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Summary. We have cloned GAM2, which is required for 
transcription of STA1, a gene encoding an extracellular 
glucoamylase in Saccharomyces cerevisiae var. diastati- 
eus. DNA sequence analysis revealed that GAM2 is the 
same gene as SIN3, known to be a general negative 
regulator of yeast genes. RNA blot analysis indicated 
that GAM2/SIN3 also acts as a positive regulator of 
GAM3/ADR6, which in turn is required for transcription 
of STA1 and ADH2. These results suggest that GAM2 
regulates STA1 expression through transcriptional ac- 
tivation of GAM3 and indicate that GAM2/SIN3 protein 
is a transcriptional regulator that can play a role in both 
activation and repression of transcription. 
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Saccharomyces cerevisiae var. diastaticus secretes glu- 
coamylase (Yamashita et al. 1986) and ferments starch. 
The enzyme is encoded by one of three polymorphic 
genes, STA1-STA3 (Yamashita et al. 1985a, 1985b; 
Lambrechts et al. 1991). Genetic analysis suggests that 
three genes (GAM1-GAM3) are required in trans to 
activate transcription of STA1 (Okimoto et al. 1989). 
GAM1 (Yoshimoto and Yamashita 1991) is the same 
gene as SNF2 (Laurent et al. 1991) which is required for 
transcription of many genes subject to control by various 
regulatory systems. GAM 1/SNF2 protein was predicted 
to be a 194 kDa, highly charged protein with a glutamine- 
rich tract, which is located in the nucleus (Yoshimoto 
and Yamashita 1991 ; Laurent et al. 1991). Laurent et al. 
(1991) also reported that transcriptional activation by 
SNF2 is dependent on SNF5 and SNF6 functions. Re- 
cently, we have cloned GAM3 (Yoshimoto et al. 1992) 
and found that GAM3 is allelic to ADR6 (Taguchi and 
Young 1987b; O'Hara et al. 1988), which is required for 
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transcription of ADH2, the gene that encodes the glu- 
cose-repressible alcohol dehydrogenase II (Taguchi and 
Young 1987a). GAM3/ADR6 protein was predicted to 
be a 148 kDa nuclear protein with homopolymeric 
stretches of asparagine, threonine, or glutamine and a 
potential zinc finger (DNA-binding) domain (O'Hara 
et al. 1988). GAM1-GAM3 are also required for normal 
growth on nonfermentable carbon sources and for sporu- 
lation (Okimoto et al. 1989; Yoshimoto et al. 1992). 

To elucidate the role of GAM2 and its interaction with 
GAM1/SNF2 and GAM3/ADR6 in transcription, we 
have cloned GAM2 by complementation of the defect in 
glucoamylase production caused by the mutation gain2-1. 
A restriction map of the complementing yeast insert 
cloned in plasmid pMO1 is shown in Fig. 1. Genomic 
Southern analysis confirmed that the cloned sequence is 
intact and unique within the genome (data not shown). 
The functional GAM2 sequence was localized on the 
insert by deletion analysis (Fig. 1). A null mutation 
(gam2: :URA3; Fig. 1), created by deleting the 3.1 kb 
HindIII fragment located in the functional unit, was 
recessive and failed to complement gain2-1 for glu- 
coamylase production, growth on nonfermentable car- 
bon sources, and sporulation (data not shown), indicat- 
ing that the cloned locus is GAM2. 

