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Summary. Linear viscoelastic properties of laboratory handsheets have been investigated from the 
two dimensional aspect. According to the linear theory of viscoelasticity, the behavior of trans- 
verse isotropic materials such as handsheets subjected to plane stresses is fully described by the 
two in-plane relaxation functions Gl l  (t) and G12(t ). In the present paper, some viscoelastic 
characteristic functions describing responses to in-plane deformation histories are derived from 
Gll (t) and Gl2(t) determined by strip biaxial stress relaxation testing. The predicted uniaxial 
relaxation function curve was in good agreement with the experimental one, and the viscoelastic 
Poisson's ratios in uniaxial stress relaxation and in uniaxial constant strain rate extension were 
decrease functions of time. Effects of beating on the areal dilatation and shear relaxation functions 
are discussed by introducing the classical concept of relaxation spectrum. 

Introduction 

Linear viscoelastic propert ies of  engineering materials such as polymer  sheets, fibers, 

woods and paper have been extensively studied by  many authors (Ferry 1960). For  

isotropic viscoelastic materials their propert ies are, as well known, fully characterized 

by two material  functions, that is, relaxation moduli  (or creep compliances) in shear 

and in dilatation (Christensen 1971); for incompressible isotropic materials such as 

robber,  the number of  the independent  material functions are reduced to one. For  

anisotropic materials, which are often found in many engineering materials,  complete 

representation of  their properties,  however, requires a large number of  material func- 

tions (Leitman 1973); the experimental  determinat ion of  all functions is highly diffi- 

cult and troublesome compared with the isotropic case; therefore results obtained for 

anisotropic materials have been so far discussed on the basis of  the one-dimensional 

theory of  linear viscoelasticity (Gross 1953). 

A knowledge of  two or three-dimensional viscoelastic properties will provide foun- 

dations for viscoelastic stress analyses of  many practically important  problems as well 

as for general evaluation of  material properties. 

In the previous paper (Uesaka 1979a), the constitutive relation of an orthotropic 

linear viscoelastic material for plane stresses was considered, and the in-plane relaxation 

functions of  some machine-made papers were determined from the strip biaxial stress 
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relaxation tests using a biaxial tensile tester. In the present paper the in-plane re- 

laxation functions are determined on laboratory handsheets (transverse isotropic 
materials), and some characteristic functions for in-plane deformation histories are 
predicted from the functions using the Laplace transform technique. The characteristic 

functions chosen are: the uniaxial relaxation function E(t)  (relaxation modulus), the 

Poisson's ratio in uniaxial stress relaxation pr (t), the Poisson's ratio in uniaxial con- 

stant strain-rate extension v u (t), the relaxation function in areal dilatation K(t)  and 
the relaxation function in shear G(t) .  The experimental value for E(t)  is compared 
with the prediction and the time dependences of  v r (t) and v u (t) are considered. 

Effects of  beating on K(t)  and G(t)  are also studied by introducing the concept of  
relaxation spectrum. 

Viscoelastic Characteristic Functions for In-Plane Deformation Histories 

The infinitesimal viscoelastic constitutive equation of an anisotropic body restricted to 

isothermal conditions is given in cartesian coordinates by (Rogers 1963) 

t dekl(r) d~- (1) 
~Tij(t) = f Gijkl(t--7-) d r  

- - o o  

where IJij and ekl are components of  stress tensor and infinitesimal strain tensor, re- 

spectively, and Gijkl are relaxation functions. For the transverse isotropic material 

which is at rest prior to t = 0 and is subjected to plane stresses (033 ( t )  = ij23 ( t )  = 

= a 13 (t) = 0), Eq. (1) becomes (Uesaka 1979 a) 1 

a l l ( t )  = G l l ,  dell  + G12 �9 de22 (2.a) 

