Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © by Springer-Verlag 1980

A Mixture of Independent Identically Distributed Random Variables Need Not Admit a Regular Conditional Probability Given the Exchangeable σ -Field*

David A. Freedman

Department of Statistics, University of California, Berkeley CA 94720, USA

This paper is a sequel to [1]. Let I = [0, 1] and \mathscr{B} be the Borel σ -field in I. Let $S \subset I$, and $\mathscr{F} = S \cap \mathscr{B}$. Let S^* be the set of probabilities ϕ on (S, \mathscr{F}) , equipped with the weak * σ -field \mathscr{F}^* generated by $\{\phi: \phi(F) > t\}$ as F ranges over \mathscr{F} and t over I. Define I^* likewise. Consider the infinite product space S^{∞} equipped with the product σ -field \mathscr{F}^{∞} . Let $\{\xi_n\}$ be coordinate process on S^{∞} :

$$\xi_n(x) = x_n$$
 where $x = (x_1, x_2, \dots) \in S^{\infty}$.

If $\phi \in S^*$, the power probability ϕ^{∞} on $(S^{\infty}, \mathscr{F}^{\infty})$ makes the ξ_n independent, with common distribution ϕ . A probability P on $(S^{\infty}, \mathscr{F}^{\infty})$ is said to be *presentable* if it is a mixture of power probabilities: for some probability μ on (S^*, \mathscr{F}^*) ,

(1)
$$P = \int_{S^*} \phi^{\infty} \mu(d\phi).$$

The mixing measure μ is unique: see (3.4) of [1].

A permutation π of the positive integer is *finite* if $\pi(n) = n$ for all but finitely many *n*. Each π induces a measurable mapping $\tilde{\pi}$ on S^{∞} as follows:

 $\tilde{\pi}(x_1, x_2, \dots) = (x_{\pi(1)}, x_{\pi(2)}, \dots).$

The exchangeable σ -field \mathscr{E}_S in S^{∞} is the collection of $A \in \mathscr{F}^{\infty}$ which are invariant under all $\tilde{\pi}$. The exchangeable σ -field \mathscr{E}_I in I^{∞} is defined the same way.

A probability P on S^{∞} is said to be *exchangeable* if P is invariant under all $\tilde{\pi}$. One version of De Finetti's theorem is that for Borel sets S, all exchangeable P's are presentable. In [1], an example was given of an S and an exchangeable P on S^{∞} which is not presentable. It was also noted [1, 4.3] that if P admits a regular conditional probability given the exchangeable σ -field \mathscr{E}_S , then P is presentable. The converse was left open. The object of this note is to show that the converse is false.

^{*} This research was partially supported by National Science Foundation Grant MCS 77-01665

(2) **Theorem.** Let (I, \mathcal{B}) be the Borel unit interval. There is a subset S of I, with the relative Borel σ -field $\mathcal{F} = S \cap \mathcal{B}$, and a presentable probability P on $(S^{\infty}, \mathcal{F}^{\infty})$ which does not admit a regular conditional probability given the exchangeable σ -field \mathcal{E}_S .

The construction is a modification of the example presented in Sect. 2 of [1]. To review briefly, for $t \in I$ let t_i be the j^{th} digit in the binary expansion of t, so

$$t = \sum_{j=1}^{\infty} t_j / 2^j, \quad t_j = 0 \text{ or } 1.$$

For $0 \le p \le 1$, let θ_p be the probability on (I, \mathscr{B}) which makes the t_j 's independent, with common distribution

$$\theta_p\{t_j=1\} = p, \quad \theta_p\{t_j=0\} = 1 = p.$$

Let $Q = \int \theta_p^{\infty} dp$, an exchangeable (and presentable) probability on $(I^{\infty}, \mathscr{B}^{\infty})$. Let

$$Z(t) = \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} t_j$$

on the subset L of I where this limit exists. Let G be the set of $x \in I^{\infty}$ satisfying the following conditions:

(3)
$$x_i \in L$$
 and $Z(x_i) = Z(x_1)$ for all j

(4)
$$\frac{1}{n} \sum_{j=1}^{n} \delta_{x_j} \rightarrow \theta_{R(x)}$$

where R(x) is the common value for $Z(x_j)$, and δ_t is point mass at t, and the convergence is weak-star. Clearly, $G \in \mathscr{B}^{\infty}$ and Q(G) = 1. The next result constructs the state space S for Theorem (2).

