Oxygen Diffusivity in Tumor Tissue (DS-Carcinosarcoma) under Temperature Conditions within the Range of $20-40^{\circ}$ C

J. GROTE, R. SÜSSKIND, and P. VAUPEL

Physiologisches Institut, Abteilung für Angewandte Physiologie der Universität Mainz, Saarstrasse 21, D-6500 Mainz, Federal Republic of Germany

Summary. The O₂ diffusion constants D and K of tumor tissue (DS-Carcinosarcoma in the rat kidney) were determined at temperatures of 20, 30, 37, and 40° C. The following mean values were obtained for the conditions of 37° C: D = $1.75 \cdot 10^{-5}$ cm²/s and $K = 1.9 \cdot 10^{-5} \text{ mlO}_2/\text{cm} \cdot \text{min} \cdot \text{atm.}$ Within the range of $20-40^{\circ}$ C, temperature variations in tumor tissue cause changes in the O₂ diffusion coefficient D of 2.0 - 2.5 % °C and in the Krogh O₂ diffusion constant K of 0.5 - 1.5 % °C. The measured O₂ diffusion constants for tumor tissue correspond to values of normal tissue with similar water content. This indicates that the insufficient O₂ supply in DS-Carcinosarcoma is due not to unfavorable O2 diffusivity of the tumor tissue but rather to a decreased convective O₂ transport and to insufficient capillarization. An analysis of O₂ diffusion in DS-Carcinosarcoma tissue using the determined O₂ diffusion constants lead to the result that, under the conditions of arterial normoxia and normocapnia, critical O₂ supply conditions are to be expected when the intercapillary distance exceeds approximately 120 µm.

Key words: Tumor tissue $-O_2$ diffusion $-O_2$ diffusion coefficient D - Krogh's diffusion constant K - Critical O_2 supply.

INTRODUCTION

The solution of problems concerning tumor metabolism, tumor growth, the formation of tumor necrosis, and the radiotherapy of tumors [1,9,15,23,26,31 - 33,36 - 38] requires a thorough knowledge of O₂ supply in tumor tissue. Since direct measurements of tissue O₂ tension in tumors can normally be made only in animal experiments [3,4,38], the question concerning O₂ tension distribution in tumor tissue must, in most cases, be answered with the aid of mathematical analyses of O_2 diffusion [31, 32, 36–38]. An important prerequisite for such investigations is the knowledge of the O_2 diffusion constants in tumor tissue. Because these values were not known until now, earlier studies had to employ the appropriate constants for water or estimated values. The aim of this study was to directly determine the O_2 diffusion constant K of tumor tissue (DS-Carcinosarcoma) and their temperature dependence within the range of $20-40^{\circ}$ C. It was also designed to clarify the question whether the O_2 diffusivity in tumor tissue is, in fact, significantly lower than in normal tissues as to be expected from the results of Rieger [26].

MATERIAL AND METHODS

The O₂ diffusion constants D and K of tumor tissue (DS-Carcinosarcoma) were determined using a modified experimental device for investigating O2 diffusion in biological media described by Thews [11, 13, 35]. The principle of this method is the determination of O₂ diffusion through a tissue layer at known O₂ tension gradients. The experimental arrangement consists of three interconnected chambers. The first chamber (gas perfusion chamber) is an open system which can be perfused with various gas mixtures of known O₂ tension. This chamber borders a second chamber (diffusion chamber) in which the tissue to be investigated can be placed. The exact dimensions of the cylindrical chamber are: $\phi = 5 \text{ mm}, \text{ d} = 0.5 \text{ mm}.$ The third chamber (measurement chamber) is a glass container whose flat sides can be placed perpendicular to the light beam of a photometer (Eppendorf photometer, 436 nm). This measurement chamber is filled with a diluted hemoglobin solution which serves as indicator for the O2 concentration and tension present therein. A stirring system, driven from outside the chamber, permits a continuous mixing of the indicator solution. The 3 chambers are separated from one another by a gaspermeable synthetic membrane (Teflon, 12 μm). Temperatures inside the chambers can be maintained with an exactness of \pm 0.1° C.