022(0  = G12* dell  + Gll  * de22 (2.b) 
1 

o lz ( t )  = ~ (GI~ - Ga2) * d'Yl2 (2.C) 

where f * dg stands for the function defined by the Stieltjes integral 
t 

�9 dg = f( t )g(0+) + -j  f ( t -  r) dg(r) d r  (3) f 
d r  0 

and 712 is the engineering shear strain (= 2ex2). From the material symmetry,  the in- 

plane relaxation functions Gij (t) are associated with Gijkl(t) by 

G3311 (s) Gl133(s) 
C-Jll (s) = Gl111 (S) - -  

G3333(s) 

Ga31t(s) Glla3(s) (4) 

G3333(s) 

1 For an orthotropic body, the independent in-plane relaxation functions are Gll(t), G12(t), 
G22(t), G21(t) and G33(t), of which two (G12, G21) are equal if Gijkl = Gklij is assumed (Uesaka 
1979a) 
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where Gii(s) denotes the Laplace transform of Gii(t). The functions Gll(t ) and G 12(0 
in Eq. (2) are the independent in-plane relaxation functions for a transverse isotropic 
body, from which viscoelastic characteristic functions describing the behavior of 
materials for in-plane deformation histories can be derived as follows. 

In the case of stress relaxation in isotropic areal dilatation, such conditions are 
given by 

ell(t) = e22(t) = l e (t) = 1 ~U (t) ,  712(0 = 0 (5) 

where e (t) is the areal dilatation (= eu(t  ) + e22(t)) , ~ is the applied initial strain, and 
U(t) is the unit step function. The corresponding stresses are given, from Eq. (2), by 

1 
all(t) = 022(0 = ~ {Gll(t) + Gx2(t) } ~ = K(t)g , o12(0 = 0 (6) 

and we shall call the function K(t) (= { Gll (t) + Glz(t ) }/2) in Eq. (6) "relaxation 
function in areal dilatation". In a similar way as above, the relaxation function in 
shear G(t) is also defined as follows. 

G(t) = 1 {Gll(t ) _ G12(t) } (7) 

For uniaxial stress histories ( O 2 2 ( t )  = ot2(t) = 0), the Laplace transform of Eq. (2) 
gives 

Oll ----" SGIle l l  -I- sG12e22 (8.a) 

(~22 ----" sGI2e11 -I- SGl le22  = 0 (8.b) 

In the case of uniaxial stress relaxation (elx(t) = 811U(t)) , substituting the conditions to 
Eq. (8) and evaluating the inverse Laplace transforms yield 

Oll = E(t) ~11 (9) 

where E(t) is the uniaxial relaxation function which is related to Gll(t) and Gt2(t ) by 

g (s) = G11(s) {~12(s))  : 
~11(S)  (10)  

In this case, Eq. (8) gives the following expression for the Poisson's ratio vr(t) 

(= -e22(t)/gll). 

pr(s )  - vl----- 2~'s, (11) 
SGll(S) 

In the case of uniaxial extension at a constant strain rate (ell(t) = K tU(t), ~: : the rate of 
strain), the Poisson's ratio pu(t) (= -e22(t)/K t) can be expressed from Eq. (8) as 

vU(t) = ~L -1 I G ~  (s) (12) 
[ S2Gll(S) J 

where L -1 { } denotes the inverse Laplace transform. 
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In order to calculate E(t), vr(t) and vu(t) from the functions Gl l ( t  ) and G12(t), it is 
required to evaluate the Laplace transforms and the inversions in Eqs. (10), (11) and 
(12). To this end, Christensen et al. (1971) assumed Gij(t) can be expressed in the 

following form. 

Gij(t) = ~ij + ~X' G k exp t (13) 
IJ --Tk 

k = l  

where ~ij, Gk and rk are the constants which are to be determined experimentally. 

