1 ~< i<~n}) 

N o w  

7r 12 ---- Ul<<.i<<_ n ,'17 1 C 71.2 

1 We now show Spec~ 2 C_ Ul<~i<nSpec~ i U Spec2~. Suppose  that  v E Spec~. 
(v, t~) ~ ~ for  some i, such that  t~ is a mos t  specific Then  (v, tv> E ir~ or  

type in 7r ~2. Suppose  wi thout  loss of  generali ty that  (v, tv> ~ ~rl. Then  t~ 

mus t  be a most  specific type in 7rI. A n d  if v [7 X/~ = ± ,  then v ~ ~O = ± ,  
and so v q~ Specl  2. So v [q X/1 4: ± .  Hence  by definition, v E Specli. So 

Specl  z C_ Ul~ i~ .  Spec1~ U Spec~,. 
N o w  consider  v E Ul~i<~,~ Spec~ U Spec~i where  v q~Spec~ z. Then  since 

r3 ~ -4= 3_, v [7 Specl  z 4: _L, since by the above Specl  2 C_ 4~ and v E ~b. Fur-  

the rmore ,  v lq {X), X~ : 1 ~< i ~< n} 4: _L, because  otherwise [7 ~b = ± .  So 

v [7 ff 4: ± .  So by definition, v E Compl  2. So 

Ul~ i~ .  Spec1~ U Spec~ C_ Spec~ 2 U Compl  2 

1 N o w  consider  w E U ~ , ,  Comp=~ U Comp2~. Suppose  wi thout  loss of  

general i ty that  w E Comp~i. Then  if w [-7 Speclj = 3_ or  w • Spec2~i = 3_ 
for  some j, [-7 ~b = 3_, contradict ing our  assumption.  So w ~ Specl  2 -4: ±. 
Similarly, if w [7 X) = 3_ or  w [-7 Xf = 3_ for  some j, then [7 ~b = ± .  So 
w [7 qJ 4: ± .  So w E Comp 12. Hence :  

m 1 2 Ul<<i<< n C o  pTr i U Comp=~ C Comp~ 2 

N o w  choose  x E 7r 1. Suppose  x q~ Compli .  Then  x [-7 Specli = 3_ or  x 

nx/ = ±. 
C 1 If  x [-3 Spe ~i = _1_, then x R {Specie, Spec2i: 1 ~< i ~< n} = ± .  But  Specl  2 

Cornp~ 2 E • {Specli, Spec2~ " 1 <~ i <~ n}, since Spec 12 U 
Comp~ 2 ~ {Specli, Spec2 F 1 <~ i <~ n}. So x [7 6 = ± .  So if x @ Comp 12, 
then x [7 6 = 6 = 3-. This contradicts  our  hypothesis .  So x q~ Compl  2. 

If  x [ T x / l = 3 - ,  then x [ 7 ~ 0 = _ L ,  and so x R 6 = 3 - .  There fore ,  if 
x E Comp 12, then x m 6 = 6 = 3_. So x q5 Compl  2. 
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Hence U l~ i~nComp~  i U ComPZi D C o m p ~  z. So: 

U~i<~nCornpll  U Comp~i  = Comp 12 

and therefore 

1 ul , nSpec=, u CompS, u Spec , u Comp , = Spec  2 u Comp  

So, since V1 {xii , ×2 : 1 <<- i <~ n} = ~b, 

R qb = Spec~ 2 [-] C o m p ~  2 ~ ~b 

= 6  

[] 

The above theorem confirms that ~ reduces to typed unification when 
no conflict arises. But 'no conflict' doesn't mean 'no conflict in the FS 
components of the TDFSS'. The crucial extra premise is: (1 ^ 2) ~ (7r>6 
where 6 :# _1_. By Lemma 1, 6 is defined by the tails, and not the FSs. 

<> 

Without this condition, the theorem would be one where [-] reduces to 

R when there is no conflict among the FS components of the TDFSS. But 
this is not a valid result. The following example illustrates this: 

[~:/a_l]/{<F' {<a, tl>, <c, t2)})} m IF It2 :/h]/{<F' {(b, t3>}>} 

Where: 

t3 r-t1 t--t2 

a rq b =  d, c Vq a =  _L, c r - b  

a b 

d c 

A. 

In the above, the FSs components do not conflict, but the tails do. If 
the Typed Unification Property held in cases where there was no conflict 
among the FS components, then we should be able to infer that 
(1/x 2) ~ (F)d  from the axioms. But this does not hold. 
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By the definition of tails, Spec and Comp, Spec~F z ={b}, 

CompXF z = {a, b, c}, and so Spec~ 2 V] Comp la = ± (and not d). Therefore  

["t 12 q 

FS1 P, FS2 = IF3: /± J/{(F, {(a, tl),(C, t2), (b, t3)})} 

We could define Comp in the PDU axiom, so that Comp prioritises the 
defaults that are compatible with the values in Spec. Here,  this would 
mean that a would be in Comp but c would not, because c is associated 
with a more general type than a is, and c is incompatible with a thereby 
yielding priority to a. The defeasible result on the F path would then be 
d rather than L. However,  this modification to the PDU axiom, while 
preserving order  independence,  increases complexity. It also does not 
ultimately produce an operation more integrated with typing in general; 
the reasons for this are discussed in detail in Lascarides and Copestake 
(1995). It does show, however, that the conditional logic approach to 

<> 

defining order  independent R provides several options. 
The Typed Unification Property is not guaranteed when the defeasible 

FS components do not conflict. But the only added condition here is that 

6 4= ± ,  which is quite weak. This permits ~ to reduce to [~ in certain cases 
where the tails are in conflict. 

