Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 9 by Springer-Verlag 1980

A Mixture of Independent Identically Distributed Random Variables Need Not Admit a Regular Conditional Probability Given the Exchangeable σ -Field^{*}

David A. Freedman

Department of Statistics, University of California, Berkeley CA 94720, USA

This paper is a sequel to [1]. Let $I = [0, 1]$ and \mathscr{B} be the Borel σ -field in I. Let $S \subset I$, and $\mathscr{F} = S \cap \mathscr{B}$. Let S^{*} be the set of probabilities ϕ on (S, \mathscr{F}) , equipped with the weak * σ -field \mathcal{F}^* generated by $\{\phi: \phi(F) > t\}$ as F ranges over \mathcal{F} and t over I. Define I^* likewise. Consider the infinite product space S^{∞} equipped with the product σ -field \mathscr{F}^{∞} . Let $\{\xi_n\}$ be coordinate process on S^{∞} .

$$
\xi_n(x) = x_n \quad \text{where } x = (x_1, x_2, \dots) \in S^\infty.
$$

If $\phi \in S^*$, the power probability ϕ^{∞} on $(S^{\infty}, \mathscr{F}^{\infty})$ makes the ξ_n independent, with common distribution ϕ . A probability P on $(S^{\infty}, \mathscr{F}^{\infty})$ is said to be *presentable* if it is a mixture of power probabilities: for some probability μ on (S^*, \mathcal{F}^*) ,

(1)
$$
P = \int_{S^*} \phi^\infty \mu(d\phi).
$$

The mixing measure μ is unique: see (3.4) of [1].

A permutation π of the positive integer is *finite* if $\pi(n) = n$ for all but finitely many *n*. Each π induces a measurable mapping $\tilde{\pi}$ on S^{∞} as follows:

 $\tilde{\pi}(x_1, x_2, \ldots) = (x_{\pi(1)}, x_{\pi(2)}, \ldots).$

The *exchangeable* σ *-field* \mathscr{E}_s in S^∞ is the collection of $A \in \mathscr{F}^\infty$ which are invariant under all $\tilde{\pi}$. The exchangeable σ -field \mathscr{E}_I in I^{∞} is defined the same way.

A probability P on S^{∞} is said to be *exchangeable* if P is invariant under all $\tilde{\pi}$. One version of De Finetti's theorem is that for Borel sets S , all exchangeable P 's are presentable. In [1], an example was given of an S and an exchangeable P on S^{∞} which is not presentable. It was also noted $[1, 4.3]$ that if P admits a regular conditional probability given the exchangeable σ -field \mathscr{E}_s , then P is presentable. The converse was left open. The object of this note is to show that the converse is false.

This research was partially supported by National Science Foundation Grant MCS 77-01665

(2) **Theorem.** Let (I, \mathcal{B}) be the Borel unit interval. There is a subset S of I, with the *relative Borel* σ *-field* $\mathcal{F} = S \cap \mathcal{B}$ *, and a presentable probability P on* $(S^{\infty}, \mathcal{F}^{\infty})$ which *does not admit a regular conditional probability given the exchangeable* σ *-field* \mathscr{E}_{S} *.*

The construction is a modification of the example presented in Sect. 2 of [1]. To review briefly, for $t \in I$ let t_i be the jth digit in the binary expansion of t, so

$$
t = \sum_{j=1}^{\infty} t_j/2^j
$$
, $t_j = 0$ or 1.

For $0 \leq p \leq 1$, let θ_p be the probability on (I, \mathcal{B}) which makes the t_i's independent, with common distribution

$$
\theta_p\{t_j=1\}=p, \quad \theta_p\{t_j=0\}=1=p.
$$

Let $Q = \int \theta_n^{\infty} dp$, an exchangeable (and presentable) probability on $(I^{\infty}, \mathscr{B}^{\infty})$. Let

$$
Z(t) = \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} t_j
$$

on the subset L of I where this limit exists. Let G be the set of $x \in I^{\infty}$ satisfying the following conditions:

(3)
$$
x_i \in L
$$
 and $Z(x_i) = Z(x_1)$ for all j

$$
(4) \quad \frac{1}{n} \sum_{j=1}^{n} \delta_{x_j} \rightarrow \theta_{R(x)}
$$

where $R(x)$ is the common value for $Z(x_i)$, and δ_t is point mass at t, and the convergence is weak-star. Clearly, $G \in \mathcal{B}^{\infty}$ and $Q(G) = 1$. The next result constructs the state space S for Theorem (2) .

