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A Mixture of Independent Identically Distributed
Random Variables Need Not Admit a Regular Conditional
Probability Given the Exchangeable o-Field*

David A. Freedman
Department of Statistics, University of California, Berkeley CA 94720, USA

This paper is a sequel to [1]. Let I =[0, 1] and 4 be the Borel o-field in I. Let S< I,
and # =5n4. Let S* be the set of probabilities ¢ on (S, %), equipped with the
weak * g-field #* generated by {¢: ¢(F)>1t} as F ranges over & and t over I.
Define I* likewise. Consider the infinite product space S® equipped with the
product o-field # . Let {£,} be coordinate process on S%:

£(x)=x, where x=(x,X,,...)eS™.

If p&S*, the power probability ¢ on (S, # ) makes the &, independent, with
common distribution ¢. A probability P on (S®, & ) is said to be presentable if it is
a mixture of power probabilities: for some probability p on (S*, #*),

(1) P=SJ; ¢ u(de).

The mixing measure x is unique: see (3.4) of [1].
A permutation n of the positive integer is finite if n(n)=n for all but finitely
many n. Each 7 induces a measurable mapping 7 on S* as follows:

(X, Xq, ...)=(xn(1), Xp(2)s )

The exchangeable o-field & in S* is the collection of Ae #“ which are invariant
under all #. The exchangeable o-field &; in I™ is defined the same way.

A probability P on S* is said to be exchangeable if P is invariant under all 7.
One version of De Finetti’s theorem is that for Borel sets S, all exchangeable P’s are
presentable. In [1], an example was given of an S and an exchangeable P on §%
which is not presentable. It was also noted [1, 4.3] that if P admits a regular
conditional probability given the exchangeable o-field &, then P is presentable.
The converse was left open. The object of this note is to show that the converse is
false.
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(2) Theorem. Let (I, %) be the Borel unit interval. There is a subset S of I, with the
relative Borel g-field # =S n B, and a presentable probability P on (S, % ) which
does not admit a regular conditional probability given the exchangeable o-field &s.

The construction is a modification of the example presented in Sect. 2 of [1]. To
review briefly, for tel let ¢; be the j™ digit in the binary expansion of t, so

r=Y /2, ;=0 or L
j=1

For 0<p<1, let 0, be the probability on (I,%) which makes the ts
independent, with common distribution

0,{t;=1}=p, 0,{t;=0}=1=p.
Let Q=67 dp, an exchangeable (and presentable) probability on (I, #*). Let

Z(H)=1lim &

n-oo B j

L
1

M=

I

on the subset L of I where this limit exists. Let G be the set of xeI* satisfying the
following conditions:

(3) x;eL and Z(x)=Z(x,) forallj

I =

(4)

n
5xj_"9R(x)
j=1

where R(x) is the common value for Z(x;), and 4, is point mass at ¢, and the
convergence is weak-star. Clearly, Ge #® and Q(G)=1. The next result constructs
the state space S for Theorem (2).

(5) Proposition. There is a subset S of the unit interval I having the property that for
each Be#* with Q(B)>0:

(6) there is a sequence x in S*NBNG such that
S {t: teL and Z(t)=R(x)}
is countable

(7) there is a sequence y in S* BN G such that
So{t: teL and Z(t)=R(»)}.

Proof. Let K be the set of ordinals of cardinality strictly less than ¢, the cardinality of
the continuum. There is a 1 — 1 mapping « — B, of K onto the collection of B’s in #*
with positive Q-measure. For each «€K, choose points x, and y, in B,nG as
follows. Fix feK, and suppose by induction that x, and y, have been chosen for all
a<f. Let T, be the set of relative frequencies observed so far, namely U {R(x,),

- a<p
R(y,)}. The cardinality of T} is strictly less than c. In particular, T;={z: zeG and

R(z)eTy} has inner Q-measure 0 by (2.6) of [1]. So B;nG—1; is non-empty.
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Choose x;€B,nG — Tﬂ Let T," =T, R(x,) and T+ ={z: zeG and R(z)eT;"} and
choose y,eB;nG — T . This completes the 1nduct10n
Now defme S as follows x,eI® has coordinates x

S= U [U (X VayJw{t: teL and Z(t)=R(y,)}.
ek j

and likewise for y,;;

a]’