Because TDFSs contain more information than the information in the FS 
components alone, the notion of 'conflict' is more complex than in Car- 
penter (1992, 1993) and Bouma (1992). Their  definitions of default un- 
ification correspond to the situations where we are unifying structures in 
the initial KB (see Section 4.3) and we can prove for these cases that the 

<> 

typed unification property is one where [-3 reduces to [-] when there is no 
conflict among the FS components: 

C O R O L L A R Y  1. If TDFSl and TDFS2 are basic TDFSs, and (1 /x 2) > 
(~r) ~ (Tri) for 1 ~< i <~ n, and if (1 ^ 2) > (Tr) --~ (~"), then ~r' = m for some 
i, and V? 4> =~ ±,  where 

¢ = {x~ : 1 ~ (~ri)xli, 1 <- i <- n} 

U {x 2 : 2 ~ (~ri)x~, 1 < i < n} 

Then (1 ^ 2) ~ (Tr)(Vq ~b). 

l=Spec~ i  ~ CompS, V]q~ 1, where Proof. By Lemma 1, xi 
~0~ = {X) : 1 ~-  {Try)x) and 1 ~ (Tri) ~ (Trj)}. Similarly for 2. 
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And by Lemma 1, (1/x 2) ~ (~-)6, where ~ = Spec~ 2 N Comp 12 ~ O, 
and ~ = {ffi, (1 A 2) ~ (~'i)ffi, 1 ~< i ~< n}. 

i ~./1 = x 1, and 1 Since 1 is a basic FS, q ' / ' i  = 0, or X i E ~0~ by the definition 
of TDFSS and their translation into 5¢pdu and the axiom REV. Similarly 
for 2. 

So 

12 2 
71" = Ul<~i~n~Tl i  U q'gi 

C_ {(x/i, q) ,  (x/z, t2) : 1 ~< i ~< n} 

where q and t2 are the root types of 1 and 2. So Spec~ 2 Fq Comp~ 2 3 r] 49. 
Furthermore,  by TU1, TU2 and REV, ~0~ R{~O/i, ~b/Z : 1 <~i<~n}~ ~49. 
So Spec~ 2 ~ Comp~ 2 R qJ~ F] 49. That is, ~ _  ~ 49. And since Vq 49 :k 2 ,  
6 =k ±. So by Theorem 2 (The Typed Unification Property), R 49. [] 

5.6. Different Tails for Different Sublanguages 

If we restrict the kinds of TDFS that are permitted, then we can reduce 
the length of tails, without sacrificing the properties we have proved for 

- namely, order independence and reduction to monotonic typed un- 
ification where there are no conflicts. There is a balance between re- 
stricting the language of TDFSs, and the potential length of tails. The more 
restricted the language, the less of the unification history needs to be 
recorded in order to retain order independence. The computational com- 

plexity of ~ is O(nt 2) where n is the nunber of nodes in the TDFSs and t 
is the length of the tails, so reducing the length of the tails would bring 
< >  

[-q closer in actual complexity to monotonic typed unification. 
First consider the following sublanguage: suppose that whenever 

tl r- t2, then for any TDFSs of the forms below, either a Vq b = ±,  or a E b. 

With this sublanguage, we can reduce the amount of information in 
tails, and yet the existing axioms will still produce an order independent 

< >  

V] which reduces to typed unification where there is no conflict. The 
definition of tails for the base case remains the same. The revised definition 
of how to construct new tails from old ones is given below: 
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rr '  i1 ,/.g r 2 qr 12 = U ( i ^ 2 ) > ( r r , ) ~ < , r , > { < a ,  t) : (a, t) E 7r U and 
V<a', t ' )  ~ Urr'(gr 'I U 'n"2), t '  [~ t} 

N o w ,  7]" 12 is not constructed by set union on 7r ~ and ,/./.2 and all the tails 
reentrant with it. Rather,  it just retains the values associated with the 
most specific types. Indeed, 7r 12 is potentially shorter than ~r 1 or ~r 2. For 
example, if rr i = {(a, ti), (b, t2>}, "jT2 = {(C, /3)}, where t3 E t2 and t3 r--tl, 
and there are no reentrancies with 7r, then 7r 12 = {(C, /3>}" Whereas under 
the old definition, ~r 12 was {(a, tl), (b, t2>, (c, t3)}. 

With this new definition of tails and the existing axioms of the logic, all 
the above lemmas and theorems hold but only for the restricted lan- 
guage} 3 In fact, this new definition of tails is analogous to the strategy 

for defining ~ that we mentioned in Section 3.2, which involved reasoning 
about a hierarchy of indices, which recorded the specificity from which 
default paths originated. The new definition of tails, like the index strat- 
egy, records essentially only the most specific defaults, and doesn't keep 
track of overridden values. Recording this amount of information from 
the unification history is sufficient for order independence on this restricted 
sublanguage. 

This sublanguage might be appropriate for some linguistic applications: 
for example, it is sufficient for defining the type constraints given in Figure 
7. The problem is the difficulty in ensuring that the extra condition holds. 
In general, it is highly desirable for usability of a formalism that any 
linguistic description can be checked efficiently to ensure that it is well- 
formed according to the language. But even if we assume that defaults 
are always introduced by the type hierarchy, and check that the extra 
sublanguage condition holds of that, this does not ensure that it will hold 
off any possible unification. For example, suppose that fi and t2 have the 
following constraints (which do meet the condition): 

where tl r-t2, a r--b. 

If we also have c such that b [-1 c = d and d ~ a = e then unifying a T D F S  

of type t2 with the strict information that that the value of F is c gives us the 
followings T D F S  which would not meet the condition for the sublanguage if 
unified: 

13 T h e  p roo f  is left  as an  exercise  for  the  r eade r .  
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dV3a--/= 2 ,  a ~  d. 

Other  examples involving default information can be devised. A more 
stringent but statically checkable condition would be to require all speci- 
fied default values to be maximally specific. This might be suitable for 
some applications - it is still adequate for the example in Figure 7 for 
instance - but  it is clearly significantly less expressive. 

We now consider a version of R for the sublanguage used in Young 
and Rounds (1993), assuming that multiple solutions are treated as an 
error  condition. That  is, we remove reentrancies, types, and the subsump- 
tion relation on types. Then we define tails as follows: For  the base case: 

f{a} If 1 ~ (~r}a and 1 + (~r}a 71-1 / 
[0  otherwise 

We build tails as follows. Suppose (1/x 2) --* (ir)qJ. Then: 

7./- 12 ~_ 

And we define: 

t l  [-'] ,.iT 2 ,W 1 
2 

If ~rlg]0 4= k and 7r 2 R 0 4= ± 
If ~.1 ~ q, 4= ± and "B "2 [~ I/I = _L 

If 1r 1 R 0 = ± and "iT 2 [~ I~ =~ ± 
If ~.1 g~ q, = ± and ~r 2 R ~p = ± 

Spec~ = Comp~ = ¢r ~ 

Now, all tails are empty or singletons, and hence in general they are 
smaller than they were for the general language. But this new definition 
of tails still produces an order independent  version of ~ .  Obviously now, 
we have to change the axioms slightly, because default reentrancies must 
be removed. So we remove RE2, and modify CON and P D U  to the more 
restricted version is given below: 