(5) Proposition. *There is a subset S of the unit interval I having the property that for each* $B \in \mathscr{B}^{\infty}$ *with* $Q(B) > 0$ *:*

(6) there is a sequence x in $S^{\infty} \cap B \cap G$ such that

 $S \cap \{t: t \in L \text{ and } Z(t) = R(x)\}\$

is countable

(7) *there is a sequence y in* $S^{\infty} \cap B \cap G$ *such that*

 $S \supset \{t: t \in L \text{ and } Z(t) = R(y)\}.$

Proof. Let K be the set of ordinals of cardinality strictly less than c, the cardinality of the continuum. There is a 1 - 1 mapping $\alpha \rightarrow B_{\alpha}$ of K onto the collection of B's in \mathscr{B}^{∞} with positive Q-measure. For each $\alpha \in K$, choose points x_{α} and y_{α} in $B_{\alpha} \cap G$ as follows. Fix $\beta \in K$, and suppose by induction that x_{α} and y_{α} have been chosen for all $\alpha < \beta$. Let T_n be the set of relative frequencies observed so far, namely \Box {R(x_a), $\alpha < \beta$ $R(y_a)$. The cardinality of T_β is strictly less than c. In particular, $\tilde{T}_\beta = \{z: z \in G \text{ and }$ $R(z) \in T_{\beta}$ has inner Q-measure 0 by (2.6) of [1]. So $B_{\beta} \cap G - \tilde{T}_{\beta}$ is non-empty.

Choose $x_{\beta} \in B_{\beta} \cap G - T_{\beta}$. Let $T_{\beta}^+ = T_{\beta} \cup R(x_{\beta})$ and $T_{\beta}^+ = \{z: z \in G \text{ and } R(z) \in T_{\beta}^+ \}$ and choose $y_{\beta} \in B_{\beta} \cap G - T_{\beta}^+$. This completes the induction.

Now define S as follows: $x_{\alpha} \in I^{\infty}$ has coordinates $x_{\alpha j}$, and likewise for $y_{\alpha j}$;

$$
S = \bigcup_{\alpha \in K} \big[\bigcup_j \{x_{\alpha j}, y_{\alpha j}\} \big] \cup \{t : t \in L \text{ and } Z(t) = R(y_{\alpha})\}.
$$

Fix $B \in \mathscr{B}^{\infty}$ with $Q(B) > 0$. Then $B = B_{\beta}$ for some $\beta \in K$. Clearly $x_{\beta} \in B_{\beta} \cap G$ by construction, and $x_{\beta} \in S^{\infty}$ because S contains all the coordinates of x_{β} . Likewise, $y_{\beta} \in S^{\infty} \cap B_{\beta} \cap G$. Property (6) follows because $x_{\alpha} \notin \widetilde{T}_{\alpha}$ and $y_{\alpha} \notin \widetilde{T}_{\alpha}^{+}$ for all α , so each relative frequency is used at most once during the construction. To be explicit,

$$
S \cap \{t : t \in L \text{ and } Z(t) = R(x_{\beta})\} = \bigcup_{j=1}^{\infty} \{x_{\beta j}\}.
$$

Property (7) is immediate. \Box

Before going on, it may be helpful to review the notations of *induced* and *traced* probabilities from $[1, 2.10]$. (As usual, outer measure is denoted by an asterisk.)

(8) *Review of Definitions.* Let (X, Σ) be an abstract measurable space, and X_0 a subset of X, not necessarily an element of Σ . Let $\Sigma_0 = X_0 \cap \Sigma$. Let μ_0 be a probability on (X_0, Σ_0) . Then μ_0 induces a probability $\eta \mu_0$ on (X, Σ) :

$$
(\eta \mu_0)(A) = \mu_0(X_0 \cap A) \quad \text{for all } A \in \Sigma.
$$

Moreover, $(\eta \mu_0)^*(X_0) = 1$. Conversely, suppose μ is a probability on (X, Σ) and $\mu^*(X_0) = 1$. Then μ has a trace μ_0 on (X_0, Σ_0) :

$$
\mu_0(X_0 \cap A) = \mu(A)
$$
 for all $A \in \Sigma$.