After filling the diffusion chamber with material to be investigated, the gas perfusion chamber and the measurement chamber are perfused with N2 and N2-equilibrated hemoglobin solution $(S_{O_2} = 0\%)$, respectively. As soon as the entire experimental system including the test material is free of O₂-as evidenced by the absorption of the indicator solution - the measurement chamber is closed. Under these conditions, there is diffusion only through the test material which is between the gas perfusion chamber and the measurement chamber. The O2 diffusion within the experimental system is then effected by a rapid change of O₂ tension in the gas perfusion chamber from 0 to approximately 760 mm Hg and is measured by the change in the absorption of the indicator solution. The appropriate values for the O_2 concentration and the O_2 tension in the measurement chamber can be obtained from the registered absorption values of the indicator. The changes of both parameters during the diffusion experiments serve as the basis for determining the O₂ diffusion constants D and K of the tumor tissue under investigation [35].

In order to determine the O_2 concentration and the O_2 tension in the measurement chamber from the directly measured indicator solution absorption, the hemoglobin concentration and the O_2 dissociation curve of the indicator must be known. The indicator solution was produced by diluting fresh human blood with aqua dest. and phosphate buffer. The hemoglobin content of the blood was determined photometrically by means of the cyanhemiglobin method. The dilution was 1:1000 (0.1 ml blood, 0.5 ml phosphate buffer, 94.9 ml aqua bidest.). The pH of the indicator solution could be adjusted to 8.0 at 20° C by means of the Na₂HPO₄ – KH₂PO₄ buffer; the mean hemoglobin content was $16.3 \cdot 10^{-3}$ g per 100 ml. The O₂ dissociation curve of the hemoglobin solution is known for the conditions of 20, 30, and 37° C [12]. The course of the O₂ dissociation curve at 40° C was determined with the help of the temperature coefficient:

$$\Delta \log P_{O_2} = 0.024 \cdot \Delta T \tag{1}$$

calculated from the measurements at hand. This practice seemed appropriate since the O_2 dissociation curves of the indicator, as determined for various temperature conditions by means of the above equation, correspond closely with the directly measured curves. The temperature coefficient for the course of the O_2 dissociation curve of the highly diluted hemoglobin solution corresponds to that of normal blood.

The presence of hemoglobin in the test material and the O_2 consumption of the cells should lead to an apparent increase of "tissue O_2 solubility" under these conditions and thus to an error in the measurement. In order to eliminate both of these factors, the tumor tissue was cleared of blood by means of a perfusion with Haemaccel[®] and tissue respiration was stopped by adding KCN to the perfusion solution. As a result of lacuna-like and cystiform blood vessels present in the tumors, it cannot be fully excluded that minute quantities of blood remained in some of the investigated tissue slices. The determination of the O_2 diffusion constant K would not be influenced. On the other hand the determination of the O_2 diffusion coefficient D must, under these conditions, lead to values lower than the true constant.

The influence of the O_2 diffusion resistance of the two Teflon membranes on the results could be eliminated through comparative measurements made after filling the diffusion chamber with water, whose exact O_2 diffusion constants are known [11,17].

The investigations were conducted on DS-Carcinosarcoma from rat kidney. The tumor tissue was produced by injecting DS-Carcinosarcoma ascites cells into normal kidney parenchyma [16, 27, 38]. In the course of 8-10 days, the infiltrating and destructively growing tumor completely replaced the normal kidney parenchyma. The tissue-isolated growing tumors were removed on the 9-11th day after implantation before tissue necrosis had set in. Immediately prior to removal, the tumor circulation system was perfused with Haemaccel® during anaesthesia (Nembutal^a, 30 mg/ kg b.w., i.p.). Macroscopically visible tissue necrosis was not found in any of the kidney tumors investigated. The tumor tissue was divided into various test portions and passed into liquid nitrogen in preparation for the O₂ diffusion measurements. The frozen tissue slices (d = 0.5 mm) could then be precisely positioned in the diffusion chamber. Tissue not immediately examined was stored in small closed airtight glass containers at -30 to -40° C. Tissue water content was determined by freeze drying.