CON Consistency 
1 => (~r)a 
(1 --+ (~r} ~- (~r')) ~ 2 ::/- (~-'}T 
(1 ^ 2) -4+ (m~r2) -~ ('We) 

(1 ^ 2) => (~-)a 
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PDU The PDU Axiom 
1 ~ (~-)a 
2 © (~-')b 
(1 --+ (~-) ~ (~r')) 
(1 ^ 2) 4) (~rl~r2) ~ ('/T2) 

(1 ^ 2) ~ (~r)(Spec~ 71 Comp~ 2 I-1 ~b) 

Where: 

0 = H{O=,: 1/x 2"--~ (~)0~-i and (1/x 2)----~ (~r) ~ (Tri)} 

< >  

This version of [~ is equivalent to that given in Young and Rounds (1993), 
assuming that multiple extensions are treated as an error condition. So 
their version of persistent default unification is a special case of the oper- 
ation defined in Section 3.5. It can be implemented more efficiently than 

fq, but the lack of default reentrancy and subsumption relationships on 
the types mean that it is insufficiently expressive to model some of the 
phenomena we are interested in. 

6. L I N G U I S T I C  A P P L I C A T I O N S  

Our illustrative lexical hierarchy concerning English inflectional morpho- 
logy was chosen because it is the simplest example capable of demonstrat- 
ing the inadequacies of existing definitions of default unification and 
exemplifying the properties of persistent default unification of TDFSS. In 
this section, we discuss further applications which we think provide better 
motivation for the introduction of such an operation into constraint-based 
linguistic theories. 

There are many papers which argue for default inheritance of most 
types of lexical property ranging from cases of inflectional morphology of 
the type discussed above, through processes of derivation, conversion and 
sense extension (see Daelemans et al. 1992; Briscoe 1993 for reviews). In 
addition, default inheritance has been argued to play a role in feature 
propagation for syntactic description (Gazdar et al. 1985; Shieber 1986b), 
and in the specification of relations between constructions (Goldberg 
1992). The applications we briefly discuss involve treatments of paradig- 
matic relations between lexical items and between constructions, processes 
of regular sense extension and syntactic feature propagation. 
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6.1. Lexical Semantic Specifications 

Briscoe et al. (1990), Boguraev and Pustejovsky (1990, 1993) and Cope- 
stake and Briscoe (1992) argue that formalisation of Pustejovsky's (e.g. 
1991) approach to lexical semantics requires a notion of default inheritance 
in the lexicon. For instance, Pustejovsky argues on linguistic grounds that 
nouns denoting artifacts must incorporate a representation of their telic 
role or 'purpose' in order to account for the interpretation of 'logically' 
metonymic constructions such as (18). 

(18)a. John began a new book 
b. Jane finished her beer 
c. Bill enjoyed the film 
d. Mary likes hamburgers 

In each case the noun phrase object denotes an artifact and the (usual) 
interpretation of the verb phrase involves a 'coercion' of the artifact to a 
process or event involving the purpose of that artifact - reading books, 
drinking beer, watching films and eating hamburgers. Pustejovsky empha- 
sises that the assumption that certain verbs cause such coercions has 
direct linguistic consequences for the insightful representation of argument 
structure and complementation; for example, enjoy can subcategorise for 
a complement denoting a process in which the experiencer subject of 
enjoy participates, capturing the relatedness in meaning between (19a) 
and (19b). 

(19)a. John enjoyed the play 
b. John enjoyed watching the play 

Once we accept the utility of representing telic roles, it is clear that 
they are a natural candidate for an inheritance based treatment; for exam- 
ple, the telic role of liquid artifacts will be drink, that of visual representa- 
tion artifacts watch, and so forth. It is also not difficult to show that 
inheritance must be default; for example, the telic role of 'literature' will 
be read, however that of the subclass of reference books will be refer-to. 
Briscoe et al. propose to express these observations in a unification-based 
account by representing the lexicon in terms of overwriting templates (e.g. 
Karttunen, 1986), and Copestake (1992, 1993) proposes using a non- 
associative version of default unification. Boguraev and Pustejovsky (1990, 
1993), Copestake and Briscoe (1992, 1995) and Vossen and Copestake 
(1993) discuss the extension of the technique to the multiple orthogonal 
default inheritance of nominal qualia structure (e.g. Pustejovsky, 1991), 
in general. In the current framework these proposals can be incorporated 
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a r t e f a c t  
SEM ARG1, fi] 

QUALIA TELIC [ [ PRED ~ event 
' ! ARG2 [ BRED 

[ ARG1 

/ 
QUALIA TELIC PRED : /perceive 

/ \ 
QUALIA TELIC PRED , [ QUALIA TELIC PRED : 

/ 

] 

\ 
QUALIA TELIC PRED : / r e f e r _ t o  

Fig. 16. Inheritance of telic roles. 

directly without loss of declarativity, using the type of lexical hierarchy 
introduced in Figure 7. The value of the TELIC attribute will be a complex 
FS representing the semantics of specified (generic) verbs with the artifact 
associated (usually) with the object argument slot. A fragment of such a 
hierarchy is shown in Figure 16. The coercion process itself can be im- 
plemented as a unary rule (Briscoe et al. 1990) or by monotonic type 
constraints (Copestake and Briscoe, 1995). 

It is clear that the examples in (18) only have defeasible interpretations 
involving the 'usual purpose' readings. In suitable discourse contexts, 
these readings can be replaced by ones involving more specific processes, 
different qualia roles, and so forth, as (20) illustrates. 

(20) a. 
b. 

C. 

Coppola particularly enjoyed that film (watching ~ making) 
You can see our neighbour, 'Howard Hughes',  really enjoying 
his new car every Sunday in the drive, hose in hand (driving 
~-* cleaning) 
Fido obviously enjoyed my new book (reading --* eating) 

Briscoe et al. (1990) suggest that this can be accommodated by making 
the rule of coercion which converts an object denoting NP into a process 
or event denoting NP create a default specification of this process or 
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event, based on the telic role of the noun (if available). In the present 
context of TDFSs, this proposal makes more formal sense since it reduces 
to making this aspect of the FS associated with the NP defeasible. Thus, 
in contrast with the morphology example shown in Figure 7, we do not 
assume that the default structure is incorporated into the non-defeasible 
structure before non-lexical processing occurs. 

