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Abstract Several MRI features of 
supratentorial astrocytomas are as- 
sociated with high histologic grade 
by statistically significant p values. 
We sought to apply this information 
prospectively to a group of astro- 
cytomas in the prediction of tumor 
grade. We used 10 MRI features of 
fibrillary astrocytomas from 
52 patient studies to develop neural 
network and multiple linear regres- 
sion models for practical use in pre- 
dicting tumor grade. The models 
were tested prospectively on MR 
images from 29 patient studies. The 
performance of the models was 
compared against that of a radiolo- 

gist. Neural network accuracy was 
61% in distinguishing between low 
and high grade tumors. Multiple lin- 
ear regression achieved an accuracy 
of 59 %. Assessment of the images 
by a radiologist yielded 57 % accu- 
racy. We conclude that while certain 
MRI parameters may be statistically 
related to astrocytoma histologic 
grade, neural network and linear re- 
gression models cannot reliably use 
them to predict tumor grade. 
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Introduction 

Studies have been undertaken to correlate the histologic 
appearance of cerebral glial neoplasms with MRI fea- 
tures such as mass effect, tumor heterogeneity and ce- 
rebral edema [1-3] (Fig. 1). With the knowledge of the 
relationships of such features to tumor grade, neurora- 
diologists successfully predicted tumor grade on a three 
tiered grading scheme approximately 80 % of the time 
using "gestalt" impressions [1]. It might therefore be 
expected that an objective model which employs the 
statistical relationships between MRI features and tu- 
mor grade could be developed to predict astrocytoma 
tumor grade with similar reliability. Our objective is to 
create models using linear and nonlinear calculation 
schemes to predict histologic grade consistently and 
objectively. 

Multiple linear regression model 

Multiple linear regression provides a starting point for 
developing a model to predict tumor grade. Each fea- 
ture is graded and plotted against tumor grade and the 
slopes of the individual plots used to develop a formula 
which predicts tumor grade. While this model is useful 
in many cases, it has important limitations. First, it re- 
quires a linear relationship between the MRI parame- 
ters and histologic grade, and second, that the features 
be independently predictive of grade. When a radiolo- 
gist offers an impression regarding the implications of a 
set of imaging features, the interpretation is not re- 
stricted by such constraints and a model so restricted 
might be reasonably expected to fail in this role. 
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Fig. 1 MRI  of a representative 
cerebral astrocytoma, illustrat- 
ing moderate tumor heteroge- 
neity, mild mass effect, moder- 
ate edema, poor circumscrip- 
tion and vascular flow voids. 
These features are all sugges- 
tive of high histologic grade 

Neural networks 

Neural network models provide an analytic method 
which requires neither linearity nor independence of 
features. Such models are based loosely upon neurons 
[4]. A sample architecture used in this study is illustrat- 
ed in Fig. 2, and each of the neurons or processors, indi- 
cated in the illustration can be generically represented 
as in Fig. 3. Numerical inputs are applied to the left side 
of the network. Each of the neurons in the input layer 
then calculates an output based upon its individual input 
using a sigmoid transfer function which serves as an ap- 
proximation of the all or none behavior exhibited by 
biological neurons: 

yj : 1/(1 + e-j)  (1) 

The output from each input neuron is multiplied by its 
individual weight factor and sent to each neuron in the 
next layer. Each neuron in the second layer linearly 
sums its inputs and produces an output which is applied 
to the same transfer function, then multiplied by its own 
weight factor and sent to the next layer. The output 
layer performs identical calculations to produce the fi- 
nal output from the neural network. The weighting fac- 
tors contain the information in the neural network and 
are calculated using the back propagation of errors 
method, which employs the generalized delta learning 
rule [4]. This is an iterative process by which input 
training sets are applied to the neural network and out- 
puts calculated. The actual output is compared to the 
desired output and the weight factors adjusted to in- 
crease the probability of producing a correct output on 
the next iteration. Training is halted when an arbitrary 
percentage of correct outputs is obtained (training tol- 
erance parameter). The time required to train the neu- 
ral network is altered by several other parameters which 
include the steepness of the sigmoid transfer function 
(transfer function gain), the amount of error tolerated 
between neural network output and target value before 
revising the connection strength weightings (training 
tolerance), the amount by which the connection 
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Fig.2 Neural network architecture. Individual neurons or proces- 
sors are represented by ovals. Bias neurons which provide a con- 
stant +1 input are placed in the input and second layers so that the 
network may produce a nonzero output in the case of all zero in- 
puts. There are dual outputs. For a high grade tumor, the high 
grade neuron produces a +1 output and the low grade output neu- 
ron produces a -1 output. The values are reversed in the case of a 
low grade tumor 
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Fig.3 Generic representation of a neural network's individual 
processors or neurons. Weighted inputs are summed linearly then 
applied to a sigmoid transfer function which simulates the all-or- 
none behavior of biological neurons. The output is weighted and 
then sent to the next layer of processors 

strengths are changed with each iteration (learning 
rate), and the direction of the weight changes in relation 
to the previous iteration (momentum). 