(5) **Proposition.** There is a subset S of the unit interval I having the property that for each $B \in \mathscr{B}^{\infty}$ with Q(B) > 0:

(6) there is a sequence x in $S^{\infty} \cap B \cap G$ such that

 $S \cap \{t: t \in L \text{ and } Z(t) = R(x)\}$

is countable

(7) there is a sequence y in $S^{\infty} \cap B \cap G$ such that

 $S \supset \{t: t \in L \text{ and } Z(t) = R(y)\}.$

Proof. Let K be the set of ordinals of cardinality strictly less than c, the cardinality of the continuum. There is a 1-1 mapping $\alpha \to B_{\alpha}$ of K onto the collection of B's in \mathscr{B}^{∞} with positive Q-measure. For each $\alpha \in K$, choose points x_{α} and y_{α} in $B_{\alpha} \cap G$ as follows. Fix $\beta \in K$, and suppose by induction that x_{α} and y_{α} have been chosen for all $\alpha < \beta$. Let T_{β} be the set of relative frequencies observed so far, namely $\bigcup_{\alpha < \beta} \{R(x_{\alpha}), R(y_{\alpha})\}$. The cardinality of T_{β} is strictly less than c. In particular, $\tilde{T}_{\beta} = \{z: z \in G \text{ and } R(z) \in T_{\beta}\}$ has inner Q-measure 0 by (2.6) of [1]. So $B_{\beta} \cap G - \tilde{T}_{\beta}$ is non-empty.

Choose $x_{\beta} \in B_{\beta} \cap G - \tilde{T}_{\beta}$. Let $T_{\beta}^{+} = T_{\beta} \cup R(x_{\beta})$ and $\widetilde{T_{\beta}^{+}} = \{z: z \in G \text{ and } R(z) \in T_{\beta}^{+}\}$ and choose $y_{\beta} \in B_{\beta} \cap G - \tilde{T_{\beta}^{+}}$. This completes the induction.

Now define S as follows: $x_{\alpha} \in I^{\infty}$ has coordinates $x_{\alpha j}$, and likewise for $y_{\alpha i}$;

$$S = \bigcup_{\alpha \in K} \left[\bigcup_{j} \{ x_{\alpha j}, y_{\alpha j} \} \right] \cup \{ t \colon t \in L \text{ and } Z(t) = R(y_{\alpha}) \}.$$

Fix $B \in \mathscr{B}^{\infty}$ with Q(B) > 0. Then $B = B_{\beta}$ for some $\beta \in K$. Clearly $x_{\beta} \in B_{\beta} \cap G$ by construction, and $x_{\beta} \in S^{\infty}$ because S contains all the coordinates of x_{β} . Likewise, $y_{\beta} \in S^{\infty} \cap B_{\beta} \cap G$. Property (6) follows because $x_{\alpha} \notin \widetilde{T}_{\alpha}$ and $y_{\alpha} \notin \widetilde{T}_{\alpha}^{+}$ for all α , so each relative frequency is used at most once during the construction. To be explicit,

$$S \cap \{t: t \in L \text{ and } Z(t) = R(x_{\beta})\} = \bigcup_{j=1}^{\infty} \{x_{\beta j}\}.$$

Property (7) is immediate.

Before going on, it may be helpful to review the notations of *induced* and *traced* probabilities from [1, 2.10]. (As usual, outer measure is denoted by an asterisk.)

(8) Review of Definitions. Let (X, Σ) be an abstract measurable space, and X_0 a subset of X, not necessarily an element of Σ . Let $\Sigma_0 = X_0 \cap \Sigma$. Let μ_0 be a probability on (X_0, Σ_0) . Then μ_0 induces a probability $\eta \mu_0$ on (X, Σ) :

$$(\eta \mu_0)(A) = \mu_0(X_0 \cap A)$$
 for all $A \in \Sigma$.