The semantic translation we have provided for TDFSS interprets a defeas- 
ible specification such as event~write as a default conditional, providing 
the foundation for an interface with a theory of discourse interpretation 
based on a default conditional logic (e.g. Lascarides and Asher 1993). 
Briscoe et al. (1990) argue on the basis of corpus data that the notion of 
a lexically specified default interpretation is motivated by the distribution 
of default and non-default interpretations with verbs such as enjoy which 
make available both an explicit (progressive VP) and implicit (NP) com- 
plementation pattern for realising the intended meaning. Since the implicit 
pattern is chosen mostly when the default interpretation is correct or the 
discourse context is informationally rich, conflicting and determinate, 
whilst the explicit pattern is chosen mostly when the default reading would 
be inappropriate and the context is not determinate, this suggests that 
language users structure their utterances in a manner which supports 
assumption of the default reading in the absence of conflicting information, 
but rejection of it when additional conflicting information is made avail- 
able. This view of the interaction of semantic specification with discourse 
interpretation is fully compatible with the principles of the DICE frame- 
work (e.g. Lascarides and Asher 1993, Asher and Lascarides 1995). 

Lascarides (1995) shows how the defeasible pragmatic information in 
DICE and defeasible results in persistent default unification (PDU) c a n  be 
made to communicate in a perspicuous fashion, via just two DICE axioms. 
The details are beyond the scope of this paper, because it would require 
a detailed discussion of the DICE framework. However, we informally 
describe this approach. The two axioms predict when the PDU default 
predictions survive in the discourse context and when they are overridden. 
They also guarantee that the PDU indefeasible results always survive, 
regardless of what pragmatic information is stated. The two axioms make 
essential use, therefore, of the fact that defeasible results of PDU are 
'visibly' marked as such for the pragmatic component. Furthermore, we 
would argue that default lexical specification could not be replaced in this 
instance with, for example, a disjunction of alternative values to be se- 
lected from pragmatically because of the open-ended nature of the event- 
ual interpretation. Similarly, we would argue that not providing a default 
lexical specification and leaving the coercion predicate underspecified is 
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not compatible with the corpus-based evidence summarised above from 
Briscoe et al. (1990), since this would require the pragmatic component 
to provide a default interpretation which is specified lexically and not in 
terms of contextual information. 

The first axiom states that normally, default PDU results survive in the 
discourse context. The second axiom ensures that when there is discourse 
information that conflicts with the defeasible results of PDU, the discourse 
information wins, even if it's defeasible. In the case of metonymy, Lascar- 
ides (1995) demonstrates how the axioms predict different interpretations 
of (21a) and (21b). 

(21)a. John enjoyed the book. 
b. The goat enjoyed the book. 

(21a) is interpreted as John enjoyed reading the book, because the PDU 

expansion of the metonymy survives in this context. In contrast, this PDU 
expansion of metonymy is blocked by the second axiom in the interpreta- 
tion of (21b), because of the conflicting defeasible domain information 
that goats don't read. We refer the reader to Lascarides (1995) for further 
details. 

To summarise, we have sketched treatment of default inheritance of 
lexical qualia roles which we argue improve on those presented in Briscoe 
et al. (1990) in that they are declarative and can persist beyond the 
lexicon, and can thus interact straightforwardly with a theory of discourse 
interpretation grounded in default logic. 

6.2. Semantic Broadening 

Copestake and Briscoe (1995) argue for a systematic process of sense 
modulation which they term broadening where sense usages are available 
in context which appear to semantically subsume the basic sense of a 
lexeme/sign. Usually it appears that a quale, in Pustejovsky's (1991) sense, 
which is specified in the basic sense becomes overridden in context. For 
example, the normal usages of bank and cloud could be specified as stating 
both form and composition (earth/water vapour). However, both have 
usages where alternative compositions are stated bank of rhododendrons, 
bank of clouds/cloud bank, cloud of mosquitoes, dust cloud. In some 
comparable cases the broadened sense may appear more metaphorical, 
for example forest of hands. In many cases there is evidence that broaden- 
ing of meaning has taken place diachronically and that the original senses 
tended to be specific and concrete (see Sweetser 1990). It seems appropri- 
ate to regard these examples in terms of a modulation of sense rather 
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lex-count-noun 
ORTH: cloud 
CAT : noun-cat  
SEM: obj-noun-formula 

"phys_obj / natural_obj ] 
~nomform "] / 

QUALIA : FORM, /RELATIVE .. indivlduated ] | 
LABSOLUTE : amorphous J / 

CONSTITUENCY , phys_cum / water-vapour,J 

Fig. 17. Lexical entry for cloud. 

than a complete shift, but this modulation is most naturally expressed as 
being non-monotonic.  There  is a very strong preference for one particular 
sense and the alternative interpretations are not conventionalised, but 
given by context (there is no conventional interpretation of cloud as cloud 
of mosquitoes). This implies that non-default interpretations will only be 
usual in contexts which explicitly give the exceptional component  (nor- 
mally by compounding or post-modification). 

To represent broadening we make use of lexically specified persistent 
default components  of the qualia structure and allow these to be over- 
ridden. In the FS for the lexical entry for cloud shown in Figure 17 the 
qualia structure is stated to refer necessarily to an individuated physical 
object of amorphous form, with a composition that is also physical and 
refers cumulatively (i.e. the composition is either a mass or a plural 
object). By default, cloud is a natural object (as opposed to an artifact) 
and is composed of water vapour.14 Referring to the process of overriding 
the lexically specified defaults as broadening is perhaps somewhat mislead- 
ing, since a more general FS never actually exists in isolation according to 
this treatment.  The intuition that the sense is broadened is reflected in 
the non-defeasible components  of the modified structure, however: for 
example the semantic contribution of cloud to cloud of  mosquitoes could 
be represented as a FS with unspecified composition. 

Broadening and other kinds of sense modulation (Cruse 1986) provide 
a straightforward motivation for the persistence of default lexical specifi- 
cations into the syntagmatic plane. Persistent default unification provides 
a natural mechanism for implementing interactions of this kind between 

14 This description has been somewhat simplified but in any case we would not claim that 
it is completely adequate. It does not, for instance, cover the mass use of cloud, found in 
(22a), which seems to be available only with the default usage (compare (22b)): 

(22)a. We flew into dense cloud. 
b. *We walked into dense cloud of smoke. 

