Ca²⁺-activated K⁺ channels contribute to the resting potential of vascular myocytes. Ca²⁺-sensitivity is increased by intracellular Mg²⁺-ions

U. Trieschmann and G. Isenberg

Department of Physiology, University of Cologne, D-5000 Köln 41, F.R.G.

Introduction

The Ca²⁺-activated maxi-K⁺ channel has been described for many smooth muscle cells; we show here that it can contribute to the resting membrane potential.

Methods

Myocytes were isolated from either coronary or pial vessels of the pig. They were superfused with a salt solution composed of (mM): NaCl 150, KCl 5.4, MgCl₂ 1.2, glucose 20, HEPES/NaOH 10 (pH 7.4, 24°C). For whole-cell recordings the patch electrodes were filled with (mM): KCl 150, MgCl₂ 2, EGTA 0.02, HEPES/KOH 10 (pH 7.4).

Results and discussion

In these "physiological conditions", the resting potential (V_m) spontaneously fluctuates between -55 and -70 mV (Fig. 1A). Under voltage-clamp conditions the whole-cell current (-55 mV) shows about 50 ms brief shots of outward current, the amplitudes ranging between 1 and 2 pA. In its ampitude and time course, the current resembles the current through single Ca²⁺-activated maxi-channels (i_{KCa}), as recorded from cell-free patches with buffered [Ca²⁺]_c (e.g. Magleby and Palotta 1983). The K⁺ channel blocker tetraethylammonium (TEA) reversibly inhibits currents and fluctuations of V_m.

Although suggested by Fig. 1, the hypothesis of i_{KCa} contributing to V_m has not yet been proven by single channel analysis. Usually i_{KCa} has been analysed at positive potentials and micromolar cystolic calcium concentrations $[Ca^{2+}]_c$ (both interventions increase the open probability, P_o), and extrapolation of data to the resting potential only suggests that P_o is "almost zero". Here we are trying to quantify these very low P_o values at negative V_m and submicromolar $[Ca^{2+}]_c$. In addition, we will show that P_o is significantly larger when cytosolic Mg²⁺-ions are present.

Single channel currents were recorded from inside out patches facing symmetrical 150 mM KCl solutions (10 mM Tris/HEPES, pH 7.4), where the Ca²⁺-activated maxi-K⁺ channel has a single channel conductance of 172 ± 6.8 pS (n=6). The solution facing the cytosolic site of

the membrane was complemented with 10 mM Ca-EGTA which was adjusted to the desired $[Ca^{2+}]_c$ -values. At V_m =-40 mV and 100 nM $[Ca^{2+}]_c$, N.P₀ was as low as 0.0007 ± 0.0002 (n=8). Elevation of $[Ca^{2+}]_c$ to 316 nM increased N.P₀ to 0.003 ± 0.01 (compare Fig. 2A with C).

Fig. 1. Effect of 4 mM TEA A on the resting membrane potential and B on the whole-cell current (holding potential: -55 mV). Fig. 2. Inside-out patches, V_h = -40 mV; each trace represents 7 superimposed records of 1000 ms; A, B at 100 nM $[Ca^{2+}]_c$: 0 / 2 mM MgCl₂, N.P₀= 0.0007 / 0.0017; C, D at 316 nM $[Ca^{2+}]_c$: 0 / 2 mM MgCl₂ N.P₀ = 0.003 / 0.006. Fig. 3. Influence of MgCl₂ on the Ca²⁺-dependence; squares: V_h = +40 mV, open squares / filled squares: 0 / 4 mM MgCl₂, Hill coefficient: 2.1 / 2.9; circles: V_h = -40mV, O: 0 mM MgCl₂, $\Phi_{1/2}$: 2 / 4 mM MgCl₂.

Addition of 2 mM MgCl₂ more than doubled N.Po (Fig.

2A to B and C to D), for 316 nM $[Ca^{2+}]_{c}$ and 4 mM MgCl₂ by a factor of 4.6 ± 1.7 (mean ± S.D., n=4, Fig 3). This increase was statistically significant (p=0.005). Addition of MgCl₂ marginally replaces calcium from Ca-EGTA. The slight increase in $[Ca^{2+}]_{c}$ is expected to contribute to the above magnesium-effect with a factor of 1.15 only. Thus, we postulate that Mg²⁺-ions have a direct effect on the K⁺ channel.

Magnesium ions have been suggested to increase the calcium-sensitivity of P_o (Golowasch et al. 1986). This possibility was analysed by plotting log P_o versus pCa. Since at -40 mV the channel opens only once every minute, data in Fig. 3 had to be recorded at +40 mV instead. P_o was normalized by maximal P_o recorded at 2 μ M [Ca²⁺]_c. With [Mg²⁺]_c = 4 the curve was steeper than the one without magnesium (Hill-coefficients increased from 2.1 ± 0.3 to 2.9 ± 0.3). In addition, the pCa of half maximal P_o was shifted from pCa 6.0. Thus, we can indeed call this magnesium effect a calcium-sensitizing effect.

Returning to the possible contribution of i_{KCa} to the resting potential, our results suggest a P_0 of 0.0001 for

 V_m =-40 mV and $[Ca^{2+}]_c$ =100 nM. The density of maxi-K⁺ channels was estimated to about 8/µm² or 16000 per cell, therefore about 2 channels should open simultaneously. This number may be smaller if V_m is -55 mV. At -55 mV and with a bath [K⁺] of 5.4 mM K⁺, i_{KCa} had an amplitude of 1.0 pA. This current generated on the cells' input resistance (3.4 ± 1.5 GΩ) a voltage drop of -5 mV. Our whole-cell recordings demonstrated similar values for the outward currents as well as for the fluctuations in V_m. We conclude, therefore, that the current through Ca²⁺-activated maxi-K⁺ channels does contribute to the resting potential of vascular and smooth muscle cells.

References

- Magleby KL, Palotta BS (1983) Calcium dependence of open and shut interval distributions from calcium-activated potassium channels in cultured rat muscle. J Physiol 344:585-604
- Golowasch J, Kirkwood A, Miller CH (1986) Allosteric effects of Mg²⁺ on the gating of Ca²⁺-activated K⁺-channels from mammalian skeletal muscle. J exp Biol 124:5-13