Moreover, $(\eta \mu_0)^* (X_0) = 1$. Conversely, suppose μ is a probability on (X, Σ) and $\mu^*(X_0) = 1$. Then μ has a trace μ_0 on (X_0, Σ_0) :

$$\mu_0(X_0 \cap A) = \mu(A) \quad \text{for all } A \in \Sigma.$$

(9) Definition. As (6) or (7) implies, $Q^*(S^{\infty}) = 1$. Let P be the trace of Q on S^{∞} in the sense given above. This defines the probability P for Theorem (2).

(10) **Lemma.** Let (X, Σ, μ) be an abstract probability triple. Let $X_0 \subset X$ have $\mu^*(X_0) = 1$, and let μ_0 be the trace of μ on $(X_0, X_0 \cap \Sigma)$. Let $f \ge 0$ be Σ -measurable on X. Then

$$\int_{X_0} f d\mu_0 = \int_X f d\mu.$$

Proof. If f is an indicator function, this is true by definition, and extension is routine. \Box

(11) **Lemma.** The P defined in (9) is presentable.

Proof. Write ω for a generic sequence in S^{∞} or I^{∞} . Clearly,

(12)
$$Q = \int_{G} \theta_{R(\omega)}^{\infty} Q(d\omega).$$

Let G^* be the set of $\omega \in S^{\infty} \cap G$ with $\theta^*_{R(\omega)}(S) = 1$. Then $Q^*(G^*) = 1$; indeed, suppose $B \in \mathscr{B}^{\infty}$ and $B \cap G^* = \phi$ but Q(B) > 0. By (7), there is a sequence y in $S^{\infty} \cap B \cap G$ such that

 $S \supset \{t: t \in L \text{ and } Z(t) = R(y)\}.$

So $\theta_{R(y)}^*(S) = 1$, and $y \in B \cap G^*$. This contradiction proves $Q^*(G^*) = 1$. Let \hat{Q} be the trace of Q on G^* . By (10),

(13)
$$Q = \int_{G^*} \theta_{R(\omega)}^{\infty} \hat{Q}(d\omega).$$

Trace this formula onto S^{∞} to get

(14)
$$P = \int_{S^*} \phi^{\infty} v(d\phi),$$

where ν is the \hat{Q} -distribution of $\omega \to \tau \,\theta_{R(\omega)}$ and τ traces $\theta_{R(\omega)}$ onto (S, \mathscr{F}) . In more detail, if $\omega \in G^*$ then $\theta^*_{R(\omega)}(S) = 1$. By a theorem of von Neumann, $(\theta^{\infty}_{R(\omega)})^*(S^{\infty}) = 1$. And the trace of $\theta^{\infty}_{R(\omega)}$ on S^{∞} is just $(\tau \,\theta_{R(\omega)})^{\infty}$. Hence

$$P = \int_{G^*} (\tau \, \theta_{R(\omega)})^{\infty} \, \hat{Q}(d\omega).$$

The rest of the argument for (14) is omitted, being routine.

(15) Lemma. $\mathscr{E}_{S} = S^{\infty} \cap \mathscr{E}_{I}$.

Proof. Clearly, $S^{\infty} \cap \mathscr{E}_{I} \subset \mathscr{E}_{S}$. For the converse, let $F \in \mathscr{E}_{S}$. Then $F = S^{\infty} \cap B$ for some $B \in \mathscr{B}^{\infty}$, and

$$F = \tilde{\pi} F = S^{\infty} \cap \tilde{\pi} B = S^{\infty} \cap E$$

where

$$E = \bigcup_{\pi} \tilde{\pi} B \in \mathscr{E}_I. \quad \Box$$

Proof of Theorem (2). Suppose by way of contradiction that $P(\omega, F)$ were a regular conditional *P*-probability on $(S^{\infty}, \mathscr{F}^{\infty})$ given \mathscr{E}_{S} . Let $A \in \mathscr{B}$. It will be shown that

(16) There is a *P*-null set $N_A \in \mathscr{E}_S$ with

$$P(\omega, \{\xi_1 \in S \cap A\}) = \theta_{R(\omega)}(A) \quad \text{for } \omega \in (S^{\infty} \cap G) - N_A.$$

Indeed, let *E* range over \mathscr{E}_I , so $S^{\infty} \cap E$ ranges over \mathscr{E}_S . Let $\zeta_1(x) = x$, for $x \in I^{\infty}$. Then

$$\int_{S^{\infty} \cap E} P(\omega, \{\xi_1 \in S \cap A\}) P(d\omega) = P(S^{\infty} \cap E \text{ and } \xi_1 \in S \cap A)$$
$$= Q(E \text{ and } \zeta_1 \in A)$$
$$= \int_E 1_G(\omega) \theta_{R(\omega)}(A) Q(d\omega)$$
$$= \int_{S^{\infty} \cap E} 1_G(\omega) \theta_{R(\omega)}(A) P(d\omega)$$

by (10), completing the proof of (16).