Fix Be#* with Q(B)>0. Then B=B, for some feK. Clearly xz€B,nG by
construction, and x;€S* because S contains all t1~1e coordingies of xz. Likewise,
Y,€8”N By G. Property (6) follows because x,¢ 1, and y,¢ T," for all o, so each
relative frequency is used at most once during the construction. To be explicit,

Sn{t: teL and Z(t)=R(xy)} = _Ql {xp;3-

Property (7) is immediate. []

Before going on, it may be helpful to review the notations of induced and traced
probabilities from [1, 2.10]. (As usual, outer measure is denoted by an asterisk.)

(8) Review of Definitions. Let (X, X) be an abstract measurable space, and X, a
subset of X, not necessarily an element of X. Let ¥, = X ,n 2. Let u, be a probability
on (X,,2,). Then y, induces a probability 5 u, on (X, X):

(npo)(A)=po(XonA) forall AeX.

Moreover, (1 1o)* (X ) =1. Conversely, suppose p is a probability on (X, X) and
p*(X,)=1. Then u has a trace u, on (X, Z,):

Uo(XonA)=p(4) for all AeX.

(9) Definition. As (6) or (7) implies, Q*(S®)=1. Let P be the trace of @ on S® in the
sense given above. This defines the probability P for Theorem (2).

(10) Lemma. Let (X, X, u) be an abstract probability triple. Let X, < X have u*(X )
=1, and let p, be the trace of pon(X,, XynZ). Let f =0 be X-measurable on X.
Then

§ fdpo=] fdp.

Xo X
Proof. If f is an indicator function, this is true by definition, and extension is
routine. []
(11) Lemma. The P defined in (9) is presentable.

Proof. Write o for a generic sequence in §* or I®. Clearly,

(12) Q9= ng(w)Q (dw).

Let G* be the set of weS* N G with 0% ,,(S)=1. Then Q*(G*)=1; indeed, suppose
Be#* and BnG*=¢ but Q(B)>0. By (7), there is a sequence y in S°n B G such
that
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S>{t: teL and Z(t)=R(y)}.

So 0%, (S)=1, and yeBn G*. This contradiction proves 0*(G*)=1.
Let  be the trace of @ on G*. By (10),

(13) 0= G§ 0% 0y O(dw).

Trace this formula onto S* to get

(14) P=] ¢~ v(d9),
g

where v is the O-distribution of w -1 Orw) and t traces Oy, onto (S,#).In more
detail, if weG* then 0% ,,(S)=1. By a theorem of von Neumann, (6%,,)* (§°)=1.
And the trace of 0%, on S is just (t Og,)®. Hence

pP= _[ (T Ori)” O(dw).
G*

The rest of the argument for (14) is omiﬁed, being routine. []
(15) Lemma. §5=8"n§,.

Proof. Clearly, S* n &, < &5. For the converse, let Fed. Then F =S®n B for some
Be#*®, and

F=fF=8S*"NnfiB=S*"nE
where

E=\J#Beé,. O

Proof of Theorem (2). Suppose by way of contradiction that P(w, F) were a regular
conditional P-probability on (S®, % *) given &5. Let Ae£. It will be shown that

(16) There is a P-null set N,eé with
P(w, {£,e5nA}) =0k, (4) for 0e(§®nG)—N,.
Indeed, let E range over &}, s0 S*° N E ranges over &5. Let {;(x)=x, for xeI®. Then

| Plw,{¢,eSNA})P(dw)=P(S”NE and £,eSN A)

S*nE

=Q(E and {,€4)
:g 1g(w) OR(m)(A) Qdw)

= j le(w) 9R(w)(A)P(dw)
S®nE
by (10), completing the proof of (16).
Let 4, be a countable field generating 4, and N=u{N,: Ae%,}. Then
Negyc = and P(N)=0. In particular, (S*nG)—N =8nBn G, where BeB*
and Q(B)=1. For weS®nBn G, the monotone class argument proves

(17) Plo, {£,eSnA})=0p,,(4) for all Ae.
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Now a contradiction emerges: (6) yields an weS*nBnG for which

Sn{t: teL and Z(t)=R(w)}
is only countable, so 8% ,,(S) =0. Take the inf of (17) over all Borel supersets 4 of S,
getting 1 =0. ]

The construction of this paper and [1] may be put into a slightly more general

n

framework, as follows. Let H be the set of weI® for which— > 8, converges weak-
ni1
star; call the limit 6. Let Q be an exchangeable probability on I, so

(18) Q(H)=1 and Q=62Q(dw).
H

Let S be an arbitrary subset of I. Consider the following three conditions:

(19) Q*(s%)=1

(20) Q*(Hy) =1, where Hy is the set of weH with 0%(S)=1.

