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This pape r  is a sequel to [1]. Let  I = [0, 1] and N be the Borel a-field in I. Let  S c I, 
and ~ = S ~ .  Let  S* be the set of  probabi l i t ies  q5 on (S, Y) ,  equipped with the 
weak * a-field Y *  genera ted by {q~: ~b(F)>t} as F ranges over  Y and t over  I. 
Define I* likewise. Consider  the infinite p roduc t  space S ~ equipped with the 
p roduc t  a-field yoo.  Let  {~,} be coord ina te  process on S~176 

~ , ( x ) = x ,  where x=(x l ,  x 2 . . . .  )~S ~176 

If  ~b~S*, the power  probabi l i ty  ~b ~ on (S% Y ~ )  makes  the ~, independent ,  with 
c o m m o n  dis tr ibut ion qS. A probabi l i ty  P on (S ~, @~)  is said to be presentable if it is 
a mixture  of power  probabil i t ies:  for some probabi l i ty  # on (S*, ~ * ) ,  

(1) P =  ~ 4 ~#(d~) .  
S* 

The mixing measure  # is unique:  see (3.4) of  [1]. 
A pe rmuta t ion  • of  the posit ive integer is finite if ~ (n )=  n for all but  finitely 

m a n y  n. Each 7r induces a measurab le  m a p p i n g  ~ on S ~176 as follows: 

7'~(X 1, X 2 . . . .  ) = (Xrc (1 ) ,  Xrt(2), . . .  ). 

The exchangeable a-field •s in S ~ is the collection of A ~  ~ which are invar iant  
under  all ~. The exchangeable  a-field cx in I v is defined the same way. 

A probabi l i ty  P on S ~ is said to be exchangeable if P is invar iant  under  all ~. 
One version of De  Finett i 's  t heorem is that  for Borel sets S, all exchangeable  P 's  are 
presentable.  In [1], an example  was given of an S and an exchangeable  P on S ~ 
which is not  presentable.  It  was also no ted  [1, 4.3] that  if P admits  a regular  
condi t ional  probabi l i ty  given the exchangeable  a-field Es, then P is presentable.  
The  converse was left open. The  object  of  this note  is to show that  the converse is 
false. 
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(2) Theorem. Let (I, ~ )  be the Borel unit interval. There is a subset S of I, with the 
relative Borel a-field ~ = S c~ ~ ,  and a presentable probability P on (S ~, Y~176 which 
does not admit a regular conditional probability given the exchangeable ~-field Ns. 

The construction is a modification of the example presented in Sect. 2 of [1]. To 
review briefly, for t e I  let tj be the jth digit in the binary expansion of t, so 

t= ~ t J2 J, t~=O or 1. 
j = l  

For O < p = l ,  let Op be the probability on ( I ,~)  which makes the tfs 
independent, with common distribution 

Op{tj=l} =p, Ov{tj=O } =1 =p. 

Let (2 =~ 0 ;  dp, an exchangeable (and presentable) probability on (I ~ No~). Let 

n 

Z(t) = lim _1 ~ tj 
n~oo n j =  l 

on the subset L of I where this limit exists. Let G be the set of x e I  ~ satisfying the 
following conditions: 

(3) x j eL  and Z ( x j ) = Z ( x l )  for a l l j  

1 " 
(4) n j~l  5x j--' 0R(x~ 

where R(x) is the common value for Z(xj), and 6 t is point mass at t, and the 
convergence is weak-star. Clearly, GeN ~ and Q(G)= 1. The next result constructs 
the state space S for Theorem (2). 

(5) Proposition. There is a subset S of the unit interval I having the property that for 
each B e ~  ~ with Q(B)>O: 

(6) there is a sequence x in S~~ c~Bc~G such that 

Sc~ {t: t eL  and Z( t )=R(x)}  

is countable 

(7) there is a sequence y in S~ B n G such that 

S~{t :  t eL  and Z( t )=R(y)} .  