Let \mathscr{B}_0 be a countable field generating \mathscr{B} , and $N = \bigcup \{N_A : A \in \mathscr{B}_0\}$. Then $N \in \mathscr{E}_S \subset \mathscr{F}^{\infty}$ and P(N) = 0. In particular, $(S^{\infty} \cap G) - N = S^{\infty} \cap B \cap G$, where $B \in \mathscr{B}^{\infty}$ and Q(B) = 1. For $\omega \in S^{\infty} \cap B \cap G$, the monotone class argument proves

(17) $P\{\omega, \{\xi_1 \in S \cap A\}\} = \theta_{R(\omega)}(A)$ for all $A \in \mathscr{B}$.

Now a contradiction emerges: (6) yields an $\omega \in S^{\infty} \cap B \cap G$ for which

 $S \cap \{t: t \in L \text{ and } Z(t) = R(\omega)\}$

is only countable, so $\theta^*_{R(\omega)}(S) = 0$. Take the inf of (17) over all Borel supersets A of S, getting 1 = 0. \Box

The construction of this paper and [1] may be put into a slightly more general framework, as follows. Let H be the set of $\omega \in I^{\infty}$ for which $\frac{1}{n} \sum_{i=1}^{n} \delta_{\omega_i}$ converges weakstar; call the limit θ_{ω} . Let Q be an exchangeable probability on I^{∞} , so

(18)
$$Q(H) = 1$$
 and $Q = \int_{H} \theta_{\omega}^{\infty} Q(d\omega).$

Let S be an arbitrary subset of I. Consider the following three conditions:

(19)
$$Q^*(S^\infty) = 1$$

(20) $Q^*(H_S) = 1$, where H_S is the set of $\omega \in H$ with $\theta^*_{\omega}(S) = 1$.

(21) $Q^*(S^{\infty}) = 1$. Furthermore, there is a $B \in \mathscr{B}^{\infty}$ with Q(B) = 1 and $S^{\infty} \cap B \subset H_S$. The following two results will be proved.

(22) **Theorem.** Condition (21) implies (20), and (20) implies (19).

(23) **Theorem.** (a) Q can be traced onto an exchangeable probability P in S^{∞} iff (19) holds.

(b) The trace P is presentable iff (20) holds.

(c) The trace P admits a regular conditional probability given the exchangeable σ -field \mathscr{E}_s if (21) holds.

As this paper and [1] show, for non-standard S, condition (21) is genuinely stronger than (20), and (20) is genuinely stronger than (19).

Proof of Theorem (22). First, (21) implies (20). Indeed, suppose (21) and let $C \in \mathscr{B}^{\infty}$ with $C \supset H_s$: it must be proved that Q(C) = 1. Choose $B \in \mathscr{B}^{\infty}$ with Q(B) = 1 and $S^{\infty} \cap B \subset H_s$. Then $S^{\infty} \cap B \subset C$, so B - C is disjoint from S^{∞} and Q(B - C) = 0. In particular, $Q(C) \ge Q(B) = 1$. Therefore, Q(C) = 1 and $Q^*(H_s) = 1$, deriving (20) from (21).