Nor does it cover the metaphorical uses, such as cloud of suspicion. 
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lexical semantic specification and syntactic and compositional semantic 
rules. The axioms specified in Lascarides (1995) for predicting when defe- 

asible results of R ultimately survive into the interpretation would account 
for semantic broadening, as well as the expansion of metonymy described 
earlier. Alternative treatments, such as alternate entries for cloud and 
bank which specify an indefeasible value for composition in the absence 
of a complement and leave it underspecified with obligatory comple- 
mentation seem unsatisfactory since this would predict that in a narrative 
such as (23) the second occurrence of cloud denotes a mass composed of 
water vapour. 

(23) The cow was engulfed by a cloud of flies, flicking its tail ineffec- 
tually. As the cloud dissipated, we realised it was injured. 

6.3. Dative Constructions 

Goldberg (1992), building on the frameworks of frame semantics and 
construction grammar developed by Fillmore and his colleagues (e.g. 
Fillmore et al. 1988), argues that certain constructions should be seen as 
related by 'metaphorical or polysemous links'. For example, she argues 
that there is a family of dative constructions which exhibit the same 
syntactic properties and related semantic properties, exemplified in (24). 

(24) a. 
b. 
C. 

d 
e .  

f. 

Mary gave Joe a present 
Joe painted Sally a picture 
The medicine brought him relief 
The music lent the party a festive air 
Jo gave Bob a punch 
He blew his wife a kiss 

Goldberg argues that the core ditransitive construction involves a vol- 
itional agent and willing recipient and carries the entailments that the 
agent causes the recipient to receive the object denoted by the patient 
argument, as in (24a). Under this interpretation, (24b) involves a shift in 
meaning where the recipient may or may not receive the patient, but the 
agent acts with this intention. Following Sanfilippo (1990, 1993) we might 
represent these differences in the basic (abstract) meaning of the construc- 
tion in terms of entailments associated with proto thematic roles (Dowty, 
1989), so that 'agent' becomes p-agt-cause-transfer in (24a) and p-agt-cau- 
se-make-intend-transfer in (24b). In the case of these first two examples it 
is plausible to argue that there are lexical rules which relate the dative 
construction with the alternative complementation patterns involving to 
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" t r a n s f e r - d i t r a n s - p p t o - v e r b  

sYN,/0BJ1 ls M [] 
L SEM [] 

SEM [] 

' reclp-dative-verb 
PHON, [STEM, fi]] 

SUBJ 

SYN .. I OBJI 

l OB J2 
SEM [] 

SEM .. [] 

SEM [] 

SEM [] 

r e c i p - d a t i v e - v e r b  r- da t ive - s ign  

Fig. 18. Dative lexical rule. 
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and for PP arguments, respectively, and that this rule al- 
ters the proto-agent role of a 'creation' verb such as paint from p-agt- 
cause-make to p-agt-cause-make-intend-transfer. Furthermore,  we will 
represent the different entailments (willingness and successful transfer) 
concerning the first object in (24a) and (24b) as 'recipient'  and 'benefac- 
tive', respectively. 

As Goldberg argues, if we want to elegantly capture the similarity 
between the dative constructions in these two rules it should only be 
necessary to state the form of the construction once. Furthermore,  it 
should not be necessary to say that verbs of creation, such as paint are 
lexically ambiguous between two and three -place predicates; rather it is 
participation in the dative construction itself which creates a third ben- 
eficiary argument for these inherently two-place predicates. In what fol- 
lows, we assume a lexically-based theory of grammar in which bounded 
lexically-governed dependencies of the type discussed by Goldberg are 
treated in terms of the subcategorisation requirements of their heads (in 
this case verbs). We also assume an approach to lexical rules, in which 
such rules conditionally create derived lexical signs stated in terms of 
mappings between (lexical) types (e.g. Pollard and Sag, 1987), and factor 
the majority of information concerning the form of the types related into 
their associated type constraints (e.g. Flickinger and Nerbonne,  1992). 
Thus, the core dative rule and benefactive dative rule could be represented 
as in Figures 18 and 19, assuming the (inherited and specific) type con- 
straints on ' transfer'  ditransitive and 'creation'  transitive verbs and on the 
dative construction (sign) given in Figures 20, 21 and 22.15 

15 In this example and those that follow, we make as few assumptions as possible concerning 
the exact grammatical framework employed. The basic ideas are compatible with HPSG, 
LFG or UCG-like treatments of the realisation of grammatical relations, and the proto-role 
approach to thematic relations might be linked to an event-based semantic framework (e.g. 
Parsons, 1990; Sanfilippo, 1990, 1993) or to a LFG style treatment in terms of mappings or 
projections to a semantic representation (Halvorsen and Kaplan 1988; Dalrymple et al. 
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SYN : 

SEM : 

create-d~ , ad ic - t rans -verb  
P H O N :  S T E M :  ffl] 

[ SEM 

PRED, N] 

• b e n e f - d a t i v e - v e r b  
P H O N ,  [ S T E M ,  [ ] ]  

[SUBJ: [SEM: 

l oB,  
L SEM 

"PRED .. [] 
ARGI : [PRED 

ARG , 

SEM : ARG2 [ PRED 
: ARG : 

ARG3 : 

it] 
: [ ] p - a g t - c a u s e - m a k e - i n t e n d - t r a n s f e r  ] 

: [~ -pa t -bene f  ] 

b e n e f - d a t i v e - v e r b  E d a t i v e - s i g n  

Fig. 19. Benefactive dative lexical rule. 