Proof. Let K be the set of ordinals of cardinality strictly less than c, the cardinality of 
the continuum. There is a 1 - 1 mapping c~ ~B~ of K onto the collection of B's in N~o 
with positive Q-measure. For each c~eK, choose points x~ and y~ in B ~ G  as 
follows. Fix fleK, and suppose by induction that x~ and y~ have been chosen for all 
~<fl. Let T~ be the set of relative frequencies observed so far, namely U {R(x~), 

e<f l  

R(y~)}. The cardinality of Tz is strictly less than c. In particular, ~p = {z: zeG and 
R(z)eT~} has inner Q-measure 0 by (2.6) of [1]. So B p n G - T z  is non-empty. 
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Choose  x e eB e c~ G - Ts Let  Te+ = T~ w R (xe) and Te'~ = {z: z e G and R (z) e T~ + } and 
choose y~cB e c~ G - T~-. This completes  the induction.  

N o w  define S as follows: x~eI ~ has coordinates  x=j, and  likewise for y=j; 

S = U [U {x~, y~]}] w {t: t eL  and Z(t) =R(y~)}. 
~ K  j 

Fix B e ~  ~ with Q(B)>0 .  Then B = B  e for some ticK. Clearly xe6Bec-~G by 
construct ion,  and xeeS ~176 because S contains  all the coordinates  of  x e. Likewise, 
yeeS~176 Proper ty  (6) follows because x~r and y=~T~ + for all c~, so each 
relative frequency is used at mos t  once during the construct ion.  To  be explicit, 

Sc~ {t: t eL  and Z(t )=R(xe)  } = ~) {xej }- 
j = l  

Proper ty  (7) is immediate .  [ ]  

Before going on, it m a y  be helpful to review the nota t ions  of induced and traced 
probabi l i t ies  f rom [-1, 2.10]. (As usual, outer  measure  is denoted by an asterisk.) 

(8) Review of Definitions. Let (X, Z) be an abs t rac t  measurab le  space, and X o a 
subset  of  X, not  necessarily an e lement  of  2. Let  Z o = X o ~ Z. Let  #o be a probabi l i ty  
on (X o, Zo). Then  #o induces a probabi l i ty  t /# o on (X, Z): 

(t l#o)(A)=#o(Xoc~A) for all AeZ .  

Moreover ,  (t/#o)* (Xo) = 1. Conversely,  suppose  # is a probabi l i ty  on (X, Z) and 
# * ( X o ) =  1. Then  # has a trace #o on (X o, 2o): 

#o(Xoc~A)=#(A)  for all A e Z .  

(9) Definition. As(6) or (7) implies, Q*(S ~) = 1. Let  P be the trace of  Q on S ~ in the 
sense given above.  This defines the probabi l i ty  P for Theo rem (2). 

(10) L e m m a .  Let (X, X, #) be an abstract probability triple. Let X o c X have l~* (Xo) 
= 1, and let #o be the trace of # on (Xo, X o c~ Z). Let f >= 0 be N-measurable on X. 
Then 

f d #  o = ~ fd# .  
Xo X 

Proof If  f is an indicator  function, this is true by definition, and extension is 
routine.  []  

(11) L e m m a .  The P defined in (9) is presentable. 

Proof Write co for a generic sequence in S ~176 or I ~~ Clearly, 

d (12) Q = S  OR(o)Q(o~). 
G 

Let G* be the set of  co eS~ c~ G with O*(o~)(S ) = 1. Then  Q* (G*)=  1; indeed, suppose  
B e ~  ~ and B c~ G* = ~b but  Q (B) > 0. By (7), there is a sequence y in S ~176 c~ B & G such 
that  



242 D.A.  F r e e d m a n  

S ~  {t: teL and Z(O=R(y)}. 

So 0~(y~(S)= 1, and  ysBc~ G*. This contradic t ion  proves  Q*(G*)= 1. 
Let  Q be the trace of  Q on G*. By (10), 

(13) 0 = 0 R(~o) 
G* 

Trace  this fo rmula  on to  S ~176 to get 

(14) P = ~ ~b ~ v(dO), 
S* 

where v is the Q-dis t r ibut ion of co ~ z  Ogr and z traces Og(~ onto  (S ,~) .  In more  
~0 ~176 ~* (S ~) = 1. detail, if coeG* then O*(~(S)= 1. By a theorem of  von Neumann ,  t R(o~J 

And  the trace of 0R~o~ ~ on S ~176 is just  (T 0R(o~) ~. Hence  

P = ~ (z OR(,o)) ~176 Q(dco). 
O* 

The rest of the a rgumen t  for (14) is omit ted,  being routine. [ ]  

(15) L e m m a .  gs=S~ngr .  