Methods 

Patient selection 

Patients having biopsy-proven fibrillary astrocytomas whose 
pathological specimens and MRI  studies were available were se- 
lected for development of the multiple linear regression and neural 
network models. Only those with our MR images obtained prior to 
biopsy, radiation therapy or surgery were included: 52 who under- 
went biopsy between 1987 and 1990. The multiple linear regression 
and neural network models were tested prospectively on an addi- 
tional 29 patients selected according to the same criteria between 
1990 and 1991. 
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Table I Neural network definition 

Input data 

Output data 

Architecture 

Training algorithm 

Transfer function 

Initial connection 
weights 

Training tolerance 

Learning rate 

Momentum 

10 MRI astrocytoma features, graded 0-4, 
scaled from -1-+1 for input, average values 
for missing data 

"High grade", range -1-+1,  "low grade", 
range -1-+1 

3 layer, 10 neuron hidden layer, 
feedforward, fully connected 

Back propagation, generalized delta 
learning rule 

Sigmoid, 0 minimum, +1 maximum, gain 1.0 

Gaussian distribution, range -0.5-+0.5, 
standard deviation 0.17 

10 % 

1.0 

0.0 

IOO D.C. = -0.83 I ~ / ~ l  

80 D.C. = 0yf 
Sensitivity . . = . 

40 D . ~  

20 
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Fig.4 ROC for neural network performance in detection of high- 
grade astrocytomas (D. C. decision criterion, Figs. d-6) 

Imaging technique 

All images were obtained at 1.5 Tesla with a 192 x 256 or 256 x 256 
acquisition matrix, a 24 cm field of view, 1 or 2 excitations and a 
5 mm slice thickness. Partial saturation (Tl-weighted) images were 
obtained using a spin-echo (SE) pulse sequence with repetition 
time (TR) 400 or 600 ms and echo time (TE) 20 ms, or an inversion 
recovery pulse sequence with TR  2000 ms, an inversion time (TI) 
700 ms and TE 20 ms. T2-weighted images were obtained using an 
SE pulse sequence with TR 2000 or 2250 ms and TE 80 ms. Proton 
density images were obtained from a first echo at 20 ms during the 
T2-weighted sequence. Intravenous gadolinium enhancement was 
employed in 42 of 52 model development cases and in 24 of 
29 prospective cases. 

Grading of MRI  features 

All cases used in the development of the mathematical models 
were reviewed and consensus obtained between two neuroradiol- 
ogists (G.S.E, O.T.), regarding the grading of 10MRI  features. 
Neither radiologist was aware of clinical history or biopsy results 
prior to grading, although both were aware that the cases were 
astrocytomas. The features were (1)tumor mass heterogeneity, 
(2) surrounding parenchymal edema, (3) mass effect, (4) indis- 
tinctness of the tumor margin, (5) local invasion of adjacent struc- 
tures, (6)hemorrhage within the tumor, (7)presence of one or 
more flow voids, (8) presence of cysts within the mass, (9) calci- 
fication and (10) degree of contrast enhancement. Features were 
graded on a scale from i to 4, 0 indicating that the feature was ab- 
sent. For the prospective portion of the study, the 10 features were 
graded for each patient by a radiologist (O. T.) who also predicted 
tumor grade. The radiologist's prediction of tumor grade employed 
knowledge of the statistical relationships between MRI  features 
and histologic grade determined in a prior study in which contrast 
enhancement and degree of edema were most strongly directly re- 
lated to tumor grade [3]. 

Histopathologic grading 

Hematoxylin and eosin stained biopsy specimens were graded on a 
scale from 1 to 4 by a neuropathologist (B.W.S.) in a blinded lash- 

ion. Grading was performed by the same pathologist in the devel- 
opment of the models and in the prospective study. Grading crite- 
ria conformed to those of the new World Health Organization 
(W. H. O.) classification of tumors of the central nervous system [5, 
6]: grade I tumors lack atypia, which is shown by grade 2 lesions; 
grade 3 tumors display atypia and mitotic figures and grade 4 tu- 
mors show in addition endothelial proliferation or necrosis, or 
both. 

Mathematical models and performance analysis 

The multiple linear regression model was developed using a sta- 
tistics software package. Parameters whose values were unavail- 
able (for example, the degree of contrast enhancement in patients 
who had only unenhanced studies) were set to the average value of 
the rest of the data set for that parameter. The equation so derived 
is as follows: 

Grade = 1.196- 0.028* heterogeneity + 0.424* Edema + 0.009* 
Mass_Effect + 0.330* margin_sharpness - 0.117" anatomic_inva- 
sion + 0.550* hemorrhage + 0.004* flow_void - 0.172" cyst_for- 
mation + 0.382* calcification + 0.139" contrast_enhancement (2) 

The neural network model was developed using commercially 
available software; the parameters employed are shown in Table 1. 