(9) *Definition.* As (6) or (7) implies, $Q^*(S^{\infty}) = 1$. Let P be the trace of Q on S^{∞} in the sense given above. This defines the probability P for Theorem (2).

(10) Lemma. Let (X, Σ, μ) be an abstract probability triple. Let $X_0 \subset X$ have $\mu^*(X_0)$ $=$ 1, and let μ_0 be the trace of μ on $(X_0, X_0 \cap \Sigma)$. Let $f \ge 0$ be Σ -measurable on X. *Then*

$$
\int_{X_0} f d\mu_0 = \int_X f d\mu.
$$

Proof. If f is an indicator function, this is true by definition, and extension is routine. \square

(11) Lemma. *The P defined in* (9) *is presentable.*

Proof. Write ω for a generic sequence in S^{∞} or I^{∞} . Clearly,

(12)
$$
Q = \int_{G} \theta_{R(\omega)}^{\infty} Q(d\omega).
$$

Let G^* be the set of $\omega \in S^{\infty} \cap G$ with $\theta_{R(\omega)}^*(S) = 1$. Then $Q^*(G^*) = 1$; indeed, suppose $B \in \mathscr{B}^{\infty}$ and $B \cap G^* = \phi$ but $Q(B) > 0$. By (7), there is a sequence y in $S^{\infty} \cap B \cap G$ such that

 $S \supseteq \{t: t \in L \text{ and } Z(t) = R(v)\}.$

So $\theta_{R(v)}^*(S) = 1$, and $y \in B \cap G^*$. This contradiction proves $Q^*(G^*) = 1$. Let \hat{Q} be the trace of Q on G^* . By (10),

(13)
$$
Q = \int_{G^*} \theta_{R(\omega)}^{\infty} \hat{Q}(d\omega).
$$

Trace this formula onto S^{∞} to get

$$
(14) \quad P = \int_{S^*} \phi^\infty \, v(d\phi),
$$

where v is the \hat{Q} -distribution of $\omega \to \tau \theta_{R(\omega)}$ and τ traces $\theta_{R(\omega)}$ onto (S, \mathscr{F}) . In more detail, if $\omega \in G^*$ then $\theta^*_{R(\omega)}(S) = 1$. By a theorem of von Neumann, $(\theta^{\infty}_{R(\omega)})^* (S^{\infty}) = 1$. And the trace of $\theta_{R(\omega)}^{\infty}$ on S^{∞} is just $(\tau \theta_{R(\omega)})^{\infty}$. Hence

$$
P = \int_{G^*} (\tau \theta_{R(\omega)})^{\infty} \hat{Q}(d\omega).
$$

The rest of the argument for (14) is omitted, being routine. \Box

(15) Lemma. $\mathscr{E}_s = S^\infty \cap \mathscr{E}_t$.

Proof. Clearly, $S^{\infty} \cap \mathscr{E}_{I} \subset \mathscr{E}_{S}$. For the converse, let $F \in \mathscr{E}_{S}$. Then $F = S^{\infty} \cap B$ for some $B \in \mathscr{B}^{\infty}$, and

$$
F = \tilde{\pi} F = S^{\infty} \cap \tilde{\pi} B = S^{\infty} \cap E
$$

where

$$
E = \bigcup_{\pi} \tilde{\pi} B \in \mathscr{E}_I. \quad \Box
$$

Proof of Theorem (2). Suppose by way of contradiction that $P(\omega, F)$ were a regular conditional P-probability on $(S^{\infty}, \mathscr{F}^{\infty})$ given \mathscr{E}_S . Let $A \in \mathscr{B}$. It will be shown that

(16) There is a *P*-null set $N_A \in \mathscr{E}_S$ with

$$
P(\omega, \{\xi_1 \in S \cap A\}) = \theta_{R(\omega)}(A) \quad \text{for } \omega \in (S^{\infty} \cap G) - N_A.
$$

Indeed, let E range over \mathscr{E}_r , so $S^\infty \cap E$ ranges over \mathscr{E}_s . Let $\zeta_1(x) = x$, for $x \in I^\infty$. Then

$$
\int_{S^{\infty} \cap E} P(\omega, \{\xi_1 \in S \cap A\}) P(d\omega) = P(S^{\infty} \cap E \text{ and } \xi_1 \in S \cap A)
$$

= $Q(E \text{ and } \zeta_1 \in A)$
= $\int_{E} 1_G(\omega) \theta_{R(\omega)}(A) Q(d\omega)$
= $\int_{S^{\infty} \cap E} 1_G(\omega) \theta_{R(\omega)}(A) P(d\omega)$

by (10), completing the proof of (16).