The functional GAM2 region (a 5.8 kb HindIII frag- 
ment) was sequenced and appeared to be identical to the 
SIN3 locus (Wang et al. 1990). The sequence encodes the 
SIN3 protein comprising 1538 amino acids, with a mole- 
cular mass of 175 kDa. The deletion analysis (Fig. 1) 
indicates that SIN3 is required for GAM2 function. 
These results indicate that GAM2 is the same gene as 
SIN3, also known as SDI1, UME4, and RPD! (Wang 
et al. 1990). Interestingly, these genes were all identified 
as negative regulatory genes, in contrast to the positive 
role of GAM2 in STA1 expression. The SIN3/SDH func- 
tion (Nasmyth et al. 1987; Sternberg et al. 1987) was 
identified by a mutation that suppresses loss-of-function 
mutations in SWIS, a gene required for transcription of 
HO. SIN3 protein is required to repress HO expression 
in daughter cells. The UME4 function was identified by 
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Fig. 1. Restriction map and deletion analysis of GAM2. The gain2-1 
haploid strain (YUT216; a leu2 his2 STA1 inh °) was transformed 
with a yeast DNA library (Yamashita et al. 1987) in the multicopy 
plasmid vector pYI1 (Suzuki et al. 1983), which carries LEU2 and 
URA3 and the 2-gm DNA origin of replication. Transformants 
carrying a putative GAM2 were selected as described previously 
(Yoshimoto and Yamashita 1991). Plasmid pMO1 is the GAM2 
clone originally isolated. Plasmid pMO 17 is a centromere-based low 
copy plasmid that was constructed by inserting the yeast fragment 
indicated into plasmid pHY20 (Yoshimoto and Yamashita 1991) 
carrying LEU2 and URA3. Other plasmids are deletion derivatives 
of plasmid pMO1. The restriction map of GAM2 is shown at the 
top, with the GAM2 open reading frame indicated by the closed bar. 
The fragment indicated by inverted arrows was used as a probe to 
detect GAM2 RNA. Restriction sites for StuI (St), B9/II (Bg), 
HindIII (H), Xba I (Xb), SalI (S), SacI (Sa), HpaI (Hp), PvuI (Pv), 
ScaI (Sc), EcoRI (E), and BstEII (Bt) are indicated. The garn2 . : U- 
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RA3 was constructed as follows. A 6.2 kb StuI-BstEI[ GAM2 
fragment was cloned into the HindIII site of the bacterial plasmid 
pBR322 (Bolivar et al. 1977) after the fill-in reaction, yielding 
plasmid pMO202. The plasmid pMO202 was digested with HindIII 
to release a 3.1 kb fragment. The 1.2 kb HindIII URA3 fragment 
of plasmid YEp24 (Botstein et al. 1979) was ligated between these 
HindII1 sites, yielding pMO205. A 4.6 kb BarnHI-BanIII fragment 
of the plasmid pMO205 was isolated and used to transform a 
wild-type strain (YIY416; a leu2 ura3 STA1 inh °) to Ura +. The 
substitution events were confirmed by Southern blot analysis. The 
wild-type and its isogenic 9arn2::URA3 (YMO6) strains and 
#am2-1 strain (YUT212; a leu2 lys7 STA1 inh °) transformed with 
each plasmid were cultured at 28 ° C in 5 ml of YPGL (yeast 
extract-peptone-glycerol-lactate) (Yoshida et al. 1990) for 3 days. 
Culture fluids were obtained by centrifugation, and assayed for 
glucoamylase activity (Yamashita et al. 1984). Total activity is 
presented in units per 107 cells 

a muta t ion  that  permitted unscheduled expression of  
meiotic genes ( S P 0 1 1 ,  13, 16) in mitotic cells (Strich et 
al. 1989). R P D 1  was identified as a muta t ion  that  in- 
creased expression of  T R K 2  (Vidal et al. 1990). 

R N A  blot analysis was carried out to identify G A M 2  
R N A  and to examine the transcriptional regulation of  
S T A 1  and G A M 1 - G A M 3  (Fig. 2). The wild-type strain, 
when probed for G A M 2  RNA,  revealed a 5.5 kb R N A  
(Fig. 2, lane 1), which was absent in the isogenic 
g a i n 2 : : U R A 3  strain (Fig. 2, lane 2). The 9arn2." : U R A 3  
strain t ransformed with the low copy G A M 2  plasmid 
(pMO17) produced the same R N A  (Fig. 2, lane 3). The 
9 a m 2 : . ' U R A 3  strain t ransformed with the mult icopy 
G A M 2  plasmid (pMO 1) produced greatly elevated levels 
of  this R N A  (Fig. 2, lane 4). These results indicate that  
the 5.5 kb R N A  detected is the G A M 2  transcript. The 
level o f  S T A 1  R N A  was reduced in the 9 a m 2 : : U R A 3  
strain (Fig. 2, lane 2), compared  to that  in the wild-type 
strain (Fig. 2, lane 1) or the g a m 2 : : U R A 3  strain carrying 
G A M 2  on either a low-copy (Fig. 2, lane 3) or mult i-copy 
(Fig. 2, lane 4) vector, confirming that G A M 2  is a pos- 
itive regulator of  S T A 1  expression. The G A M 3  R N A  
level was also reduced in the garn2: : U R A 3  strain (Fig. 2, 
lane 2). Transformat ion  with G A M 2  cloned on low copy 