Receiver operating characteristic (ROC) curves were used to 
evaluate performance of the grading methods. For neural network 
performance, output from the high-grade output neuron was eval- 
uated at decision criteria throughout the range of the output neu- 
ron @1 to +1). If the output was less than the decision criterion 
then the tumor was termed low grade; otherwise it was termed high 
grade. The output from the linear regression model was evaluated 
at decision criteria from 1.0 to 5.5 and the radiologist's predictions 
were from 0.5 to 4.5. 

R e s u l t s  

N e u r a l  n e t w o r k  p e r f o r m a n c e  is s h o w n  in Fig.  4, u s ing  an  
R O C  cu rve .  A t  all  d e c i s i o n  c r i t e r i a  t h e  a l g o r i t h m  per -  
f o r m s  b e t t e r  t h a n  r a n d o m  guesses .  A t  a d e c i s i o n  c r i t e r i -  
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Fig.6 ROC for radiologist's performance in detection of high- 
grade astrocytomas 

on of 0.04 the neural network achieved an accuracy of 
61%. Figure 5 shows the ROC curve for the multiple 
linear regression model. Performance was again better 
than random, but not significantly different from that of 
the neural network�9 At a decision criterion of 3.2, and 
accuracy of 59 % was obtained�9 Figure 6 shows the ROC 
curve for the radiologist; his performance was compa- 
rable to that of the other two methods, with an accuracy 
was 57 %. Table 2 summarizes these results. 

Discussion 

Information regarding the grade of malignancy is es- 
sential for optimal clinical management of patients with 
astrocytomas. The ability of a radiologist to estimate 
tumor grade is based upon experience regarding the as- 
sociation of certain parameters such as edema and the 
degree of contrast enhancement with increasing malig- 
nancy. Experts have been able to make this determina- 

Table2 Comparative performance of grading algorithms in 
29 cases (%) 

Neural Multiple linear Radiologist 
network regression 

Accuracy 6i 59 57 
Sensitivity 64 56 53 
Specificity 56 62 55 

tion with 80 % accuracy [1]. This is, however, not reli- 
able enough for clinical decision marking nor is it com- 
pletely objective or reproducible in general practice, as 
our study has shown�9 We therefore sought to provide an 
objective, reproducible means of relating MRI features 
to histologic grade. 

Multiple linear regression provides a first step to- 
ward the goal of histologic grade prediction and in this 
study was shown to be as reliable as the other means of 
interpretation. Its major problem, however, is that by 
definition it requires that the input features be linearly 
related to the output parameter. The margin indistinct- 
ness parameter is a good example of this problem�9 The 
coefficient of 0.330 used in the regression model implies 
that it is a relatively important parameter�9 Its p value, 
however, is not statistically significant, indicating that 
the heavy weighting is artifactual�9 The model might be 
improved somewhat by eliminating this parameter alto- 
gether. By doing this, however, we may be losing im- 
portant information that may have some, as yet un- 
known, nonlinear relationship to the desired output pa- 
rameter. 

Neural network models provide an objective analytic 
method which requires neither linearity of data nor in- 
dependence of parameters and as such, may provide a 
tool for radiologists in establishing diagnoses as well as 
in making diagnoses more specific. For example, if an 
input parameter has no detectable relationship to the 
output, its neural network connection strengths will be 
set to values near zero, while very complex, nonlinear, 
interdependent relationships can be represented by 
nonzero connection strengths. This type of analysis has 
recently been used successfully in interpretation of 
neonatal chest radiographs and differential diagnosis of 
interstitial lung diseases [7, 8]. Gross and coworkers [7] 
found good agreement between a neural network and 
radiologists in diagnosing neonatal lung disease. In 
work by Asada et al. [8], good neural network perfor- 
mance was obtained in distinguishing between 9 types 
of interstitial lung diseases on the basis of 20 clinical and 
radiographic parameters. 

The present study indicates that neural network 
analysis can differentiate between low- and high-grade 
astrocytomas with a consistency similar to that of a ra- 
diologist but that it cannot significantly increase accu- 
racy in predicting tumor grade�9 The accuracy of the 
neural network was slightly greater but not statistically 
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different from those of the multiple linear regression 
model or the radiologist's interpretation. Neural net- 
works thus can very effectively provide an accurate 
output if there is reasonable correlation between input 
and output data (image parameters diagnosis), but ac- 
curacy is limited by the data available. In the case of 
chest radiographs, the correlation between radiographic 
parameters is sufficient to provide accurate results. 
However,  in the case of astrocytomas, the relationship 
between M R I  features and tumor grade is not suffi- 
ciently strong to allow means of tumor grade determi- 

nation which are more accurate than those already 
available. This relates to the fact that while MR tissue 
characteristics may serve as markers of histologic pa- 
rameters there are currently no M R I  parameters which 
directly reflect tissue histology. Finally, stereotactic bi- 
opsy, performed in some of the case, is limited to sam- 
pling a relatively small region within a given tumor and 
may miss regions of more pronounced anaplasia. 
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