Let \mathscr{B}_0 be a countable field generating \mathscr{B}_1 , and $N=\cup \{N_A: A \in \mathscr{B}_0\}$. Then $N \in \mathscr{E}_{S} \subset \mathscr{F}^{\infty}$ and $P(N) = 0$. In particular, $(S^{\infty} \cap G) - N = S^{\infty} \cap B \cap G$, where $B \in \mathscr{B}^{\infty}$ and $Q(B) = 1$. For $\omega \in S^{\infty} \cap B \cap G$, the monotone class argument proves

(17) $P\{\omega, {\xi_1 \in S \cap A}\} = \theta_{R(\omega)}(A)$ for all $A \in \mathcal{B}$.

Now a contradiction emerges: (6) yields an $\omega \in S^{\infty} \cap B \cap G$ for which

 $S \cap \{t: t \in L \text{ and } Z(t) = R(\omega)\}\$

is only countable, so $\theta_{R(\omega)}^*(S) = 0$. Take the inf of (17) over all Borel supersets A of S, getting $1=0$. \Box

The construction of this paper and $\lceil 1 \rceil$ may be put into a slightly more general framework, as follows. Let H be the set of $\omega \in I^{\infty}$ for which $\frac{1}{\omega} \sum_{\alpha} \delta_{\alpha}$, converges weak n_{i} star; call the limit θ_{α} . Let Q be an exchangeable probability on I^{∞} , so

(18)
$$
Q(H)=1
$$
 and $Q=\int\limits_H \theta_\omega^\infty Q(d\omega)$.

Let S be an arbitrary subset of I . Consider the following three conditions:

$$
(19) \quad Q^*(S^\infty) = 1
$$

(20) $Q^*(H_s) = 1$, where H_s is the set of $\omega \in H$ with $\theta^*_{\omega}(S) = 1$.

(21) $Q^*(S^{\infty})=1$. Furthermore, there is a $B\in\mathscr{B}^{\infty}$ with $Q(B)=1$ and $S^{\infty}\cap B\subset H_S$. The following two results will be proved.

(22) Theorem. *Condition* (21) *implies* (20), *and* (20) *implies* (19).

(23) **Theorem.** (a) Q can be traced onto an exchangeable probability P in S^{∞} iff (19) *holds.*

(b) The *trace P is presentable* iff (20) *holds.*

(c) The *trace P admits a regular conditional probability given the exchangeable* σ -field \mathscr{E}_s if (21) *holds*.

As this paper and $\lceil 1 \rceil$ show, for non-standard S, condition (21) is genuinely stronger than (20), and (20) is genuinely stronger than (19).

Proof of Theorem (22). First, (21) implies (20). Indeed, suppose (21) and let $C \in \mathscr{B}^{\infty}$ with $C \supset H_s$: it must be proved that $Q(C) = 1$. Choose $B \in \mathscr{B}^{\infty}$ with $Q(B) = 1$ and S^{∞} $\cap B \subset H_s$. Then $S^{\infty} \cap \overline{B} \subset C$, so $B-C$ is disjoint from S^{∞} and $\overline{Q}(B-C)=0$. In particular, $Q(C) \ge Q(B) = 1$. Therefore, $Q(C) = 1$ and $Q^*(H_S) = 1$, deriving (20) from (21).

Next, (20) implies (19): even more, (20) implies

 (24) $Q^*(S^{\infty} \cap H_s) = 1.$

To see this, fix $\omega \in H_S$ and let $\phi = \theta_\omega$. Then $\phi^*(S) = 1$, and $(\phi^\infty)^* (S^\infty) = 1$. Let

 $H_{\phi} = {\omega : \omega \in H \text{ and } \theta_{\omega} = \phi}.$

Now $H_{\phi} \in \mathscr{B}^{\infty}$ and $\phi^{\infty}(H_{\phi}) = 1$ and $H_{\phi} \subset H_S$, so $(\phi^{\infty})^*$ $(S^{\infty} \cap H_S) = 1$. Let $C \in \mathscr{B}^{\infty}$ with $C \supset S^{\infty} \cap H_S$. Then $\theta_{\omega}^{\infty}(\dot{C}) = 1$ for all $\omega \in \tilde{H}_S$, so

 $Q\{\omega: \omega \in H \text{ and } \theta^{\infty}(\mathcal{C})=1\} = 1$

and

$$
Q(C) = \int\limits_H \theta_\omega^\infty(C) Q(d\omega) = 1
$$

by (18). This proves (24). \Box

Proof of Theorem (23). Claim (a). This is clear.