As  benef-da t ive-verb  is a sub type  of  dative-sign,  the benefac t ive  dat ive 
lexical rule will c rea te  a new lexical en t ry  for  ' c rea t ion '  verbs  which 
inheri ts  p roper t i es  of  the dat ive construct ion.  H o w e v e r ,  benef-da t ive-verb  
over r ides  the  specific defaul t  themat ic  en ta i lments  associa ted  with the  

basic construct ion.  Thus  the result ing sign will have  the p ro to- ro les  
p -ag t -cause-make- in tend- t rans fe r  and p-pa t -benef ,  r a ther  than  p-agt-eause-  
t r ans fe r  and p-pat - rec ip .  16 O n  the  o the r  hand,  when  the core  (recipient)  

dat ive  lexical rule  is appl ied  to a sign of  type  l i t - t ransfer -d i t rans-ppto-  
verb ,  the specifications of  the p ro to- ro les  as p-ag t -cause- t ransfer  and p- 
pa t - rec ip  in the result  will be  indefeasible ,  in contras t  to their  defeasible  

1993). We assume that proto-role entailments create selection preferences on the semantic 
nature of their arguments, but do not attempt to make these constraints explicit. Similarly, 
we make no attempt to show how the generalisations implicit in type constraints can be 
elegantly factored out into constraints on supertypes (e.g. Pollard and Sag 1987; Sanfilippo 
1993). 
16 Note that although for the sake of clarity we show the OBJ1 and the p-pat-benef role in 
Figure 19, this information is inherited from the benef-dative-verb subtype of the dative 
construction and not stipulated directly in the rule. 
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lit-transfer-ditrans-ppto-verb 
PHON , 'STEM , stem] 

"CAT , verb 
[SYN, [CAT,np] 

SUBJ, |SEM, [] 

SYN, OBJI, [SYN, [CAT,np] 
[S~.M [] 
ISYN [CAT, pp] 

OBLI, [SEM 

SEM , 

PRED ,pred  
[PRED ARG1, [ARG, 

[PRED ARG2, [-ARG, 
[PILED ARG3' [ARG, 

:[~-agt-cau'se-t tans fer ] 

~p-p-t-reclp ] 
, p-pat-aff-obj ] 

l i t - t ransfer-di t rans-ppto-verb r- t ransfer-di t rans-ppto-verb  
Fig. 20. Ditransitive verb type constraint. 

"create-dyadic-trans-verb 
PHON: [STEM,stem] 

CAT , verb 

[ 
[] 

o,.,.. |sY, 
[. SEM [] 

PRED : pred 
[ PRED .. -agt-cause-make ] 

sEM, A R ~ ,  [ARa, 

[ PRED -pat-aff-obj ] 

Fig. 21. Transitive type constraint. 

status in dative-sign. This is because they are indefeasible in the type lit- 
transfer-ditrans-ppto-verb. The lexical rule also specifies that the entire 
semantics of the derived sign is reentrant with that of the basic sign. These 
rules predict the correct relationships between (24a) and (24b), and the 
corresponding sentences with to and for complements. 
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dative-sign 
PHON : [ S T E M : s t e m ]  

7 CAT : verb 

SUBJ : SYN : 
SEM 

OBJ1, SYN.. 
SEM 

OBJ2 .. SYN : 
SEM 

"PRED : pred 

ARG1 

ARG2 

ARG3 

SYN : 

~EM : 

CAT , n p ]  
[] 

[] 

[] 

PRED , p-agt/p-agt-cause-transfer ] 
ARG : [] 

PRED :[ap-pat/p-pat-recip 
ARG , ] 

[PREDARG, :~-pat-aff-obj ] 

Fig. 22. Dative type constraint• 

Further support for this approach to the dative construction and dative 
lexical rule(s) is provided by the other examples in (24). Goldberg argues 
that (24c, d) are licensed by a metaphorical extension of the transfer 
relation by which causal events are viewed as transfers. Causing an effect 
in an entity is understood as transferring that effect to it. We might capture 
this by altering the entailments associated with verbs such as lend by the 
proto-roles specified by l it-transfer-ditrans-ppto-verb by a lexical rule 
which created an entry of a sister type met-transfer-ditrans-ppto-verb 
which specified different proto-roles. The dative lexical rule would also 
apply to this subtype, capturing the fact that this metaphorical extension 
in the dative construction parallels a similar extension of the same verb 
set in the oblique to prepositional phrase construction. Finally, (24e, f) 
provide evidence that certain quasi-idiomatic expressions need to be as- 
sociated directly with dative-sign as they have no counterparts in such 
oblique expressions. We assume that (quasi-)idioms are best represented 
as subtypes of lexical signs in which not only the syntactic head but also 
other arguments are severely constrained in terms of lexical selection. 
Thus Goldberg claims the quasi-idiomatic expressions in (24e, f) are li- 
censed by a metaphor which involves understanding actions intentionally 
directed at another person as being entities transferred to that person. As 
a first approximation, we might represent this process in terms of the 
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"met-dative-sign 
PHON: [STEM : s t em]  

"CAT : verb 

SUBJ : SYN : 
SEM 

SYN : OBJt .. SYN.. 
SEM 

OBJ2 : SYN .. 
SEM 

C A T : n p ]  
[] 

[ C A T : n p ]  
[] 

[] 

SEM , 

P R E D : p r e d  
[PRED 

ARGI: [ARG: 

[PRED 
ARG2: [ARG, 

[PRED 
ARG3, [ARG, 

:~-agt-cause-met-transfer ] 
.. p-pat-met-recip ] 

:[]p-pat-transferred-ev ] 

Fig. 23. Metaphorical dative type constraint, 

subtype of dative-sign shown in Figure 23, in which we have overridden the 
default proto-role specifications with cut ailments specific to the metaphor 
which we assume also serve to constrain the range of acceptable arguments 
to the (transfer) verb. 

To summarise we have sketched a lexical treatment of dative construc- 
tions intended to capture and formalise some of Goldberg's observations 
concerning similarities and differences between related versions of the 
same basic construction. We have utilised a familiar and standard notion 
of lexical rule, coupled with persistent default unification of TDFSS. In this 
formulation of this fragment of data, there is no requirement for the 
default specifications to persist outside the lexicon. However, a more 
adequate treatment of proto-roles in this framework would probably in- 
volve persistent default lexical specification of the entailments associated 
with proto-roles which could be overridden at the compositional semantic 
or pragmatic level. 