Next, (20) implies (19): even more, (20) implies

(24) $Q^*(S^{\infty} \cap H_S) = 1.$

To see this, fix $\omega \in H_S$ and let $\phi = \theta_{\omega}$. Then $\phi^*(S) = 1$, and $(\phi^{\infty})^*(S^{\infty}) = 1$. Let

 $H_{\phi} = \{ \omega \colon \omega \in H \text{ and } \theta_{\omega} = \phi \}.$

Now $H_{\phi} \in \mathscr{B}^{\infty}$ and $\phi^{\infty}(H_{\phi}) = 1$ and $H_{\phi} \subset H_{S}$, so $(\phi^{\infty})^{*} (S^{\infty} \cap H_{S}) = 1$. Let $C \in \mathscr{B}^{\infty}$ with $C \supset S^{\infty} \cap H_{S}$. Then $\theta_{\omega}^{\infty}(C) = 1$ for all $\omega \in H_{S}$, so

 $Q\{\omega: \omega \in H \text{ and } \theta_{\omega}^{\infty}(C) = 1\} = 1$

and

$$Q(C) = \int_{H} \theta_{\omega}^{\infty}(C) Q(d\omega) = 1$$

by (18). This proves (24). \Box

Proof of Theorem (23). Claim (a). This is clear.

Claim (b). The "if" part follows by the argument for (11). Conversely, suppose $P = \int_{S^*} \phi^{\infty} v(d\phi)$. Then $Q = \int_{S^*} (\eta \phi)^{\infty} v(d\phi)$ where $\eta \phi$ is the probability induced on (I, \mathscr{B}) by ϕ , in the sense of (8). So $(\eta \phi)^* (S) = 1$. Let $\mu = v \eta^{-1}$. Then

(25)
$$Q = \int_{I^*} \theta^\infty \mu(d\theta)$$

(26)
$$\mu^* \{ \theta : \theta^*(S) = 1 \} = 1.$$

Compare (18) and (25): by the uniqueness part of the Hewitt-Savage theorem [1, 3.4], the Q-distribution of $\omega \to \theta_{\omega}$ is μ . Now condition (20) follows from (26), via Lemma (27) below: in the weak * σ -fields, the set of probabilities on $(I^{\infty}, \mathscr{R}^{\infty})$ is a standard Borel space, as is the set I^* of probabilities on (I, \mathscr{R}) . \Box

Claim (c). Suppose (21) holds. Recall that P is the trace of Q on S^{∞} . Then $P_*(S^{\infty} \cap H_S) = 1$: that is, $\theta^*_{\omega}(S) = 1$ for P-almost all $\omega \in S^{\infty}$. For the good ω 's θ_{ω} has a trace ϕ_{ω} on (S, \mathscr{F}) , and the requisite conditional probability is $\omega \to \phi^{\infty}_{\omega}$. If there is a regular conditional probability, then (21) holds by the argument used to prove Theorem (2) above. In more detail, if $P(\omega, F)$ is a regular conditional P-probability given \mathscr{E}_S , there is a $B \in \mathscr{B}^{\infty}$ with Q(B) = 1, such that for $\omega \in S^{\infty} \cap B \cap H$,

$$P(\omega, \{\xi_1 \in S \cap A\} = \theta_{\omega}(A) \quad \text{for all } A \in \mathscr{B};$$

clearly, $\theta_{\omega}^*(S) = 1$ for such ω .

(27) **Lemma.** Let (X, Σ) and (X', Σ') be measurable spaces. Let f be a measurable function from X to X' and μ a probability on Σ . Let $v = \mu f^{-1}$. Let A be an arbitrary subset of X'. Then $\mu^*(f^{-1}A) \leq v^*(A)$. If (X, Σ) and (X', Σ') are standard Borel spaces, then $\mu^*(f^{-1}A) = v^*(A)$.

Proof. The first assertion is easy. For the second, let $B \in \Sigma$ be disjoint from $f^{-1}A$ and have maximal μ -measure among all such sets. Verify that fB is disjoint from A, so $f^{-1}fB$ is larger than B but still disjoint from A. Now X and X' are standard Borel spaces, and f is a Borel function, so fB and $f^{-1}fB$ are analytic sets. Thus

$$v^*(A) \leq 1 - v(fB) \leq 1 - \mu(B) = \mu^*(f^{-1}A).$$

Some extensions of (27) may be of interest.

(28) **Lemma.** Let (X, Σ) be an abstract measurable space, X_0 an arbitrary subset of X, and $\Sigma_0 = X_0 \cap \Sigma$. Let μ_0 be a probability on (X_0, Σ_0) , and $\eta \mu_0$ the induced probability on (X, Σ) , in the sense of (8). Let A be an arbitrary subset of X_0 . Then $\mu_0^*(A) = (\eta \mu_0)^*(A)$.