Claim (b). The "if" part follows by the argument for (11) . Conversely, suppose P $=$ $\phi^{\infty}v(d\phi)$. Then $Q =$ $\phi(\phi)^{\infty}v(d\phi)$ where $\eta \phi$ is the probability induced on S^* S^* (I, \mathscr{B}) by ϕ , in the sense of (8). So $(\eta \phi)^*$ (S) = 1. Let $\mu = v \eta^{-1}$. Then

$$
(25) \quad Q = \int_{I^*} \theta^\infty \, \mu(d\theta)
$$

(26)
$$
\mu^* \{\theta : \theta^*(S) = 1\} = 1.
$$

Compare (18) and (25): by the uniqueness part of the Hewitt-Savage theorem [1, 3.4], the Q-distribution of $\omega \rightarrow \theta_{\omega}$ is μ . Now condition (20) follows from (26), via Lemma (27) below: in the weak * σ -fields, the set of probabilities on $(I^{\infty}, \mathscr{B}^{\infty})$ is a standard Borel space, as is the set I^* of probabilities on (I, \mathscr{B}) .

Claim (c). Suppose (21) holds. Recall that P is the trace of Q on S^{∞} . Then $P_{\nu}(S^{\infty}$ $\cap H_s$ = 1: that is, $\theta_{\omega}^*(S)$ = 1 for *P*-almost all $\omega \in S^{\infty}$. For the good ω 's θ_{ω} has a trace ϕ_{ω} on (S, \mathscr{F}) , and the requisite conditional probability is $\omega \rightarrow \phi_{\omega}^{\infty}$. If there is a regular conditional probability, then (21) holds by the argument used to prove Theorem (2) above. In more detail, if $P(\omega, F)$ is a regular conditional P-probability given \mathscr{E}_s , there is a $B \in \mathscr{B}^\infty$ with $Q(B)=1$, such that for $\omega \in S^\infty \cap B \cap H$,

$$
P(\omega, \{\xi_1 \in S \cap A\} = \theta_\omega(A) \quad \text{for all } A \in \mathcal{B};
$$

clearly, $\theta_{\omega}^*(S)=1$ for such ω . \square

(27) **Lemma.** Let (X, Σ) and (X', Σ') be measurable spaces. Let f be a measurable *function from X to X' and* μ *a probability on* Σ *. Let* $v = \mu f^{-1}$ *. Let A be an arbitrary subset of X'. Then* $\mu^*(f^{-1}A) \leq v^*(A)$. If (X, Σ) and (X', Σ') are standard Borel spaces, *then* $\mu^*(f^{-1}A) = \nu^*(A)$.

Proof. The first assertion is easy. For the second, let $B \in \Sigma$ be disjoint from $f^{-1}A$ and have maximal μ -measure among all such sets. Verify that *f B* is disjoint from *A*, so $f^{-1}fB$ is larger than B but still disjoint from A. Now X and X' are standard Borel spaces, and f is a Borel function, so fB and $f^{-1}fB$ are analytic sets. Thus

$$
v^*(A) \le 1 - v(fB) \le 1 - \mu(B) = \mu^*(f^{-1}A). \quad \Box
$$

Some extensions of (27) may be of interest.