Proof. Clearly, S~ gi ~ gs. For  the converse, let Feg  s. Then  F = S~176 B for some 
B ~  ~ and 

F=~F=S~176 nfcB=S~ n E  

where 

7r 
[ ]  

Proof of Theorem (2). Suppose  by way of contradic t ion that  P(co, F) were a regular  
condi t ional  P -probab i l i ty  on (S ~, ~ o )  given gs. Let AEN.  It  will be shown that  

(16) There  is a P-nul l  set NA~g s with 

P(co, {~I~SnA})=OR(~(A) for CO~(S~ 

Indeed,  let E range over  gx, so S ~ n E ranges over  gs. Let ~ 1 (x) = x, for x ~ I  ~ Then 

P(co, { ~ S n A } ) P ( d c o ) = P ( S ~ n E  and ~ l S X n A )  
S a n e  

= Q ( E  and ~IEA) 

= S 1G(cot Q(dco) 
E 

= 1G(co) P(dco) 
S ~ n E  

by (10), complet ing the p roof  of  (16). 
Let  No be a countable  field generat ing N, and N = W { N A :  A~No}.  Then 

Ns gs ~ ~ ~ and P (N) = 0. In part icular ,  (S ~ n G) - N = S~176 n B ~ G, where B E~~176 
and Q (B) = 1. Fo r  tosS  ~ ~ B c~ G, the m o n o t o n e  class a rgument  proves  

(17) P{CO, {~IESnA})=OR(o~(A) for all A c ~ .  
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Now a contradiction emerges: (6) yields an coeS~ for which 

Sc~ {t: t eL  and Z(t)=R(co)} 

is only countable, so O*(o))(S) =0. Take the inf of(17) over all Borel supersets A of S, 
getting 1=0. [] 

The construction of this paper and l-l] may be put into a slightly more general 

framework, as follows. Let H be the set ofcoeI ~ for which _1 ~ 3o, converges weak- 
n i = l  

star; call the limit 0~. Let Q be an exchangeable probability on I ~, so 

(18) Q(H)=I  and Q=~O~Q(do)). 
H 

Let S be an arbitrary subset of I. Consider the following three conditions: 

(19) Q*(S~176 1 

(20) Q*(Hs)=I,  where H s is the set of coeH with 0"(S)=1. 

(21) Q*(S~)=I.  Furthermore, there is a B~N ~ with Q(B)=I  and S ~ c ~ B c H s  . 

The following two results will be proved. 

(22) Theorem. Condition (21) implies (20), and (20) implies (19). 

(23) Theorem. (a) Q can be traced onto an exchangeable probability P in S ~176 iff 
(19) holds. 

(b) The trace P is presentable iff (20) holds. 

(c) The trace P admits a regular conditional probability given the exchangeable 
a-field ~s if (21) holds. 

As this paper and [1] show, for non-standard S, condition (21) is genuinely 
stronger than (20), and (20) is genuinely stronger than (19). 

Proof of Theorem (22). First, (21) implies (20). Indeed, suppose (21) and let C~N ~ 
with C ~ Hs: it must be proved that Q(C) = 1. Choose B ~  ~ with Q(B) = 1 and S ~176 
~ B c H  s. Then S ~ c ~ B c C ,  so B - C  is disjoint from S ~ and Q ( B - C ) = O .  In 
particular, Q (C) > Q (B) = 1. Therefore, Q (C) = 1 and Q* (Hs) = 1, deriving (20) from 
(21). 

Next, (20) implies (19): even more, (20) implies 

(24) Q*(S~176 

To see this, fix coeH s and let ~b =0~. o. Then ~b*(S)= 1, and (~b~ * (S~176 1. Let 

He)={co: co~H and 0o=q~}. 

