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Piezoelectric behavior of wood under combined compression and vibration 
stresses I1: Effect of the deformation of cross-sectional wall of tracheids on 
changes in piezoelectric voltage in linear-elastic region* 
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A b s t r a c t  This study investigated and clarified the relation 
between the piezoelectric voltage and microscopic fracture 
of hinoki (Chamaecyparis obtusa Endl.), in particular the 
deformation of the cross-sectional wall of the tracheid in 
linear-elastic regions under combined compression and 
vibration stresses. The piezoelectric voltage-deformation 
(P-D) curve consisted of a linear region starting from the 
origin followed by a convex curved region. The linear re- 
gion of the P-D curve was only about 60% of that of the 
load-displacement (L-D) curve. By applying combined 
stresses to a specimen, the cross-sectional walls of the trac- 
heid were deformed mainly at the radial walls. When a 
tracheid was regarded approximately as a hexagonal prism, 
the elastic buckling stress of the radial wall was estimated 
from scanning electron microscope images and our method 
based on a modification of the Gibson and Ashby method. 
As a result, it was estimated that the elastic buckling stress 
was only about 80% of the stress at the proportional limit of 
the P-D curve. It is found that there are two consecutive 
regions before the proportional limit of the P-D curve: One 
is the region up to the spot where the radial cell wall gener- 
ates the elastic buckling, and the other is the region starting 
from the end of the aforementioned region up to the pro- 
portional limit of the P-D curve. 
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Introduction 

The purpose of this study was to clarify piezoelectric behav- 
ior during the deformation process of wood. In our previous 
paper 1 the relation between piezoelectric voltage and the 
deformation of tracheid in linear and nonlinear regions was 
reported mainly from the viewpoint of macroscopic phe- 
nomena observed with a scanning electron microscope 
(SEM). However, unsolved problems remain about the rela- 
tion between the piezoelectric voltage and the microscopic 
structure of wood, as well as the generative mechanism of 
piezoelectric voltage in those regions. In this paper the 
behavior of the piezoelectric voltage in the linear-elastic 
region of the deformation process is investigated in detail. 

Many attempts have been made over the years to model 
the shape of a wood cell. Young's modulus of a cell wall 
with the cell model has been calculated, >4 and the dynamic 
behavior has been studied by viewing the wood as a cellular 
solid, s However, the theoretical calculations of the amount 
of deformation are generally difficult, as a wood cell exhib- 
its complicated deformation behavior and the constraints 
are complicated. A theoretical study of the dynamic behav- 
ior of cellular solids of metal and rubber has been per- 
formed and experimentally verified by Gibson and Ashby. 6 
It is natural to attempt to calculate the amount of deforma- 
tion at a cross-sectional wall of tracheid by applying the 
method of Gibson and Ashby to wood, which was success- 
fully carried out in our study. Our method, which modified 
that of Gibson and Ashby, clarifies the deformation of a 
cross-sectional wall of a tracheid. Based on this result, the 
generative mechanism of the piezoelectric voltage in the 
linear-elastic region is elucidated. 

Experiments 

Specimens 

The specimens used were made of kiln-dried hinoki 
(Chamaecyparis obtusa Endl.). The external form of the 
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specimen shown in Fig. 1 was 0.5 × 1 × 6cm. Four splice 
pieces were attached to the specimen with adhesive to hold 
the specimen in the jig in the SEM chamber. 

As shown in Fig. 1 we set the electrode plane on the L -  
R plane whose angle between the axial direction and the 
fiber direction of the specimen was 45 ° . As the electrode for 
detecting the piezoelectric voltage, platinum was spattered 
on the centers of the upper and lower surfaces of the speci- 
men using a vacuum evaporator. The area of the electrode 
was 0.75cm 2. Silver foil (thickness, length, width: 100bLm, 
3cm, lmm,  respectively) was used as the lead wire. The 
piezoelectric voltage was detected by the measuring appa- 
ratus described previously) The SEM observation plane of 
the specimen is shown in Fig. 1. Specimens were condi- 
tioned in a desiccator with PzO5 after vacuum-drying for 
24h. 