(21) Q*(S*)=1. Furthermore, there is a Be#4* with Q(B)=1 and S*nB< Hjy.
The following two results will be proved.

(22) Theorem. Condition (21) implies (20), and (20) implies (19).

(23) Theorem. (a) Q can be traced onto an exchangeable probability P in S* iff
(19) holds.

(b) The trace P is presentable iff (20) holds.

(c) The trace P admits a regular conditional probability given the exchangeable
o-field & if (21) holds.

As this paper and [1] show, for non-standard S, condition (21) is genuinely
stronger than (20), and (20) is genuinely stronger than (19).

Proof of Theorem (22). First, (21) implies (20). Indeed, suppose (21) and let Ce £
with C> H: it must be proved that Q(C)=1. Choose Be#* with Q(B)=1and §%
NnBcHg. Then S*nBcC, so B—C is disjoint from S* and Q(B—C)=0. In
particular, @(C)= Q(B)=1. Therefore, Q(C)=1 and Q*(Hg) =1, deriving (20) from
(21).

Next, (20) implies (19): even more, (20) implies

(24) Q*(S*nHg=1.
To see this, fix weHg and let ¢=0,. Then ¢*(S)=1, and (¢=)* (S*)=1. Let
H,={w: weH and 0,=¢}.

Now H ,e#* and ¢*(H,)=1and H,= Hg,s0(¢*)* (SN Hg)=1.Let Ce#* with
C>8°nHg. Then 03 (C)=1 for all weHyg, so

Q{w: weH and 62(C)=1}=1
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and

Q(C)=£I@$(C)Q(dw)=1

by (18). This proves (24). [

Proof of Theorem (23). Claim (a). This is clear.
Claim (b). The “if” part follows by the argument for (11). Conversely, suppose P
= f ¢ v(d¢g). Then Q= j (1 )® v(d¢) where n ¢ is the probability induced on

(I, @) by ¢, in the sense of (8). So (n)* (S)=1. Let u=vy~'. Then
25 ¢= I 0 u(do)

(26) u*{0: 6%(S)=1} =1.

Compare (18) and (25): by the uniqueness part of the Hewitt-Savage theorem [1,
3.4], the O-distribution of w— 6, is u. Now condition (20) follows from (26), via
Lemma (27) below: in the weak * o-fields, the set of probabilities on (I°, #®) is a
standard Borel space, as is the set I* of probabilities on (I, #). [

Claim (c). Suppose (21) holds. Recall that P is the trace of Q on $*. Then P, (S®
N Hg)=1:that is, 6%(S)=1 for P-almost all weS*. For the good w’s 6, has a trace
¢, on (S, ), and the requisite conditional probability is w—¢Z. If there is a
regular conditional probability, then (21) holds by the argument used to prove
Theorem (2) above. In more detail, if P(w, F) is a regular conditional P-probability
given &y, there is a Be#® with Q(B)=1, such that for veS*nBnH,

P(w, {¢£,eSnA}=0,(4) forall Ae%;

clearly, 0%(S)=1 for such w. [J

(27) Lemma. Let (X, X) and (X', X'} be measurable spaces. Let f be a measurable
function from X to X' and jia probabilityon . Let v=uf ~'. Let A be an arbitrary
subset of X'. Then p*(f~* A)<v*(A). If (X, X) and (X', Z') are standard Borel spaces,
then p*(f 1 A)=v*(A).

Proof. The first assertion is easy. For the second, let Be X be disjoint from f ~' 4 and
have maximal y-measure among all such sets. Verify that f B is disjoint from A4, so

f~'fBislarger than B but still disjoint from A. Now X and X" are standard Borel
spaces, and f is a Borel function, so fB and f ' fB are analytic sets. Thus

VA ST—v(fB)S1—pB)=p*(f~'4). O
Some extensions of (27) may be of interest.