Proof. Let B range over Σ . Then $B \supset A$ iff $X_0 \cap B \supset A$, and

Mixtures of Independent Identically Distributed Random Variables

$$\mu_0^*(A) = \inf \{ \mu_0(X_0 \cap B) \colon X_0 \cap B \supset A \}$$

= inf {(\eta \mu_0) (B) : B \ge A } = (\eta \mu_0)^* (A).

(29) **Corollary.** In (27), if (X, Σ) is a standard Borel space, and Σ' is separable, then $\mu^* \{ f \in A \} = (\mu f^{-1})^* (A).$

Proof. Without loss of generality, suppose X' is a subset of I and $\Sigma' = X' \cap \mathscr{B}$, where (I, \mathscr{B}) is the Borel unit interval. Recall that $v = \mu f^{-1}$ is a probability on (X', Σ') . Let ηv be the probability induced on \mathscr{B} by v, in the same sense of (8). Let \tilde{f} be that *I*-valued function on X which agrees with the X'-valued function \tilde{f} . Clearly, \tilde{f} is Borel, and its range is a subset of X'. Also, $\mu \tilde{f}^{-1} = \eta v$. Now

$$\mu^{*}(f \in A) = \mu^{*}(\tilde{f} \in A)$$

= $(\mu \tilde{f}^{-1})^{*}(A)$ by (27)
= $(\eta v)^{*}(A)$
= $v^{*}(A)$ by (28).

(30) **Corollary.** Let (X, Σ) be a standard Borel space. Let X' be a set, and Σ' a separable σ -field of subsets of X'. Consider the product space $(X' \times X, \Sigma' \times \Sigma)$. Let π project X' × X onto X'. Let μ be a probability on $\Sigma' \times \Sigma$, and $v = \mu \pi^{-1}$. Let A be an arbitrary subset of X'. Then $\mu^* \{\pi \in A\} = v^*(A)$.

Proof. As in (29): take X' to be a subset of I, and consider the probabilities induced by μ and ν on $I \times X$ and I respectively. \Box

(31) Example. In (27) and (29), the assumption that the domain of f be standard is needed. Let W be a subset of I having inner Lebesgue measure 0 and outer measure 1. Equip W with the relative Borel σ -field $\mathscr{F} = W \cap \mathscr{B}$. Let λ be the trace of Lebesgue measure on (W, \mathscr{F}) , in the sense of (8). Let f embed W back into I, namely f(x) = x for $x \in W$. Then λf^{-1} is Lebesgue measure. Let A = I - W. Then $\lambda^* \{f \in A\} = 0$ but $(\lambda f^{-1})^* (A) = 1$.

(32) Example. In (30), the assumption that the vertical edge X be standard is needed. Continuing (31), consider the product space $(I \times W, \mathscr{B} \times \mathscr{F})$. Define the probability μ on $\mathscr{B} \times \mathscr{F}$ as the λ -distribution of the map $x \to (x, x)$ from W into $I \times W$: this installs λ on the diagonal $D = \{(x, y): x \in I \text{ and } y \in W \text{ and } x = y\}$. Verify that $D \in \mathscr{B} \times \mathscr{F}$ and $\mu(D) = 1$. Recall that A = I - W, so $(A \times W) \cap D = \emptyset$ and $\mu^*(A \times W) = 0$. Now $\mu \pi^{-1}$ is Lebesgue measure: $\mu^* \{\pi \in A\} = 0$ but $(\mu \pi^{-1})^* (A) = 1$. \Box

One more remark on the construction for Proposition (5): the probability Q there is a mixture of powers of continuous probabilities. Discrete probabilities will not do. To state this more sharply, let H^d be the set of $\omega \in H$, as defined before (18), where θ_{ω} is discrete. Then H^d is Borel, by (2.13) of [2].

(33) **Proposition.** Let Q be an exchangeable probability on $(I^{\infty}, \mathscr{B}^{\infty})$, with $Q(H^d) = 1$. Let S be a subset of I. If Q can be traced onto S^{∞} , in the sense of (8), the trace admits a regular conditional probability given \mathscr{E}_S , the exchangeable σ -field in S^{∞} .