Now He)EN ~ and ~b ~176 (He)) = 1 and He) ~ Hs, so (0~176 * (S C~ ca Hs) = 1. Let C ~  ~176 with 
C~S~176 . Then 0~(C) = 1 for all co~H s, so 

~ C  Q{co :o )eHandO~(  ) = 1 } = 1  
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and 

Q( C) = S 02(C) Q(dco) = 1 
H 

by (18). This proves (24). [] 

Proof of Theorem (23). Claim (a). This is clear. 
Claim (b). The "if" part follows by the argument for (11). Conversely, suppose P 

= ~ 0 ~176 v(dO). Then Q = S (~/~b) ~ v(d4) where t/q5 is the probability induced on 
S* S* 

(I, ~)  by 0, in the sense of (8). So (t/q~)* (S) = 1. Let # = v r/- 1. Then 

(25) Q = ~ 0  ~#(d0) 
I* 

(26) #* {0: O*(S)= 1} = 1. 

Compare (18) and (25): by the uniqueness part of the Hewitt-Savage theorem [1, 
3.4], the Q-distribution of co ~ 0~o is #. Now condition (20) follows from (26), via 
Lemma (27) below: in the weak * ~r-fields, the set of probabilities on (I% N~) is a 
standard Borel space, as is the set I* of probabilities on (I, ~). [] 

Claim (c). Suppose (21) holds. Recall that P is the trace of Q on S~ Then P,(S ~ 
c~Hs) = 1: that is, O*(S) = 1 for P-almost all coeS ~. For the good co's 0o~ has a trace 
@~ on (S, ~) ,  and the requisite conditional probability is co ~q52. If there is a 
regular conditional probability, then (21) holds by the argument used to prove 
Theorem (2) above. In more detail, if P(co, F) is a regular conditional P-probability 
given ~s, there is a B e ~  ~ with Q(B)=I,  such that for coeS~c~Bc~H, 

P(co, {~ leSmA}  =0o(A) for all A e ~ ;  

clearly, O*(S)=I for such co. [] 

(27) Lemma. Let (X, Z) and (X', N') be measurable spaces. Let f be a measurable 
function from X to X'  and # a probability on N. Let v = # f  - ~. Let A be an arbitrary 
subset of X'. Then #* ( f - 1 A) < v* (A). I f  (X, N) and (X', U) are standard Borel spaces, 
then # * ( f -  ~ A) =v*(A). 

Proof The first assertion is easy. For the second, let BeN be disjoint from f -  1 A and 
have maximal #-measure among all such sets. Verify that f B  is disjoint from A, so 
f -  l f B  is larger than B but still disjoint from A. Now X and X' are standard Borel 
spaces, and f is a Borel function, so f B  and f ~fB are analytic sets. Thus 

v * ( A ) < = l - v ( f B ) < = l - # ( B ) = # * ( f - l A ) .  [] 

Some extensions of (27) may be of interest. 

(28) Lemma. Let (X, X) be an abstract measurable space, X o an arbitrary subset of 
X, and No=XoC~N. Let #o be a probability on (Xo,No), and tl#o the induced 
probability on (X, N), in the sense of (8). Let A be an arbitrary subset of X o. Then 
#* (A) = (~ #o)* (A). 

Proof Let B range over 22. Then B ~ A  i f f X o n B ~ A ,  and 
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I~(A)=in f{#o(XomB):  Xoc~B~  A} 

=inf{(~/~0) (S): B ~ A} = (t/#o)* (A). [] 

(29) Corollary. In (27), if (X, X) is a standard Borel space, and Z' is separable, then 
#* { f ~ A }  = (/~f- 1), (A). 

Proof Without loss of generality, suppose X' is a subset of I and Z' = X' c~ ~ ,  where 
(I, ~ )  is the Borel unit interval. Recall that v = / ~ f -  1 is a probability on (X', Z'). Let 
t I v be the probability induced on ~ by v, in the same sense of (8). Let f be that I- 
valued function on X which agrees with the X'-valued function f. Clearly, f i s  Borel, 
and its range is a subset of X'. Also , /~f -  1 =t/v. Now 

#* ( f~ A)  = # * ( f ~ A )  

= ( # f  1)*(A) by (27) 

= (~ v)* (A) 

=v*(A) by (28). [] 

(30) Corollary. Let (X, Z) be a standard Borel space. Let X'  be a set, and X' a 
separable a-field of subsets of X'. Consider the product space (X' x X,  Z' x Z). Let u 
project X'  x X onto X'. Let # be a probability on Y,' x Z, and v=#Tr 1. Let A be an 
arbitrary subset of X'. Then #* {rc~A} = v*(A). 