6.4. Syntactic Feature Propagation 

Shieber (1986b) and Bouma (1992) discuss the unification-based interpre- 
tation of the Head Feature Convention (HFC) of GPSG (Gazdar et al. 
1985). The HFC is a default convention which equates the values of head 
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features on the mother and head daughter in a local tree unless these 
features have acquired distinct values through stipulation in immediate 
dominance rules. Most unification-based approaches to GPSG either cap- 
tured the default nature of the HFC and related feature propagation 
principles through a non-unification-based metagrammatical pre-compi- 
lation phase (e.g. Briscoe et al. 1987) or simplified it to a non-default 
reentrancy condition (Shieber 1986a, b). Bouma (1992) presents a version 
of default unification which he motivates as a technique for implementing 
the HFC in a unification-based fashion. Bouma's version of default uni- 
fication is an asymmetric, non-associative operation which adds consistent 
information from a defeasible FS to an indefeasible FS. Bouma represents 
the HFC as a default reentrancy associated with each underspecified rule, 
schematically of the form in (25a), in which mother and head daughter 
categories are FSs and the head daughter FS is taken to be indefeasible. 

(25) a. M(other) ~ X H(ead)D(aughter)Y 
b. S --o NP H[BAR1] 
c. [N-,  V+, BAR2] ----> NP [BAR1] 
d. IN- ,  Y+, BAR2] ---> NP IN- ,  Y+, BAR1] 

The idea is that default unification can be used in a pre-compilation phase 
to flesh out underspecified rules, so that a rule such as (25b) which contains 
the features in (25c) will be expanded out to (25d), where BAR values 
remain distinct because of the stipulation on the head daughter, though 
BAR is a head feature. After compilation the expanded rule can be utilised 
for parsing using monotonic unification. As rule expansion serves only to 
create a set of hilly specified (phrase-structure) rules, the overall approach 
remains declarative because default unifications will never be 'chained'. 

A weakness of Bouma's approach is that it preserves the declarativity 
of the overall grammar only by making strong assumptions concerning the 
point at which such feature propagation principles are applied (which are 
also at odds with those assumed in GPSG). If, for example it turned out 
that it was more efficient to apply such unification-based constraints after 
the initial construction of (underspecified) syntactic descriptions during 
parsing (see e.g. Maxwell and Kaplan (1993) for evidence that this is true 
for some types of grammar), then different results might be obtained 
depending on whether the sequence of default unifications required to 
flesh out a chain of mothers and head daughters in a syntactic description 
was implemented top-down or bottom-up. 

We might be able to utilise persistent default unification of TDFSS in 
order to formalise the HFC by making use of the flexibility in the definition 
of specificity mentioned in Section 4.2 and calculate the inheritance re- 
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lationship between head features on the basis of the relationship given by 
the syntactic description, such that head daughters were lower in the 
partial order than their mothers. In this case, if all head features had 
defeasible values, the HFC is given by inheritance. As this operation is 
order independent it can be interpreted either in terms of rule pre-compi- 
lation or interleaved with the construction of a syntactic description. How- 
ever, there is a potential problem with the persistency of defeasible speci- 
fications in this context: whilst it is quite possible to view the propagation 
of head features in terms of default inheritance, their application to (fully- 
specified) lexical items must be indefeasible. Otherwise, lexical infor- 
mation may override head feature specifications leading to analyses of 
many ungrammatical sentences. Therefore, to make this approach work 
we would need to ensure that the head features were only interpreted as 
defeasible with respect to inheritance and were indefeasible with respect 
to category matching. Clearly, if we simply do this by applying the DefFill 
operation discussed in Section 4.2, we return to order dependence, be- 
cause the result will be sensitive to the point at which we transform the 
TDFS to a TFS. An alternative would be to regard all values as uniformly 
defeasible, but only information which should be involved in the HFC 
would be in a mutual specificity relationship, everything else would be 
unordered (leading to inconsistency during matching of inappropriate cate- 
gories). 

Developing a satisfactory account of GPSG's HFC in terms of ~ is, 
however, beyond the scope of this paper since it would require significant 
revisions to the syntactic theory in order to utilise the concepts of typed 

< >  

FSs and specificity in this fashion. Nevertheless, although [~ as defined in 
Section 3 will not give the precise behaviour of the HFC in GPSG, 
Bouma's (1992) definition of default unification suffers from taking this 
single specialised application as the paradigm case. In order to capture 
the intent of 'add conservatively' (Shieber 1986b) which was introduced 
solely to capture specific effects of the HFC, Bouma defines default un- 
ification to °weaken' reentrancy statements even in the absence of conflict- 
ing defaults (see e.g. his (13)). This has the unfortunate consequence that 
his definition does not reduce to monotonic unification in the absence of 
conflict (Carpenter, 1993; Copestake, 1993), severely limiting its appli- 
cation to other problems. 

6.5. Lexical Rules 

The use of AVM boxed 'reentrancy' notation between subparts of FSs in 
constraint-based formalisms such as HPSG in the statement of lexical rules 
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base ] 
PHON: [STEM, []] 
SYNSEM : [] 

third-person-sing } 
PHON~ [STEM, ~] 
SYNSEM : [] 

Fig. 24. Third person singular lexical rule. 

is quite arbitrary when viewed from the perspective of information flow 
between signs and semantically incoherent since the two FSs involved 
cannot be treated as a single DAG. The attraction of utilising default 
unification rather than reentrancy to specify patterns of inheritance be- 
tween signs (and their subparts) is that some of this arbitrariness and 
incoherence in constraint-based terms might be eradicated, because we 
could state that information is shared unless stated to the contrary and 
that the derived lexical sign is obtained by default unification of infor- 
mation from the basic sign with that stipulated for the derived one.17 

We will briefly illustrate the point by defining a restricted notion of 

lexical rule in terms of ~.  Throughout this paper we have assumed a 
definition of lexical rule effectively equivalent to that of Pollard and Sag 
(1987), in which information is 'copied' from base sign to derived sign by 
stipulation. A more natural and less arbitrary definition might utilise 
default unification between base and derived signs and stipulate modifica- 
tions as far as possible through type constraints on the derived sign. Then 
information flow between base and derived sign will be a consequence of 
the persistent default unification of the instantiated 'antecedent' TFS with 
the specification of the 'consequent' TFS. For example, assuming a lexical 
rule based treatment of English inflectional morphology, we could repre- 
sent the third person singular rule as in Figure 24. The intended interpreta- 
tion of the rule, following Pollard and Sag (1987) is that signs of type base 
which unify with the antecedent TFS in the rule are used to create derived 
signs of type third-person-sing. The 'reentrancies' indexed one and two 
pass over information from the instantiated antecedent TFS to the conse- 
quent. The value of SYNSEM given by the type base is assumed to be 
underspecified with respect to agreement, but the type third-person-sing 
will specify agreement and suffixation. 