Proof. We assume condition (19), and derive (21). Let $Z_{ij}(\omega) = 1$ if $\omega_i = \omega_j$, and $Z_{ij}(\omega) = 0$ otherwise. Let

$$Z_i(\omega) = \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^n Z_{ij}(\omega)$$

on the set H_i where the limit exists. Let $N_i(\omega)$ be the least j with $\omega_j = \omega_i$, and let $V(\omega)$ be the set of distinct values among $N_1(\omega)$, $N_2(\omega)$, Let H^g be the set of ω in H^d such that

(34)
$$\omega \in H_i$$
 and $Z_i(\omega) > 0$ for all i

and

$$(35) \quad \sum_{j \in V(\omega)} Z_j(\omega) = 1$$

Condition (34) is that any value which appears among $\omega_1, \omega_2, ...$ does so with positive limiting relative frequency. Condition (35) is that the sum of these relative frequencies is 1.

As is easily seen, H^g is Borel. If θ is discrete, then $\theta^{\infty}(H^g) = 1$ by the strong law. So, if Q is exchangeable and $Q(H^d) = 1$, then $Q(H^g) = 1$:

$$Q(H^g) = \int \theta^{\infty}_{\omega}(H^g) Q(d\omega) = \int_{H^d} \theta^{\infty}_{\omega}(H^g) Q(d\omega).$$

If $\omega \in H^{g}$, then $\theta_{\omega} \{\omega_{1}, \omega_{2}, \ldots\} = 1$: indeed $\frac{1}{n} \sum_{i=1}^{n} \delta_{\omega_{i}}$ converges weak * to θ_{ω} , and

converges in variation norm to the probability asigning mass $Z_j(\omega)$ to $j \in V(\omega)$. As a result, if $\omega \in S^{\infty} \cap H^g$ then $\theta_{\omega}(S) = 1$. This derives (21) from (19), with H^g for *B*. Theorem (23) completes the proof. \Box

A final remark on [1] may be in order. There is a subset S of [0, 1] and an exchangeable probability in S^{∞} which is not presentable. This brings into question the nature of the extreme exchangeable probabilities in S^{∞} . However, let (S, \mathscr{F}) be an abstract measurable space, and \mathscr{E}_S the exchangeable σ -field in S^{∞} . The following result is known [3], but the proof may be new.

(36) **Proposition.** Let P be an exchangeable probability on $(S^{\infty}, \mathscr{F}^{\infty})$. The following three conditions are equivalent:

- (i) P is extreme,
- (ii) P is 0-1 on \mathscr{E}_{S} ,
- (iii) P is ϕ^{∞} for some probability ϕ on (S, \mathcal{F}) .

Condition (i) implies (ii). If $A \in \mathscr{E}_S$ and 0 < P(A) < 1, then P cannot be extreme, because

 $P = P(A) P(\cdot | A) + P(B) P(\cdot | B)$

where B is the complement of A in S^{∞} .

Condition (ii) implies (iii). Let $\xi_1, \xi_2, ...$ be the coordinate process on S^{∞} . Let f be a measurable function from (S, \mathscr{F}) to the Borel unit interval. As is well known,

(37)
$$T_N = \frac{1}{N} \sum_{n=1}^N f(\xi_n) \to E\{f(\xi_m) | \mathscr{E}_S\} \quad \text{a.s.}$$

where the limit does not depend on m. This may be derived from the martingale covergence theorem, for

$$T_N = E\{f(\xi_m) | T_N, T_{N+1}, \dots\}.$$

Here is another, more interesting, proof of (37). The main idea is due to de Finetti. By a direct calculation which exploits the exchangeability, for $N < M < \infty$,

$$E\{(T_N - T_M)^2\} = \left(\frac{1}{N} - \frac{1}{M}\right) \{\operatorname{Var}[f(\xi_1)] - \operatorname{Cov}[f(\xi_1), f(\xi_2)]\}.$$

In particular, $\{T_N\}$ is fundamental in probability, and so converges in probability to some limit T. This limit T is clearly \mathscr{E}_s -measurable. Next,

(38)
$$E\{[f(\xi_m) - T] \cdot [f(\xi_2) - T]^3\} = 0$$
 for $m \neq 2$.