Equation (13) corresponds to the discrete spectral representation of the relaxation 

functions. The Laplace transform of Eq. (13) is given by 

~ij  + n 
G~j(s) = - -  S G~ 

S k =  1 S + 7"k-1 
(14) 

Substituting Eq. (14) into Eqs. (10), (11) and (12), we finally obtain the expression 
for E(t) ,  vr(t) and vu(t) in the form L -1 {f(s)/g(s)}, where f(s) and g(s) are poly- 
nomials in s. The inverse transform of f(s)/g(s) is easily accomplished through the 

use of  residue theory (Derrick 1972). 

Experimental 

Laboratory handsheets were prepared according to JIS P-8209 from spruce bleached 
kraft pulps beaten in a PFI mill. Basic properties of  handsheets are shown in Table 1. 

The in-plane relaxation functions G n (t) and G12(t) were determined from a strip 
biaxial stress relaxation test by use of  a biaxial tensile tester (Uesaka 1979b). The 

conditions of  this test are given by 

e l l ( t )  = ~11 U ( t ) ,  ~2z(t) = 712(0 = 0 (15) 

Table 1. Basic properties of samples 

Sample C.S.F. a Basis weight Apparent density 
ml g/m 2 g/m 3 

R-0 687 67.2 0.443 
R-3 574 63.8 0.580 
R-9 334 63.5 0.639 
R-20 87 58.9 0.672 

a Canadian Standard Freeness 
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Substituting Eq. (15) into Eq. (2), we can determine G n ( t  ) and G12(t) by the follow- 
ing equations: 

o i l ( t )  022(0 
G l l ( t )  - e l1  ' G 1 2 ( t )  - e l i  (16) 

where ~11 is the applied initial strain which was taken as about 1.7 x 10 -3  in this ex- 

periment. Measurements related to the prediction of E(t) ,  ur(t) and vu(t) were made 

at 21 ~ and 43% R.H. and those of  K(t)  and G(t)  at 23 ~ and 57 % R.H.. Plots are 

the mean values for three to five specimens. For a description of the testing apparatus 
and the procedures, the reader is referred to the earlier papers (Uesaka 1979a, b). 

Results and Discussion 

Uniaxial R elaxation Func t ion  E ( t ) and P oisson ' s Rat ios  ur(t) and uu(t) 

Figure 1 shows the in-plane relaxation fuctions GXl (t) and G12(t ) obtained from the 
strip biaxial stress relaxation data for the sample R-3 in Table 1. The solid lines re- 
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Table 2. Constants of relaxation functions G0(t ) 

k T k (s) Glkl (x 10 9 Pa) Glk2 (x 10 9 Pa) 

0 - 3.194 0.578 
1 2 0.174 0.031 
2 20 0.009 0.007 
3 200 0.490 0.094 
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present the curves for the functions approximated by Eq. (13) with Gi~ and rk given in 
Table 2. The curves fitting procedure employed is the systematic one proposed by 
Gradowczyk and Moavenzadeh (1969), which assures the positiveness of the constants 
G~ As can be seen in Fig. 1, the approximated curves are in fair agreement with 

1J" 

the experimental values over the range of times investigated. 
Figure 2 shows the results for the relaxation function E(t) and the Poisson's ratio 

ur(t) in uniaxial stress relaxation. The curve for E(t) predicted from G n (t) and G12(t ) 
(solid line) agrees very closely with the experimental values (circles) obtained from the 
ordinary uniaxial stress relaxation test. The predicted Poisson's ratio vr(t) shows a 
slight decrease with increasing time, but in practice it may be regarded as constant. 

Figure 3 shows the result for the Poisson's ratio vU(t) in uniaxial constant strain- 
rate extension. The ratio vU(t) slightly decreases with straining time. This indicates 
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that with increasing strain rate the ratio vU(t) slightly increases within a linear visco- 

elastic range in the uniaxial tensile test. 