RESULTS

A total of 73 investigations of O_2 diffusion in DS-Carcinosarcoma tissue were conducted at temperatures of 20, 30, 37, and 40° C. The mean weight of the tumors studied was 5.9 g and the mean water content was 82.1 g% (g/100 g wet weight). The mean values for the O_2 diffusion coefficient *D* and for the Krogh's O_2 diffusion constant K of the tumor tissue are summarized in Table 1. The values for the O_2 solubility coefficient α were calculated from the results using the following equation:

$$\alpha = \frac{K}{D} \tag{2}$$

The temperature dependence of the O_2 diffusion constants of DS-Carcinosarcoma tissue is presented in Figures 1 and 2. The directly determined mean

Table 1. O_2 diffusion constants D and K and O_2 solubility coefficients α for tumor tissue (DS-Carcinosarcoma) at temperatures of 20, 30, 37 and 40° C. Values presented are mean values \pm S.E.M.

Temp. (° C)	n	O ₂ diffusion coefficient D $(10^{-5} \text{ cm}^2 \cdot \text{s}^{-1})$	n	Krogh's diffusion constant K		O_2 solubility coefficient α	
				$(10^{-5} \text{ ml } O_2 \cdot \text{cm}^{-1} \cdot \text{min}^{-1} \cdot \text{atm}^{-1})$	$(10^{-10} \mu mol \cdot cm^{-1} \cdot s^{-1} \cdot Pa^{-1})$	$\frac{(10^{-2} \text{ ml } O_2}{\cdot \text{ ml}^{-1} \cdot \text{ atm}^{-1}})$	$(10^{-9} \ \mu mol \ \cdot 1^{-1} \cdot Pa^{-1})$
20	10	1.25 ± 0.05	19	1.70 ± 0.07	1.25	2.24	9.87
30	21	1.55 ± 0.06	18	1.75 ± 0.05	1.29	1.93	8.50
37	22	1.75 ± 0.04	20	$1.90~\pm~0.08$	1.40	1.79	7.89
40	20	1.90 ± 0.07	16	2.00 ± 0.10	1.47	1.75	7.71

Fig. 1. Temperature dependence of O_2 diffusion coefficient *D* of tumor tissue (DS-Carcinosarcoma) within the range $20-40^{\circ}$ C. Abscissa: temperature; ordinate: O_2 diffusion coefficient *D*

Fig. 2. Temperature dependence of Krogh's diffusion constant K of tumor tissue (DS-Carcinosarcoma) within the range $20-40^{\circ}$ C. Abscissa: temperature; ordinate: Krogh's O₂ diffusion constant K

values, and not the rounded off values, serve as the basis for the graphical demonstration of the influence of temperature on the O₂ diffusion constants as well as for the calculations of the O₂ solubility coefficient α . In the temperature range of 20-40°C the diffusion coefficient *D* increases 2.0-2.5% per 1°C increase. The corresponding changes in Krogh's diffusion constant K are 0.5-1.5% per 1°C change. For the temperature coefficient Q_{10} , these constants have values of 1.2-1.25 and 1.05-1.2, respectively.

DISCUSSION

Results of direct measurements of the O_2 diffusion constants D and K for tumor tissue had not be available until the present study. Rieger [26], using data from Vaupel et al. [38, 39], calculated very low values for the O_2 diffusion coefficient D of DS-Carcinosarcoma tissue, namely $0.8 \cdot 10^{-6} - 1.6 \cdot 10^{-6} \text{ cm}^2/\text{s}$. These values measure approximately one tenth of the values directly determined here. The investigations of Thomlinson and Gray [37] and Tannock [31,32] on the O_2 diffusion in tumor tissue employed for the O_2 diffusion coefficient D either the value for water or a value lying between that of water and muscle tissue. Both of these constants are larger than the O_2 diffusion coefficient D measured at 37° C.

The O_2 diffusion constants of DS-Carcinosarcoma tissue as determined at temperatures of 37 and 40° C are somewhat lower than the values which we presented in a preliminary communication [14]. The reason for this lies in the fact that the number of investigations has been increased and that the results of measurements conducted on nonhomogeneous tissue slices possibly containing necrosis were eliminated. Additionally, the evaluation of the constants was improved by considering the influence of the perfusion solution in the tumor vessels on the tissue O_2 diffusion.