Proof As in (29): take X' to be a subset of / ,  and consider the probabilities induced 
by p and v on I x X  and I respectively. [] 

(31) Example. In (27) and (29), the assumption that the domain o f f  be standard is 
needed. Let Wbe a subset o f /hav ing  inner Lebesgue measure 0 and outer measure 
1. Equip Wwith the relative Borel a-field Y = Wc~ ~.  Let Z be the trace of Lebesgue 
measure on (W, Y), in the sense of (8). Let f embed W back into I, namely f ( x )  = x 
for x~W. Then 2 f  1 is Lebesgue measure. Let A = I - W .  Then 2*{f~A} =0  but 
( 2 f -  1)* (A) = 1. 

(32) Example. In (30), the assumption that the vertical edge X be standard is 
needed. Continuing (31), consider the product space (I • W, ~ • Y). Define the 
probability # on ~ • f f  as the ):distribution of the map x-~(x, x) from W into I 
• W: this installs ), on the diagonal D = {(x, y): x~ I  and y~ W and x = y}. Verify that 

D e ~  • ~- and #(D) = 1. Recall that A = I -  W, so (A • W)c~D =0 and #*(A • W) 
= 0. Now/~ ~-1 is Lebesgue measure: #* {u~A} = 0 but (# u -1 ) ,  (A)= 1. [] 

One more remark on the construction for Proposition (5): the probability (2 
there is a mixture of powers of continuous probabilities. Discrete probabilities will 
not do. To state this more sharply, let H d be the set of co,H, as defined before 
(18), where 0~ is discrete. Then H e is Boret, by (2.13) of [2]. 

(33) Proposition. Let Q be an exchangeable probability on (I ~, ~ ) ,  with Q(H d) = 1. 
Let S be a subset of I. I f  Q can be traced onto S ~, in the sense of (8), the trace admits a 
regular conditional probability given #s, the exchangeable a-field in S ~. 

Proof We assume condition (19), and derive (21). Let Zij(o) ) = 1 if co i =~oj, and 
Zzj((~) = 0 otherwise. Let 

Zi(co)= lim 1 ~ ZiJ(c~ 
n~o9 / ~ j - 1  
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on the set H i where the limit exists. Let Ni(co ) be the leastj with coj =col, and let V(co) 
be the set of distinct values among Nl(co), N2(co ) . . . . .  Let H g be the set of~o in H a such 
that 

(34) 

and 

(35) 

coEH i and Zi(co)>O for all i 

2 Zj(gO) = 1. 
jeV(o~) 

Condition (34) is that any value which appears among (.Ol, (3) 2 . . . .  does so with 
positive limiting relative frequency. Condition (35) is that the sum of these relative 
frequencies is 1. 

As is easily seen, H g is Borel. If 0 is discrete, then O~ g) = 1 by the strong law. 
So, if Q is exchangeable and Q(Hd)= 1, then Q(Hg)= 1: 

Q(H g) =~ 02 (Hg ) Q(dc~) = ~ 02 (Hg ) Q(dc~). 
H a 

If ~)~H g, then 0o~{~ol, O)z,...} = 1: indeed -1 ~ 5~, converges weak * to 0~, and 
n i = l  

converges in variation norm to the probability asigning mass Zi(~0 ) to j r  V(~o). As a 
result, if c ~ S ~  g then 0o)(S)=I. This derives (21) from (19), with H g for B. 
Theorem (23) completes the proof. [] 

A final remark on [1] may be in order. There is a subset S of [0, 1] and an 
exchangeable probability in S ~ which is not presentable. This brings into question 
the nature of the extreme exchangeable probabilities in S ~ However, let (S, i f )  be 
an abstract measurable space, and #s the exchangeable o--field in S ~ The following 
result is known [3], but the proof may be new. 

(36) Proposition. Let P be an exchangeable probability on (S ~ @ o). The following 
three conditions are equivalent: 

'(i) P is extreme, 

(ii) P is O-1  on #s, 

(iii) P is 4 ~ for some probability ~ on (S, if).  