(28) **Lemma.** Let (X, Σ) be an abstract measurable space, X_0 an arbitrary subset of *X*, and $\Sigma_0 = X_0 \cap \Sigma$. Let μ_0 be a probability on (X_0, Σ_0) , and $\eta \mu_0$ the induced *probability on* (X, Σ) , *in the sense of* (8). Let A be an arbitrary subset of X_0 . Then $\mu_0^*(A) = (\eta \mu_0)^*(A).$

Proof. Let *B* range over Σ . Then $B \supseteq A$ iff $X_0 \cap B \supseteq A$, and

Mixtures of Independent Identically Distributed Random Variables 245

$$
\mu_0^*(A) = \inf \{ \mu_0(X_0 \cap B) : X_0 \cap B \supseteq A \}
$$

= $\inf \{ (\eta \mu_0)(B) : B \supseteq A \} = (\eta \mu_0)^*(A). \quad \Box$

(29) Corollary. *In* (27), *if* (X, Σ) *is a standard Borel space, and* Σ' *is separable, then* μ^* { $f \in A$ } = (μ f⁻¹)* (A).

Proof. Without loss of generality, suppose X' is a subset of I and $\Sigma' = X' \cap \mathcal{B}$, where (I, \mathscr{B}) is the Borel unit interval. Recall that $v = \mu f^{-1}$ is a probability on (X', Σ') . Let η v be the probability induced on $\mathscr B$ by v, in the same sense of (8). Let \tilde{f} be that Ivalued function on X which agrees with the X'-valued function \tilde{f} . Clearly, \tilde{f} is Borel, and its range is a subset of X'. Also, $\mu \tilde{f}^{-1} = \eta v$. Now

$$
\mu^*(f \in A) = \mu^*(\tilde{f} \in A)
$$

= $(\mu \tilde{f}^{-1})^*(A)$ by (27)
= $(\eta v)^*(A)$
= $v^*(A)$ by (28). \square

(30) **Corollary.** Let (X, Σ) be a standard Borel space. Let X' be a set, and Σ' a *separable* σ *-field of subsets of X'. Consider the product space* $(X' \times X, \Sigma' \times \Sigma)$ *. Let* π *project* $X' \times X$ *onto* X' . Let μ be a probability on $\Sigma' \times \Sigma$, and $\nu = \mu \pi^{-1}$. Let A be an *arbitrary subset of X'. Then* $\mu^* {\pi \in A} = v^*(A)$.

Proof. As in (29): take X' to be a subset of I, and consider the probabilities induced by μ and ν on $I \times X$ and I respectively. \Box

 (31) *Example.* In (27) and (29) , the assumption that the domain of f be standard is needed. Let W be a subset of I having inner Lebesgue measure 0 and outer measure 1. Equip W with the relative Borel σ -field $\mathcal{F} = W \cap \mathcal{B}$. Let λ be the trace of Lebesgue measure on (W, \mathcal{F}) , in the sense of (8). Let f embed W back into I, namely $f(x) = x$ for $x \in W$. Then λf^{-1} is Lebesgue measure. Let $A = I - W$. Then $\lambda^* \{f \in A\} = 0$ but $(\lambda f^{-1})^*$ $(A) = 1$.

(32) *Example.* In (30), the assumption that the vertical edge X be standard is needed. Continuing (31), consider the product space $(I \times W, \mathcal{B} \times \mathcal{F})$. Define the probability μ on $\mathscr{B} \times \mathscr{F}$ as the λ -distribution of the map $x \to (x, x)$ from W into I $\times W$: this installs λ on the diagonal $D = \{(x, y): x \in I \text{ and } y \in W \text{ and } x = y\}$. Verify that $D \in \mathcal{B} \times \mathcal{F}$ and $\mu(D) = 1$. Recall that $A = I - W$, so $(A \times W) \cap D = \emptyset$ and $\mu^*(A \times W)$ = 0. Now $\mu \pi^{-1}$ is Lebesgue measure: $\mu^* \{ \pi \in A \} = 0$ but $(\mu \pi^{-1})^* (A) = 1$. \Box

One more remark on the construction for Proposition (5) : the probability Q there is a mixture of powers of continuous probabilities. Discrete probabilities will not do. To state this more sharply, let H^d be the set of $\omega \in H$, as defined before (18), where θ_{ω} is discrete. Then H^d is Borel, by (2.13) of [2].

(33) **Proposition.** Let Q be an exchangeable probability on $(I^{\infty}, \mathscr{B}^{\infty})$, with $Q(H^d) = 1$. Let S be a subset of I. If Q can be traced onto S^{∞} , in the sense of (8), the trace admits a *regular conditional probability given* \mathscr{E}_s *, the exchangeable* σ *-field in* S^∞ .