The determined values for the O_2 diffusion coefficient D and for the Krogh O₂ diffusion constant K of tumor tissue at 37°C fit well into the series of comparable data obtained for different tissues, for blood and for water (Table 2). When water content is similar, there is no essential difference between the O_2 diffusion constants of normal tissues on the one hand and the corresponding constants of DS-Carcinosarcoma tissue on the other hand. The demonstrated insufficiency of the O₂ supply of DS-Carcinosarcoma of the rat kidney [38] cannot thus be attributed to extremely low O₂ diffusion constants of tumor tissue. It is rather the result of both insufficient convective O₂ transport to the tumor cells and an enlargement of the area to be supplied by the individual capillaries during tumor growth [32, 38].

When one takes into account the water content of the tumors studied, a mean O_2 diffusion coefficient D of approximately $1.5 \cdot 10^{-5}$ cm²/s at 37° C can be expected according to Vaupel [39]. The results of the direct measurements are larger but lie within the range of deviation of this data. The close correspondence of the O_2 diffusion coefficient D determined in tumor tissue with the appropriate constants of normal tissues with comparable water content is an important indication that the tissue slices under investigation were completely, or almost completely cleared of blood. Were blood present in the tissue probes, the measurements would have led to considerably lower values.

The temperature dependence of the O_2 diffusion constants of DS-Carcinosarcoma tissue corresponds closely to findings for water, for muscle tissue and for

Table 2. O₂ diffusion coefficient *D*, Krogh's O₂ diffusion constant K and water content for different tissues, blood and water at 37° C. To convert the values not determined at 37° C, the following temperature coefficients were used: $2.5\% \cdot (^{\circ} C)^{-1}$ for *D* and $1.0\% \cdot (^{\circ} C)^{-1}$ for K (11, 21)

Material	O ₂ dif- fusion coef- ficient $D \cdot 10^{5}$ (cm ² /s)		Water content (g %)	Refe- rences
Water	-3.2		100	[17]
Water	3.3	4.7	100	[11]
Bovine serum	1.86	_	92-94 ^b	[42]
Bovine serum	2.4	_	92-94 ^b	[20]
Bovine serum	2.54	_	92-94 ^b	[7]
Human plasma	1.82	_	94.5ª	[29]
Human plasma	2.18	_	94.5ª	[8]
Human blood	(1.24)	_	80ª	[29]
Human blood	(1.62)	_	80ª	[8]
Human erythrocyte	(0.8)	1.3	68ª	[13]
Rat lung	2.3	2.5	77-85 ^b	[11]
Cat cerebral cortex	(1.54)	1.29	80 ^ъ	[6]
Mouse- and rat				
cerebrum (gray matter)	1.7	2.3	80 ^b	[35]
Rabbit cerebrum				
(gray matter)	1.9	_	80 ^b	[10]
Rat heart muscle	1.5	1.9	76-82 ^b	[13]
Frog skeletal muscle	-	1.6	79-82 ^b	[21]
Rat skeletal muscle	-	2.23	76 ^b	[18]
Rat diaphragm	_	1.3	76 ^b	[41]
Guinea pig liver	1.0 - 1.2	-	$70 - 75^{b}$	[10]
Rabbit kidney cortex	1.0		74—80 ^ъ	[10]
Frog connective tissue	_	1.36	—	[21]
Human aorta (intima)	0.85			[19]
Human aorta (media)	1.0			[19]
DS-Carcinosarcoma in				
rat kidney	1.75	1.9	82	This study

Values not directly measured are given in parenthesis. Values for the water content are taken from $(5^{a}, 28^{b})$

pulmonary tissue [7,11,17,21]. One obtains a constant value for D_0 of $1.2 \cdot 10^{-2}$ cm²/s by inserting the determined values for D into the Arrhenius equation for the temperature dependence of the diffusion coefficients of nonelectrolytes:

$$D = D_0 \cdot \mathrm{e}^{-E/RT} \tag{3}$$

Herein is: D diffusion coefficient (cm²/s), D_0 constant independent of temperature (cm²/s), E activating energy (kcal/mol), R gas constant (erg/grd mol), T absolute temperature (K).