The interpretation of the rule violates the spirit of a constraint-based 
formalism as there is no constraint-based connection between the antece- 
dent and consequent TFSs. Thus, the reentrancies between the two TFSs 
do not have the same interpretation as those which occur within a single 

17 Note that  Pollard and Sag (1994) omit  shared information from their descriptions of 
lexical rules for notat ional  convenience.  
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TFS but rather function to copy information between distinct nodes of 
different TFSs. Linguistically, the rule is inelegant in that what remains 
the same between base and derived entry must be stipulated in addition 
to what changes. As we will now describe, the third-person-sing rule could 
be simplified to a simple statement of the form base ~-> third-person-sing, 

< >  

by reinterpreting ~-> in terms of 77. 
The operation of lexical rules involves a matching stage and creation 

stage. Under the new formulation matching is trivial since the rule specifies 
a type and any sign of this type or its subtypes will match (unify with) the 
rule 'antecedent'. The creation of a new sign could be formalised as: 

< >  

DefFill(DefFilter(TDFS1, TDFS2) • TDFS2) 

where TDFS1 is the matching 'input' TDFS and TDFS2 is the 'output' 
TDFS and DefFilter is an operation which creates a TDFS of a type compat- 
ible with the type of TDFS2 (and with features appropriate for that type) 
in which the information contained in TDFS1 and appropriate for the type 
of TDFS2 is made default: that is DefFilter outputs a TDFS with no strict 
information and a defeasible type which is the generalisation of the types 
of TDFS1 and TDFS2 if those are incompatible. It is necessary to filter 

< >  

the information given in TDFS1 in this way because 77 would otherwise 
give a TDFS with the default root node typed ±. DefFilter essentially 
involves removing all information from TDFS1 which is incompatible with 
the type of TDFS2 and with its appropriateness conditions: we will not 
formalise it here, because the details depend on the precise approach to 
typing taken. Persistent default unification of the new TDFS with TDFS2 
ensures that modifications specified in the lexical rule override information 
from the base sign, but for third-person-sing this would not be needed. 
DefFill ensures that the resultant sign is indefeasible. 

The effect of this formulation is that the 'reentrancies' of Figure 24 are 
replaced by three steps, the first of which removes incompatible infor- 
mation from the base sign, the second of which persistent default unifies 
the result with the output TDFS specified in the rule, and the third of 
which makes the result indefeasible. The rule can thus be rewritten simply 
as:  

base ~-~ third-person-sg 

A further slight complication is that in some cases we want to ignore some 
parts of the base sign that would survive DefFilter. We can achieve this 
by making use of Kaplan and Wedekind's (1993) restriction operator. This 
formalisation considerably simplifies the stipulation of most lexical rules. 
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For example, the dative lexical rule given in Figure 18 above might be 
reformulated as follows: 

transfer-ditrans-ppto-verb \ SYN ~ recip-dative-verb 

Here \ SYN indicates that the feature SYN is ignored. 
The account of lexical rules we have outlined is sufficient to handle the 

rules proposed in this paper and in Copestake and Briscoe (1995). Because 
the components of lexical rules are constraints on FSs, it is possible to use 
(default) inheritance to capture similarities and redundancies between 
families of such rules (e.g. Copestake and Briscoe 1992, 1995). 

The combination of the restriction, DefFilter and default unification 
operators is not expressive enough to allow a direct implementation of 
lexical rules which manipulate list-values of features, such as SUBCAT in 
HPSG, in complex ways. In view of Carpenter's (1991) proof that such 
rules considerably increase the generative power of otherwise constrained 
grammatical formalisms, this may not be a bad result. However, it remains 
to be seen whether this treatment of lexical rules can be used to character- 
ise passive and other valency-changing or diathesis alternation rules in a 
linguistically motivated fashion. The approach to the dative construction 
which we describe in Section 6.3 together with the reformulation of the 
relevant lexical rule in this section illustrates how, in principle, all such 
rules might be reanalysed and reformulated. Detailed linguistic arguments 
that this general approach would yield a more adequate account than 
those offered in mainstream lexicalist theories can be found in Pinker 
(1989) and Goldberg (1992) amongst others. 

7 .  C O N C L U S I O N  

We have defined an order independent version of default unification on 
typed feature structures. The operation has several desirable properties: 
it behaves like monotonic unification in the cases where there are no 
conflicts among the TDFSs; it never fails when the indefeasible information 
is consistent; and it returns a single, deterministic result. It extends that 
of Young and Rounds (1993) in two important respects. First, it handles 
default reentrancies: unifying paths with distinct values with a default 
reentrancy doesn't lead to unification failure. Second, it enables defaults 
on TDFSS with more specific types to override conflicting defaults on more 
general types. 

We extended the definition of typed feature structures given in Carp- 
enter (1992), so that a TDFS carries with it some information from its 
unification history. We showed that this information is essential for order 



O R D E R  I N D E P E N D E N T  D E F A U L T  U N I F I C A T I O N  85 

independence with the full language, but we also described sublanguages 
for which less information need be retained. The semantics of the persist- 
ent default unification operation are defined in a modal conditional logic. 
This allows us to formally link lexical defaults with pragmatic processing. 
We left as future work some formal issues concerning the relationship of 
type constraints and defaults: this will be undertaken in the context of the 
particular approach to typing and constraints used in the ACQUILEX 
LKB system (Copestake et al., 1993). We should also note that although 
the nature of the problem of ensuring order independence determined the 
basic framework of our definition of persistent default unification (in 
particular the retention of the unification history in the form of tails) 
there were some subsidiary decisions where alternative options could be 
considered. In particular, alternative treatments of default reentrancy 
seem possible, although there would be a cost in terms of conceptual 
complexity and computational tractability, if we moved to a more express- 
ive definition where reentrancy could be overridden by default values. As 
with the definition of the sublanguages, the formal framework we have 
developed makes it relatively straightforward to investigate variants on 
the main definition presented here, if required for particular applications. 

We demonstrated the utility of persistent default unification in several 
linguistic applications: inheritance in the lexicon, feature propagation in 
syntax, semantic broadening of lexical items, the dative construction and 
the formulation of lexical rules. Moreover, we argued that because default 
information persists as default under the operation, defaults can survive 
the lexicon and potentially be overridden by compositional semantic rules 
or by pragmatic information at the discourse level. 
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