(28) Lemma. Let (X, X) be an abstract measurable space, X , an arbitrary subset of
X, and Z,=X,n2X. Let p, be a probability on (X,,2,), and 1y, the induced
probability on (X, X), in the sense of (8). Let A be an arbitrary subset of X . Then
HE(A)y = o)™ (A).

Proof. Let B range over . Then Bo A iff X ;n B> A, and
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i A)y=mf{u,(X,nB): X,nB> A4}
=inf{(n po) (B): B> A} =(nuo)*(4). O

(29) Corollary. In (27), if (X, 2) is a standard Borel space, and X’ is separable, then
p{fedl=(uf~)* ().

Proof. Without loss of generality, suppose X' is a subset of I and 2" =X'n 4, where
(I, %) is the Borel unit interval. Recall that v=pf~ ! is a probability on (X', X'). Let
1 v be the probability induced on Z by v, in the same sense of (8). Let f be that I-
valued function on X which agrees with the X'-valued function f. Clearly, f is Borel,
and its range is a subset of X". Also, uf ~ ! =#v. Now

i (fed)=p*(fed)
—(uf 7 (4) by (27)
= (nv)* (4)
— V¥ (4) by (28). O

(30) Corollary. Let (X, ) be a standard Borel space. Let X' be a set, and X' a
separable o-field of subsets of X'. Consider the product space (X' x X, 2" xX). Let
project X' x X onto X'. Let u be a probability on X' x X, and v=pn~". Let A be an
arbitrary subset of X'. Then p*{ne A} =v*(4).

Proof. As in (29): take X' to be a subset of I, and consider the probabilities induced
by pand v on I x X and I respectively. [

(31) Example. In (27) and (29), the assumption that the domain of f be standard is
needed. Let W be a subset of I having inner Lebesgue measure 0 and outer measure
1. Equip W with the relative Borel o-field & = W %. Let 2 be the trace of Lebesgue
measure on (W, #), in the sense of (8). Let f embed W back into I, namely f(x)=x
for xeW. Then Af ~! is Lebesgue measure. Let 4 =I—W. Then 2*{feA} =0 but
(Af = * (A)=1. :
(32) Example. In (30), the assumption that the vertical edge X be standard is
needed. Continuing (31), consider the product space (I x W, # x #). Define the
probability y on # x % as the Z-distribution of the map x —(x, x) from W into I
x W this installs A on the diagonal D = {(x, y): xeI and ye W and x = y}. Verify that
De# x % and u(D)=1. Recall that A=1—W, so (Ax W)nD =0 and u*(4A x W)
=0. Now un~" is Lebesgue measure: u*{neA}=0 but (un~)* (4)=1. [
One more remark on the construction for Proposition (5): the probability Q
there is a mixture of powers of continuous probabilities. Discrete probabilities will
not do. To state this more sharply, let H? be the set of weH, as defined before
(18), where 6, is discrete. Then H? is Borel, by (2.13) of [2].
(33) Proposition. Let Q be an exchangeable probability on (I°, %), with Q(HY) = 1.
Let S be asubset of I If Q can be traced onto S*, in the sense of (8), the trace admits a
regular conditional probability given &, the exchangeable o-field in S*.

Proof. We assume condition (19), and derive (21). Let Z,(w)=1 if w;=w;, and
Z,;/(w)=0 otherwise. Let

Z(w)=lim l i Z,; ()

n-oo M j
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on the set H; where the limit exists. Let N;(w) be the least j with w; = w;, and let V(w)
be the set of distinct values among N, (w), N, (w), ... . Let H® be the set of w in H? such
that

(34) weH, and Z,(w)>0 forall i

and

(35 Y Zjw)=L1

JjeViw)
Condition (34) is that any value which appears among w,, ,, ... does so with
positive limiting relative frequency. Condition (35) is that the sum of these relative
frequencies is 1.

As is easily seen, H® is Borel. If 0 is discrete, then §°(H®) =1 by the strong law.
So, if Q is exchangeable and Q(H%) =1, then Q(H®)=1:

QH®)=[ 03 (H*) Q(dw)=1§d 05 (H*) Q(dw).