Using a logarithmic coordinate system, the influence of temperature on the O_2 diffusion coefficient D for tumor tissue must be represented as a straight line (Fig. 3). The activating energy E for the O_2 diffusion in DS-Carcinosarcoma tissue was found

Fig. 3. Effect of temperature on O_2 diffusion coefficient D of tumor tissue (DS-Carcinosarcoma) in log coordinates. Abscissa: reciprocal absolute temperature; ordinate: O_2 diffusion coefficient D

Fig. 4. Radial O_2 tension profiles at the venous end of the Krogh tissue cylinder in DS-Carcinosarcoma for the conditions of a cylinder radius of 25, 40, 60, and 70 µm. Abscissa: distance r from venous end of tumor capillary; ordinate: O_2 tension

to be 4.0 kcal/mol according to the equation:

$$E = 4.56 \cdot 10^{-3} \cdot T_1 \cdot T_2 / (T_1 - T_2)$$

$$\cdot \log (k_1 / k_2) \text{ (kcal/mol)}$$
(4)

 k_1 and k_2 represent the values for the O₂-diffusion coefficient *D* determined at the temperatures T_1 and T_2 .

The corresponding value for the O_2 diffusion in water is 3.85 kcal/mol [11].

Employing the determined O_2 diffusion constant K of tumor tissue together with the O_2 consumption rate of 1.85 ml $O_2/100$ g · min as determined on DS-Carcinosarcoma ascites cells under unlimited O_2 supply conditions [2], an O_2 diffusion analysis at 37° C led to O_2 tension profiles at the venous end of the capillary supply area as presented in Figure 4. As a

model for the supply area of a single capillary, the Krogh tissue cylinder [22, 34] was employed. For the calculations, intercapillary distances as measured in comparable tumors of DS-Carcinosarcoma with weight of approximately 6 g [38, 40] were used. Since the intercapillary distances of these tumors varied between approximately 40 and 130 µm, the calculations were carried out for the conditions of tissue cylinders with radii of 25, 40, 60, and 70 µm. A value of 40 mm Hg for the O₂ tension at the wall of the venous end of the tumor capillary was assumed. The mean O₂ tension of the venous tumor blood (DS-Carcinosarcoma in the rat kidney) under arterial normoxia and normocapnia is 41.5 mm Hg [38]. Axial O₂ diffusion in the tissue cylinder parallel to the capillary was not considered since the results presented here would not be essentially modified [34]. The convective O_2 flux in the extracellular space [24] was likewise not taken into account as the investigations of Swabb et al. [30] have shown that O_2 diffusion transport far outweighs conductive O2 transport inside tumor tissue.

As seen in Figure 4, critical O₂ supply conditions in the tissue of DS-Carcinosarcoma are to be expected when the distance between neighbouring capillaries exceeds $120-130 \,\mu\text{m}$ and the radius of the tissue cylinder correspondingly increases above 65-70 µm. Although the Krogh tissue cylinder model only approximately describes the actual conditions in the tumor tissue, this result corresponds closely with the fact that necrosis could not be detected in tumors (DS-Carcinosarcoma) where the intercapillary distances did not exceed 130 µm. In older tumors presenting necrosis, the largest intercapillary distances attained values far in excess of this critical O2 diffusion distance [38, 40]. The determined value for the tissue cylinder radius by which critical O₂ supply conditions are to be expected is comparable to results of Tannock [32] and Vaupel [38]. The calculated O₂ tensions correspond closely with values directly measured in DS-Carcinosarcoma tissue [38]. The results of the O₂ diffusion analysis serve, therefore, as additional evidence that the determined O₂ diffusion constants do in fact accurately reflect the O₂ diffusivity of DS-Carcinosarcoma tissue.

REFERENCES

- 1. Aisenberg, A. C.: The glycolysis and respiration of tumors. New York-London: Academic Press (1961)
- 2. Bässler, K. H., Vaupel, P.: Personal communication
- Cater, D. B.: Oxygen tension in neoplastic tissues. Tumori 50, 435-444 (1964)
- Cater, D. B., Silver, I. A.: Quantitative measurements of oxygen in normal tissues and in the tumors of patients before and after radiotherapy. Acta Radiol. (Stockh.) 53, 233-256 (1960)
- Diem, K., Leutner, C.: Wissenschaftliche Tabellen Documenta Geigy, 7. Aufl. Stuttgart: Thieme 1975