Proof. We assume condition (19), and derive (21). Let $Z_{ij}(\omega) = 1$ if $\omega_i = \omega_j$, and $Z_{ij}(\omega) = 0$ otherwise. Let

$$
Z_i(\omega) = \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^n Z_{ij}(\omega)
$$

on the set H_i where the limit exists. Let $N_i(\omega)$ be the least j with $\omega_i = \omega_i$, and let $V(\omega)$ be the set of distinct values among $N_1(\omega)$, $N_2(\omega)$, Let H^g be the set of ω in H^d such that

(34)
$$
\omega \in H_i
$$
 and $Z_i(\omega) > 0$ for all *i*

and

$$
(35) \quad \sum_{j \in V(\omega)} Z_j(\omega) = 1.
$$

Condition (34) is that any value which appears among $\omega_1, \omega_2, \dots$ does so with positive limiting relative frequency. Condition (35) is that the sum of these relative frequencies is 1.

As is easily seen, H^g is Borel. If θ is discrete, then $\theta^{\infty}(H^g) = 1$ by the strong law. So, if Q is exchangeable and $Q(H^d)=1$, then $Q(H^g)=1$:

$$
Q(H^g) = \int \theta_\omega^\infty(H^g) Q(d\omega) = \int_{H^d} \theta_\omega^\infty(H^g) Q(d\omega).
$$

If $\omega \in H^g$, then $\theta_\omega {\{\omega_1, \omega_2, ...\}} = 1$: indeed $\frac{1}{n} \sum_{i=1}^n \delta_{\omega_i}$ converges weak * to θ_ω , and

converges in variation norm to the probability asigning mass $Z_i(\omega)$ to $j \in V(\omega)$. As a result, if $\omega \in S^{\infty} \cap H^{g}$ then $\theta_{\omega}(S) = 1$. This derives (21) from (19), with *H^g* for *B*. Theorem (23) completes the proof. \square

A final remark on $\lceil 1 \rceil$ may be in order. There is a subset S of $\lceil 0, 1 \rceil$ and an exchangeable probability in S^{∞} which is not presentable. This brings into question the nature of the extreme exchangeable probabilities in S^{∞} . However, let (S, \mathcal{F}) be an abstract measurable space, and \mathscr{E}_s the exchangeable σ -field in S^{∞} . The following result is known [3], but the proof may be new.

(36) **Proposition.** Let P be an exchangeable probability on $(S^{\infty}, \mathcal{F}^{\infty})$. The following *three conditions are equivalent:*

- '(i) *P is extreme,*
- (ii) *P* is $0-1$ on \mathcal{E}_s ,
- (iii) *P* is ϕ^{∞} for some probability ϕ on (S, \mathcal{F}) .

Condition (i) implies (ii). If $A \in \mathcal{E}_s$ and $0 < P(A) < 1$, then P cannot be extreme, because

 $P=P(A) P(\cdot | A)+P(B) P(\cdot | B)$

where B is the complement of A in S^{∞} .

Condition (ii) implies (iii). Let ξ_1, ξ_2, \ldots be the coordinate process on S^{∞} . Let f be a measurable function from (S, \mathcal{F}) to the Borel unit interval. As is well known,

(37)
$$
T_N = \frac{1}{N} \sum_{n=1}^{N} f(\xi_n) \to E\{f(\xi_m) | \mathscr{E}_S\}
$$
 a.s.

where the limit does not depend on m . This may be derived from the martingale covergence theorem, for

$$
T_N = E\{f(\xi_m) | T_N, T_{N+1}, \dots\}.
$$

Here is another, more interesting, proof of (37). The main idea is due to de Finetti. By a direct calculation which exploits the exchangeability, for $N < M < \infty$,

$$
E\left\{(T_N - T_M)^2\right\} = \left(\frac{1}{N} - \frac{1}{M}\right) \left\{\text{Var}\left[f(\xi_1)\right] - \text{Cov}\left[f(\xi_1), f(\xi_2)\right]\right\}.
$$

In particular, $\{T_N\}$ is fundamental in probability, and so converges in probability to some limit T. This limit T is clearly \mathscr{E}_{S} -measurable. Next,

(38)
$$
E\{[f(\xi_m) - T] \cdot [f(\xi_2) - T]^3\} = 0
$$
 for $m \neq 2$.