. g
If weH?, then 0,{w,,®,,...}=1: indeed = ) &, converges weak * to 6, and
i=1

1

converges in variation norm to the probability asigning mass Z (w) to jeV(w). As a
result, if weS®NH? then 0,(S)=1. This derives (21) from (19), with H? for B.
Theorem (23) completes the proof. []

A final remark on [1] may be in order. There is a subset S of [0, 1] and an
exchangeable probability in S* which is not presentable. This brings into question
the nature of the extreme exchangeable probabilities in S®. However, let (S, %) be
an abstract measurable space, and & the exchangeable o-field in S®. The following
result is known [3], but the proof may be new.

(36) Proposition. Let P be an exchangeable probability on (S®, # ). The following
three conditions are equivalent:

(i) P is extreme,

(if) P is 0—1 on &,

(iii) P is ¢ for some probability ¢ on (S, F).
Condition (i) implies (ii). If Ae& and 0<P(A)<1, then P cannot be extreme,
because

P=P(A) P(-|A)+P(B) P(- |B)
where B is the complement of 4 in S%.

Condition (ii ) implies (iii ). Let £, £,, ... be the coordinate process on S°. Let fbe a
measurable function from (S, %) to the Borel unit interval. As is well known,

1 N
(7 TLy=y Y. JE)E{fE)IEsH  as
n=1
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where the limit does not depend on m. This may be derived from the martingale
covergence theorem, for

TN:E{f(gm)ITNa TN+ 1 }

Here is another, more interesting, proof of (37). The main idea is due to de
Finetti. By a direct calculation which exploits the exchangeability, for N <M < o0,

BTy =T = (=) VarL €] - CovIf(E, (€50

In particular, {7} is fundamental in probability, and so converges in probability to
some limit T. This limit T is clearly &g-measurable. Next,

(38) E{[f()—T1-[f(¢)~T1*} =0 for m=*2.
Indeed, the left side of (38) does not depend on m, by exchangeability. Averaging
over m=1,3,4,..., N, the left side of (38) equals

N s, 1 .
N B T €)= T1} 1 AL €)= T1*,

This converges to 0, because Ty,— T and 0= Ty <1, proving (38). Likewise,
(3%9a) E{[/)-T1-Lf(E)—T1 [f(&)-T1-[f(E)—T1}=0

(39b) E{[fE)—T1-[f()—-T1 [f(&3)—-T]*}=0

(39¢)  E{LS(£)-T1 [f(&)—-TT*}=0.

Hence

E[(Ty— T)"]“ s E[(f(&)—-1)*]

() (5) e BLIG - 17 [ -1y

1
-0 ()
is summable in N. As a result, Ty, — T almost surely.

To see that T=E{f(£,)| &5}, let Aeé. Then j f(&,) dP does not depend on m;
as such, this integral equals

[ T, dP— | TaP.
4 4
This completes the second proof of (37).

Now it is easy to derive (iil) from (ii). Indeed, let 4, and AeF and B
={¢ed,, ..., E.eA,}. Then,
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P(Band ¢, €dA)=P(B and £,€4) for n>k

1 k+N
=|% 2 Ll.&)dp
BNn=k+1

- [ P(&,, €A|85)dP
B
=P(B) P(§,. ,€4)
because P is 0—1 on &.

Condition (iii) implies (i). Suppose Q is exchangeable and absolutely continuous
with respect to ¢®. Let A, and 4,e%#. Now

N

) T Lale) Ll )= 94 94

n=

¢~-almost surely, by the strong law applied separately to the even n’s and to the
odd m’s. Next, (40) holds Q-almost surely, because Q < ¢®. Integrate (40) with
respect to Q:

Q(£,€4, and £ e4,)=d(A}) d(A4)).

By similar argument,

Q(&,eA, and ¢,€4, and ... and £,ed)=¢(A4,) ¢(4,)... ¢(4)),
so Q@ =¢>. To sum up,
(41) If Q is exchangeable, and absolutely continuous with respect to ¢, then Q
=~

Now, to prove ¢ is extreme, suppose ¢©=3Q++Q’, where Q and Q' are

exchangeable. Clearly, Q and Q' are absolutely continuous with respect to ¢=.
Hence, Q=0'=¢* by (41). [
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