- Ganfield, R. A., Nair, P., Whalten, W. J.: Mass transfer, storage, and utilization of O₂ in cat cerebral cortex. Am. J. Physiol. 219, 814-821 (1970)
- 7. Gertz, K. H., Loeschcke, H. H.: Bestimmung der Diffusions-Koeffizienten von H₂, O₂, N₂ und He in Wasser und Blutserum bei konstant gehaltener Konvektion. Z. Naturforsch. 9b, 1-9 (1954)
- Goldstick, T. K., Ciuryla, V. T., Zuckerman, L.: Diffusion of oxygen in plasma and blood. In: Oxygen transport to tissue-II (J. Grote, D. Reneau and G. Thews, eds.), Adv. exp. Med. Biol., vol. 75, pp. 183-190. New York-London: Plenum Press 1976
- Gonsalvez, M., Weinhouse, S.: Control mechanisms of oxygen and glucose utilization in tumors. In: Oxygen transport to tissue-II (J. Grote, D. Reneau and G. Thews, eds.), Adv. exp. Med. Biol., vol. 75, pp. 587-596. New York-London: Plenum Press 1976
- Greven, K.: Der O₂-Diffusionskoeffizient von Leber, Nierenrinde und Hirnrinde unter verschiedenen Bedingungen. Pflügers Arch. ges. Physiol. 271, 14-22 (1960)
- Grote, J.: Die Sauerstoffdiffusionskonstanten im Lungengewebe und Wasser und ihre Temperaturabhängigkeit. Pflügers Arch. ges. Physiol. 295, 245-254 (1967)
- Grote, J.: Die Bestimmung der Sauerstoffbindungskurve in hochverdünnten Hämoglobinlösungen. Pflügers Arch. ges. Physiol. 296, 202-211 (1967)
- Grote, J., Thews, G.: Die Bedingungen f
 ür die Sauerstoffversorgung des Herzmuskelgewebes. Pfl
 ügers Arch. ges. Physiol. 276, 142-165 (1962)
- Grote, J., Süsskind, R., Vaupel, P.: The oxygen diffusion coefficients of tumor tissue (DS-Carcinosaroma) at 37°C and 40°C. Pflügers Arch. 347, R41 (1974)
- Gullino, P. M.: In vivo utilization of oxygen and glucose by neoplastic tissue. In: Oxygen transport to tissue-II (J. Grote, D. Reneau and G. Thews, eds.), Adv. exp. Med. Biol., vol. 75, pp. 521-536. New York-London: Plenum Press 1976
- Gullino, P. M., Grantham, F. H.: Studies on the exchange of fluids between host and tumor. I. A method for growing "tissueisolated" tumors in laboratory animals. J. Nat. Cancer Inst. 27, 679-693 (1961)
- Himmelblau, D. M.: Diffusion of dissolved gases in liquids. Chem. Rev. 64, 527-550 (1964)
- Kawashiro, T., Nüsse, W., Scheid, P.: Determination of diffusivity of oxygen and carbon dioxide in respiring tissue: Results in rat skeletal muscle. Pflügers Arch. 359, 231-251 (1975)
- Kirk, J. E., Laursen, T. J. S.: Diffusion coefficients of various solutes for human aortic tissue. With special reference to variation in tissue permeability with age. J. Gerontol. 10, 288-302 (1955)
- Kreuzer, F.: Über die Diffusion von Sauerstoff in Serumeiweißlösungen verschiedener Konzentration. Helv. Physiol. Pharmacol. Acta 8, 505-516 (1950)
- Krogh, A.: The rate of diffusion of gases through animal tissue with some remarks on the coefficient of invasion. J. Physiol. (Lond.) 52, 391-408 (1918/1919)
- Krogh, A.: The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J. Physiol. (Lond.) 52, 409-415 (1918/1919)
- Pütter, J.: Der Glucosestoffwechsel bei bösartigen Tumoren In: D-Glucose und verwandte Verbindungen in Medizin und Biologie (H. Barthelheimer, W. Heyde und W. Thorn, eds.), pp. 988-1042. Stuttgart: F. Enke 1966
- 24. Reinhold, H. S.: Improved microcirculation in irradiated tumours. Eur. J. Cancer 7, 273-280 (1971)