Indeed, the left side of (38) does not depend on m , by exchangeability. Averaging over $m = 1, 3, 4, \ldots, N$, the left side of (38) equals

$$
\frac{N}{N-1}E\left\{\left[T_N-T\right]\cdot\left[f(\xi_2)-T\right]^3\right\}-\frac{1}{N-1}E\left\{\left[f(\xi_2)-T\right]^4\right\}.
$$

This converges to 0, because $T_N \rightarrow T$ and $0 \le T_N \le 1$, proving (38). Likewise,

(39 a) $E\{\left[f(\xi_1)-T\right]\cdot \left[f(\xi_2)-T\right]\cdot \left[f(\xi_3)-T\right]\cdot \left[f(\xi_4)-T\right]\}=0$ (39b) $E\{\left[f(\xi_1)-T\right]\cdot \left[f(\xi_2)-T\right]\cdot \left[f(\xi_3)-T\right]^2\}=0$ $(39c)$ $E\left\{[f(\xi_1)-T]\cdot[f(\xi_2)-T]^3\right\}=0.$

Hence

$$
E[(T_N - T)^4] = \frac{1}{N^3} E[(f(\xi_1) - T)^4]
$$

+ $\binom{4}{2} \binom{N}{2} \frac{1}{N^4} E\{[f(\xi_1) - T]^2 \cdot [f(\xi_2) - T]^2\}$
= $0 \left(\frac{1}{N^2}\right)$

is summable in N. As a result, $T_N \rightarrow T$ almost surely.

To see that $T = E\{f(\xi_m) | \mathcal{E}_S\}$, let $A \in \mathcal{E}_S$. Then $\int f(\xi_m) dP$ does not depend on m; as such, this integral equals

 $\iint_A T_N dP \to \iint_A T dP.$

This completes the second proof of (37).

Now it is easy to derive (iii) from (ii). Indeed, let A_i and $A \in \mathscr{F}$ and B $= \{\xi_1 \in A_1, \ldots, \xi_k \in A_k\}.$ Then,

 $P(B \text{ and } \xi_{k+1} \in A) = P(B \text{ and } \xi_n \in A)$ for $n > k$ *1 k+N n=k+ 1* $\rightarrow \int P(\xi_{k+1} \in A \, | \, \mathscr{E}_S) \, dP$ *B* $= P(B) P(\xi_{k+1} \in A)$

because P is $0-1$ on \mathscr{E}_s .

Condition (iii) implies (i). Suppose Q is exchangeable and absolutely continuous with respect to ϕ^{∞} . Let A_1 and $A_2 \in \mathcal{F}$. Now

(40)
$$
\frac{1}{N} \sum_{n=1}^{N} 1_{A_1}(\xi_n) 1_{A_2}(\xi_{n+1}) \to \phi(A_1) \phi(A_2)
$$

 ϕ^{∞} -almost surely, by the strong law applied separately to the even n's and to the odd n's. Next, (40) holds Q-almost surely, because $Q \ll \phi^{\infty}$. Integrate (40) with respect to Q :

 $Q(\xi_1 \in A_1 \text{ and } \xi_2 \in A_2) = \phi(A_1) \phi(A_2).$

By similar argument,

 $Q(\xi_1 \in A_1 \text{ and } \xi_2 \in A_2 \text{ and } ... \text{ and } \xi_k \in A_k) = \phi(A_1) \phi(A_2) ... \phi(A_k),$

so $Q = \phi^{\infty}$. To sum up,

(41) If Q is exchangeable, and absolutely continuous with respect to ϕ^{∞} , then Q $=\phi^{\infty}$.

Now, to prove ϕ^{∞} is extreme, suppose $\phi^{\infty} = \frac{1}{2}Q + \frac{1}{2}Q'$, where Q and Q' are exchangeable. Clearly, Q and Q' are absolutely continuous with respect to ϕ^{∞} . Hence, $Q = Q' = \phi^{\infty}$ by (41). \Box

References

- 1. Dubins, L.E:, Freedman, D.A.: Exchangeable processes need not be mixtures of independent, identically distributed variables. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 1979
- 2. Dubins, L.E., Freedman, D.A.: Measurable sets of measures, Pac. J. Math. 14, 1211-1222 (1964)
- 3. Hewitt, E., Savage, L.J.: Symmetric measures on Cartesian products, Trans. Amer. Math. Soc., 80, 470-501 (1955)

Received June 20, 1979