Condition ( i )  implies (ii). If A c E  s and 0 < P ( A ) <  1, then P cannot be extreme, 
because 

P=P(A)  P ( ' I A ) + P ( B ) P ( ' I B )  

where B is the complement of A in S ~ 

Condition (ii) implies (iii). Let ~-a, 42,-.- be the coordinate process on S ~. Let f b e  a 
measurable function from (S, Y) to the Borel unit interval. As is well known, 

1 N 
(37) TN= ~ ~ f(~.,)--,E{f(r a.s. 

n = l  



(39 a) 

(39b) 

(39c) 

Hence 
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where the limit does not depend on m. This may be derived from the martingale 
covergence theorem, for 

rN=g {f(~m)lrN, TN+ ~ .... }. 

Here is another, more interesting, proof of (37). The main idea is due to de 
Finetti. By a direct calculation which exploits the exchangeability, for N < M < c~, 

( 1 1 )  
E{(TN- TM)a} = ~ - ~  {Var[ f (~l )] -Cov[ f (~l ) , f (~2)]} .  

In particular, { TN} is fundamental in probability, and so converges in probability to 
some limit T. This limit T is clearly gs-measurable. Next, 

(38) E{[ f (~m)-T-] . [ f (~2) -T]3}=O for m4:2. 

Indeed, the left side of (38) does not depend on m, by exchangeability. Averaging 
over m = 1, 3, 4, ..., N, the left side of (38) equals 

N 1 
N -  1 E{[TN - T].  [ f ( ~ 2 ) -  T] 3 } - ~ Z ~ - E  { [ f ( ~ 2 ) -  r]~} �9 

This converges to 0, because TN~ T and 0 <  TN< 1, proving (38). Likewise, 

E { [ f ( ~ ) -  T] .  [ f ( ~ 2 ) -  T] .  [ f ( ~ 3 ) -  r ] .  [ f ( ~ 4 ) -  r ]}  = 0  

E { E f ( ~ l ) -  T]-  [ f ( r  T] .  [ f ( r  T] 2} = 0  

E { [ / ( r  T3. [ f ( ~ 2 ) -  T] 3} =0. 

E [( T s - T) 4 ] = N1--y E [-(f(~ ~) - T) 4] 

1 
+ ( ~ ) ( N ) ~  E { [ f ( ~ I ) _ T ] 2  " [ f ( ~ 2 ) - T ]  2} 

is summable in N. As a result, T N~  T almost surely. 
To see that r = E {f(~m) !gs}, let A E# s. Then ~ f(~,,) dP does not depend on m; 

as such, this integral equals A 

I TN t rdP. 
A A 

This completes the second proof of (37). 
Now it is easy to derive (iii) from (ii). Indeed, 

= {~1~A1,..., ~keAk}. Then, 
let A i and A e ~  and B 
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P(B and ~k+lEA)=P( B and ~,EA) for n>k 
1 k + N  

n=k+ 1 

~ ~ P(~k+ I~A[Es) dP 
B 

=P(B) P(~k+ ~6A) 

because P is O-1 on ~s. 

Condition (iii) implies (i). Suppose Q is exchangeable and absolutely continuous 
with respect to 4)~. Let A 1 and AzEY. Now 

1 u 
(40) ~,_~1 1AI(~") 1A2(~'+ 1)-'4)(A0 4)(A2) 

4)~-almost surely, by the strong law applied separately to the even n's and to the 
odd n's. Next, (40) holds Q-almost surely, because Q~4)co. Integrate (40) with 
respect to Q: 

Q(~I~A1 and ~2~Az)=4)(A0 4)(Aa). 

By similar argument, 

Q(~I~A1 and ~2~A2 and ... and ~k~Ak)=4)(A1) 4)(A:)... O(Ak), 

SO Q = 4)~o. To sum up, 

(41) IfQ is exchangeable, and absolutely continuous with respect to 4)~, then Q 

Now, to prove 4) ~ is extreme, suppose 4)~176 =�89 +5Q,1 ' where Q and Q' are 
exchangeable. Clearly, Q and Q' are absolutely continuous with respect to 4)~. 
Hence, Q =Q'=4)~ by (41). [] 

D.A. Freedman 
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