number  (Fig. 2, lane 3) or multicopy (Fig. 2, lane 4) 
vector restored R N A  accumulation to the wild-type level 
(Fig. 2, lane 1). These results indicate that G A M 2  also 
acts as a positive regulator of  G A M 3  expression. Since 
G A M 3  is required for transcription of  S T A 1 ,  G A M 2  may 
regulate S T A  1 expression through transcriptional activa- 
tion of  G A M 3 .  However,  we cannot exclude the possibil- 
ity that G A M 2  also plays a direct role in S T A 1  ex- 
pression. The G A M 1  R N A  level was not regulated by 
G A M 2  (Fig. 2, lanes 1-4). Likewise, the G A M 2  R N A  
level was not regulated by either G A M 1  (Fig. 2, lanes 
5-8) or G A M 3  (Fig. 2, lanes 9-12). The wild4ype strain 
produced the same level of  G A M 2  R N A  under both 
derepression (Fig. 2, lane 13) and glucose-repression con- 
ditions (Fig. 2, lane 14), while S T A 1  expression was 
inhibited by glucose repression (Fig. 2, lanes 13 and 14) 
as described previously (Dranginis 1989; Yoshimoto and 
Yamashi ta  199l), indicating that  glucose repression of 
S T A 1  expression is not mediated through transcriptional 
control of  G A M 2 .  Expression of  the G A M 2  R N A  was 
not dependent on G A M 2  function; equal amounts  of  
G A M 2  R N A  were detected in g a m 2 - 1  and wild-type cells 
(data not  shown). 

In conclusion, our data indicate that G A M 2  is a pos- 
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Fig. 2. RNA blot analysis. STA1, GAM1-GAM3 and ACT1 (yeast 
actin) transcripts were detected by RNA blot analysis of total RNA 
extracted from cells that had been cultured at 28 ° C to an optical 
density at 660 nm of 1.0 in YPGL, unless otherwise stated. The 
probe for GAM2 RNA was a 1.5 kb GAM2 fragment (indicated by 
inverted arrows in Fig. 1) located in the GAM2 open reading frame. 
The probes for STA1, GAM1 (Yoshimoto and Yamashita 1991), 
A CT1 (Achstetter 1989), and GAM3 (Yoshimoto et al. 1992) RNAs 
were described previously. Lanes: 1, 5, 9, 13, and 14 (the wild-type 
strain YIY416; lane 14, cells were cultured in YPGL plus 5% 
glucose); 2 (the gam2::URA3 strain YMO6 transformed with the 
control plasmid pHY20; Yoshimoto and Yamashita 1991); 3 (the 
gam2::URA3 strain with the low-copy GAM2 plasmid pMO17); 
4 (the gain2::URA3 strain with the multicopy GAM2 plasmid 
pMO 1); 6 (an isogenic gam 1 : : URA3 strain d416-1-4; (Yoshimoto 
and Yamashita 1991) with the control plasmid) ; 7 (the gaml : : URA3 
strain with a low-copy GAM1 plasmid pHY9; Yoshimoto and 
Yamashita 1991); 8 (the gaml::URA3 strain with a multi-copy 
GAM1 plasmid pHYI 0, created by inserting into the plasmid pYI 1 
the same fragment as that cloned on the plasmid pHY9); 10 (an 
isogenic gam3::URA3 strain d416-3-9; (Yoshimoto et al. 1992) 
with the control plasmid); 11 (the gain3::URA3 strain with a 
low-copy GAM3 plasmid pHY120; Yoshimoto et al. 1992); 12 (the 
gain3::URA3 strain with a multi-copy GAM3 plasmid pMO101; 
Yoshimoto et al. 1992) 

it ive t r ansc r ip t i ona l  r egu l a to r  o f  G A M 3 / A D R 6 ,  which  is 
r equ i red  for  t r ansc r ip t i on  o f  S T A  1 and  A D H 2 ,  a n d  is the  
same gene as S I N 3  (also k n o w n  as S D H ,  U M E 4 ,  a n d  
RPD1) ,  a negat ive  t r an sc r i p t i ona l  r egu l a to r  o f  several  
o the r  genes (HO,  S P O l l ,  SPO13 ,  SPO16 ,  a n d  TRK2) .  

These results suggest that GAM2/SIN3 protein plays a 
role in both positive and negative regulation of transcrip- 
tion. Wang et al. (1990) proposed that SIN3 protein 
regulates, at the level of protein-protein interaction, the 
binding of a repressor protein to the HO promoter. It 
remains to be seen whether GAM2 regulates DNA- 
protein interaction on a GAM3 promoter. 
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