Indeed, the left side of (38) does not depend on m, by exchangeability. Averaging over m = 1, 3, 4, ..., N, the left side of (38) equals

$$\frac{N}{N-1}E\{[T_N-T]\cdot [f(\xi_2)-T]^3\}-\frac{1}{N-1}E\{[f(\xi_2)-T]^4\}.$$

This converges to 0, because $T_N \rightarrow T$ and $0 \leq T_N \leq 1$, proving (38). Likewise,

(39a)
$$E\{[f(\xi_1) - T] \cdot [f(\xi_2) - T] \cdot [f(\xi_3) - T] \cdot [f(\xi_4) - T]\} = 0$$

(39b) $E\{[f(\xi_1) - T] \cdot [f(\xi_2) - T] \cdot [f(\xi_3) - T]^2\} = 0$
(39c) $E\{[f(\xi_1) - T] \cdot [f(\xi_2) - T]^3\} = 0.$

Hence

$$E[(T_N - T)^4] = \frac{1}{N^3} E[(f(\xi_1) - T)^4] + {\binom{4}{2}} {\binom{N}{2}} \frac{1}{N^4} E\{[f(\xi_1) - T]^2 \cdot [f(\xi_2) - T]^2\} = 0 \left(\frac{1}{N^2}\right)$$

is summable in N. As a result, $T_N \rightarrow T$ almost surely.

To see that $T = E\{f(\xi_m) | \mathscr{E}_S\}$, let $A \in \mathscr{E}_S$. Then $\int_A f(\xi_m) dP$ does not depend on m; as such, this integral equals

 $\int_A T_N dP \to \int_A T dP.$

This completes the second proof of (37).

Now it is easy to derive (iii) from (ii). Indeed, let A_i and $A \in \mathscr{F}$ and $B = \{\xi_1 \in A_1, \dots, \xi_k \in A_k\}$. Then,

 $P(B \text{ and } \xi_{k+1} \in A) = P(B \text{ and } \xi_n \in A) \quad \text{for } n > k$ $= \int_B \frac{1}{N} \sum_{n=k+1}^{k+N} 1_A(\xi_n) \, dP$ $\to \int_B P(\xi_{k+1} \in A | \mathscr{C}_S) \, dP$ $= P(B) P(\xi_{k+1} \in A)$

because P is 0-1 on \mathscr{E}_{S} .

Condition (iii) implies (i). Suppose Q is exchangeable and absolutely continuous with respect to ϕ^{∞} . Let A_1 and $A_2 \in \mathscr{F}$. Now

(40)
$$\frac{1}{N} \sum_{n=1}^{N} \mathbf{1}_{A_1}(\xi_n) \mathbf{1}_{A_2}(\xi_{n+1}) \rightarrow \phi(A_1) \phi(A_2)$$

 ϕ^{∞} -almost surely, by the strong law applied separately to the even *n*'s and to the odd *n*'s. Next, (40) holds *Q*-almost surely, because $Q \ll \phi^{\infty}$. Integrate (40) with respect to *Q*:

 $Q(\xi_1 \in A_1 \text{ and } \xi_2 \in A_2) = \phi(A_1) \phi(A_2).$

By similar argument,

 $Q(\xi_1 \in A_1 \text{ and } \xi_2 \in A_2 \text{ and } \dots \text{ and } \xi_k \in A_k) = \phi(A_1) \phi(A_2) \dots \phi(A_k),$

so $Q = \phi^{\infty}$. To sum up,

(41) If Q is exchangeable, and absolutely continuous with respect to ϕ^{∞} , then $Q = \phi^{\infty}$.

Now, to prove ϕ^{∞} is extreme, suppose $\phi^{\infty} = \frac{1}{2}Q + \frac{1}{2}Q'$, where Q and Q' are exchangeable. Clearly, Q and Q' are absolutely continuous with respect to ϕ^{∞} . Hence, $Q = Q' = \phi^{\infty}$ by (41). \Box

References

- 1. Dubins, L.E., Freedman, D.A.: Exchangeable processes need not be mixtures of independent, identically distributed variables. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 1979
- 2. Dubins, L.E., Freedman, D.A.: Measurable sets of measures, Pac. J. Math. 14, 1211-1222 (1964)
- 3. Hewitt, E., Savage, L.J.: Symmetric measures on Cartesian products, Trans. Amer. Math. Soc., 80, 470-501 (1955)

Received June 20, 1979