- Reneau, D. D., Bruley, D. F., Knisely, M. H.: A computer simulation for prediction of oxygen limitations in cerebral gray matter. J. Ass. Advan. Med. Instrum. 4, 211-223 (1970)
- Rieger, F.: Diffusionskoeffizienten und Kapillar-Versorgungsradien des O₂- und des Glucosestoffwechsels beim DS-Karzinosarkom. Zur mathematischen in-vivo-Theorie der Begründung des Krebs-Mehrschritt-Therapie-Konzeptes 1973. Arch. Geschwulstforsch. 43, 52-55 (1974)
- Schwarz, W., Schulz, V., Kersten, M., Wörz, R., Vaupel, P.: Durchblutung und Sauerstoffverbrauch gewebsisolierter Impftumoren (DS-Carcinosarkom) in vivo. Z. Krebsforsch. 75, 161-173 (1971)
- Spector, W. S.: Handbook of biological data. Philadelphia-London: W. B. Saunders Comp. 1956
- Stein, T. R., Martin, J. C., Keller, K. H.: Steady-state oxygen transport through red blood cell suspensions. J. Appl. Physiol. 31, 397-402 (1971)
- Swabb, E. A., Wei, J., Gullino, P. M.: Diffusion and convection in normal and neoplastic tissues. Cancer Res. 34, 2814-2822 (1974)
- Tannock, I. F.: The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br. J. Cancer 22, 258-273 (1968)
- Tannock, I. F.: Oxygen diffusion and the distribution of cellular radiosensitivity in tumours. Br. J. Radiol. 45, 515-524 (1972)
- 33. Tannock, I. F.: Oxygen distribution in tumours: Influence on cell proliferation and implications for tumour therapy. In: Oxygen transport to tissue-II (J. Grote, D. Reneau and G. Thews, eds.), Adv. exp. Med. Biol., vol. 75, pp. 597-603. New York-London: Plenum Press 1976
- 34. Thews, G.: Die Sauerstoffdiffusion im Gehirn. Ein Beitrag zur Frage der Sauerstoffversorgung der Organe. Pflügers Arch. ges. Physiol. 271, 197–226 (1960)

- Thews, G.: Ein Verfahren zur Bestimmung des O₂-Diffusionskoeffizienten, der O₂-Leitfähigkeit und des O₂-Löslichkeitskoeffizienten im Gehirngewebe. Pflügers Arch. ges. Physiol. 271, 227-244 (1960)
- 36. Thews, G., Vaupel, P.: O₂ supply conditions in tumor tissue in vivo. In: Oxygen transport to tissue-II (J. Grote, D. Reneau and G. Thews, eds.), Adv. exp. Med. Biol., vol. 75, pp. 537– 545. New York-London: Plenum Press 1976
- Thomlinson, R. H., Gray, L. H.: The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 9, 539-549 (1955)
- 38. Vaupel, P.: Atemgaswechsel und Glucosestoffwechsel von Implantationstumoren (DS-Carcinosarkom) in vivo. Experimentelle Untersuchungen und theoretische Analysen zur Frage der kritischen Sauerstoff- und Glucoseversorgung im Tumorgewebe. In: Funktionsanalyse biologischer Systeme (G. Thews, ed.), vol. 1. Wiesbaden: Steiner 1974
- Vaupel, P.: Effect of percentual water content in tissue and liquids on the diffusion coefficient of O₂, CO₂, and H₂. Pflügers Arch. 361, 201-204 (1976)
- Vaupel, P., Günther, H., Grote, J., Aumüller, G.: Atemgaswechsel und Glucosestoffwechsel von Tumoren (DS-Carcinosarkom) in vivo. I. Experimentelle Untersuchungen der versorgungsbestimmenden Parameter. Z. Ges. Exp. Med. 156, 283-294 (1971)
- Visschedijk, P. J. B. J., Schultz, J. S., Kreuzer, F.: Determination of the diffusion coefficient of oxygen in respiring rat diaphragm. Proc. 15th Dutch Federation Meeting, p. 367 (1974)
- Yoshida, F., Ohshima, N.: Diffusivity of oxygen in blood serum. J. Appl. Physiol. 21, 915-919 (1966)

Received March 20, 1977