In elasticity problems the Poisson's ratio is a constant depending only on the nature 
of the material, while in viscoelasticity problems it depends not only on the material 
but also on the stress or strain histories. Takemura (1976) reported that the Poisson's 
ratio for wood under constant load condition was a complex function of time, depend- 
ing on the magnitude and applied direction of load. In order to characterize the 
Poisson's ratio from a viscoelastic point of view, we shall now consider the material, as 
a reference system, having the in-plane relaxation functions in the following form 
(Fig. 4): 

O n (  t ) = ~a + Ga exp - ~  

(17) 

O120) = ~b + Gb exp --Tb 

where Ga and G b are the relaxation parts of G n (t) and G12(t ), respectively, and ~a 
and ~b are the equilibrium parts (Fig. 4). To simplify the problem we take 
T a = % = %. In this system the Poisson's ratio ur(t) can be calculated by substituting 
Eq. (17) into (11) and evaluating the inverse Laplace transform, as follows. 

vr(t) = p + q exp {-fi t} (18) 

where 

o o o 

~b GaGb--GaGb Ga 1 
P = K ' q - ~ a ( ~ a  +Ga) a n d f - ~ a + G  a r 0 (19) 

Since/3 > 0, vr(t) decreases or increases depending upon whether q > 0 or q < 0. When 
q = 0, then is, 

Ga Gb 

~a ~;b 
(20) 

In-plane relaxation functions Gll (t) and G12(t) given in Eq. (17) Fig. 4. 
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the ratio pr(t) becomes independent of time. The similar relation can be found for the 
ratio vU(t). Thus the time dependence of the Poisson's ratios in this system is largely 
affected by the ratios Ga/~ a and Gb/~ b. For a more general system such as real paper 
sheets, Poisson's ratios will depend also on the relaxation-time distribution in a complex 
manner. 

Relaxation Function in Areal Dilatation K ( t) and Relaxation Function in Shear G ( tJ 

Figures 5 and 6 show the relaxation functions in areal dilatation K(t) and in shear G(t) 
calculated from Gll (t) and Gn(t)  using Eqs. (6) and (7), where these are expressed 
as the specific form (that is, the relaxation function devided by density) for comparison 
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Fig. 7. Effect  of  beating on isochronous relaxation funct ions  

of samples with different degree of beating (Uesaka 1979 c). Both relaxation functions 
increase with the beating as expected. In Figure 7, the isochronous relaxation func- 
tion values at t = 1 and 10 3 sec. are plotted against a PFI mill revolution number as an 
indication of beating degree. The symbol aK(t ) means the ratio of K(t) for the beaten 
sample to that for the unbeaten one, and aGO ) is defined in a similar way. Over this 
beating range the values of c~G(t ) are higher than those of aK(t); this result is consistent 
with the elastic property data (Uesaka 1979c). In this figure it is interesting to note 
that both ratios at 103 show the higher values than those at 1 s. To clarifY further such 
time dependence of these ratios, we shall introduce the relaxation spectra for K(t) and 
G(t) as in the one-dimensional theory (Gross 1953). 
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Figures 8 and 9 show the relaxation spectra Hk(r ) and Hg(r) calculated from the 
Alfrey's first order approximation formula (Ferry 1960). As the beating proceeds, 
the spectral intensities markedly increase, especially at longer relaxation times. This 
implies that beating primarily affects the relaxation process with longer relaxation 
time. Comparisons between Hk(r ) and Hg(7") for the unbeaten sample (R-0) and the 
beaten sample (R-20) are presented in Figures 10 and 11. For the unbeaten specimen 
the relaxation function G(t) has lower spectral intensity than K(t), particularly at 
longer relaxation times, while for the beaten one both curves show a very similar shape 
over the time range investigated. This similarity means that the following approximate 
relation between Hk(r ) and Hg(~-) holds for the beaten sample: 

Hk(r) - ~7 Hg(r) (21) 

where log r~ is the longitudinal shifting factor of the curves in Figure 11. 

The results described above will characterize beating effects from a linear visco- 

elastic aspect and also provide the basis for further structual considerations. 
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