The moisture contents of specimens were 5.5 % and 3.3 % 
immediately before the specimen was fixed to the jig in the 
chamber of the SEM and immediately after the observa- 
tion, respectively. The averaged value of the specific 
gravity (p) of the specimens before observation was 0.43. 
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Fig. 2. Example of a load-deformat ion curve in the combined com- 
pression and vibrat ion test 

vex curve. The L-D curve then plateaus due to the buckling 
fracture of the specimen; finally, the load decreases sud- 
denly with the shearing fracture in the 45 ° direction of the 
specimen. The piezoelectric behavior in the linear-elastic 
region of the first half of the L-D curve is investigated in 
detail in the piezoelectric voltage-deformation (P-D) curve 
as shown below. 

Relation between the proportional limit of the P-D and 
L-D curves 

Loading method and measurement of piezoelectric 
voltage 

The loading method and measurements of piezoelectric 
voltage were the same as in the previous study) 

Photography of specimens and image analysis 

For analysis of the SEM image of the specimen during the 
deformation process, we used the software package NIH 
(National Institutes of Health) Image 1.56. This software 
was designed by Dr. Wayne Rasband. 

Results and discussion 

An example of a typical load-deformation (L-D) curve 
obtained from the combined compression and vibration test 
is shown in Fig. 2. At the beginning the load increases 
proportionally with displacement; then the L-D  curve 
becomes convex, and there is a maximal point on the con- 

Parts of a P-D curve and an L-D curve are shown in Fig. 3. 
In this case the smoothing treatment was performed on the 
P-D curve to show it more clearly. At the beginning the P -  
D curve increases linearly and becomes convex, and it then 
decreases gradually after reaching a maximal point. The 
maximal point of the P-D curve coincides with the propor- 
tional limit of the L-D curve. Thus, after reaching the pro- 
portional limit of the L-D curve, the piezoelectric voltage 
decreased gradually. The L-D curve after the maximal 
point increases and shifts toward the plateau part caused by 
the buckling fracture of the specimen. 

The regression analysis was done by regarding the linear 
part of the P-D curve as an approximately straight line. The 
proportional limit is defined as the point where the regres- 
sion line, obtained from regression analysis for the linear 
part of the P-D curve, diverges from the P-D curve. Figure 
4 was obtained by plotting the load (Lp_D) at the propor- 
tional limit of this curve for the load (L~D) and at the 
proportional limit of the L-D  curve when the same treat- 
ment as mentioned above was done to the L-D  curve. A 
linear relation holds between these parameters and can be 
approximated by the following equation 
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Fig. 4. Comparison of Lp_ D and Lt~D. Solid line, regression line, Lp_ D = 
0.58 × LL-D (R = 0.98) 

LF D = 0.58"L~D (1) 

From Eq. (1), it can be seen that the linear region of the P -  
D curve is only about 60% of that of the L-D  curve. This 
result shows one of the most remarkable features of the P -  
D curve, but we must investigate more about the relation 
between the changes of P and deformation of the cell wall. 

It is generally assumed that the piezoelectric effect of 
wood results from cellulose crystals. However, a natural 
cellulose cannot exist as a molecule in wood. A large 
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number of cellulose molecular chains are composed of a 
fiber structure bundled with hemicellulose and lignin (i.e., a 
microfibril). A cell wall can be thought of as a framed struc- 
ture of these microfibrils. Hence, it is presumed that the 
changing point from the linear to the nonlinear region of 
the P-D curve results from some gross deformations of the 
cell wall, generated by the shearing deformation among 
the cellulose molecular chains. In the next section, the state 
of deformation of a tracheid's wall is studied using SEM 
images• 

Deformations of a cross-sectional wall of a tracheid and 
the resulting piezoelectric behavior 

From the results of the SEM observation, the cross- 
sectional shape of the tracheid of specimen used in this 
study was predominantly hexagonal; a quadrangular shape 
was also observed slightly. Thus far, circular, quadrilateral, 
and hexagonal models have been proposed as cell models 
that show the cross-sectional shapes of tracheids. In this 
study, to make the analysis simple, we assumed that the 
cross-sectional shape of a tracheid is a hexagon, in agree- 
ment with the SEM images. Hence, a tracheid is regarded 
approximately as a hexagonal prism as shown in Fig. 5a, and 
the following analysis was used to calculate the elastic buck- 
ling stress of the cross-sectional wall of a tracheid. As shown 
in Fig. 5b, the plane with an angle of 45 ° against the cross 
section of the hexagonal prism as shown in Fig. 5a is visible 
in the SEM image. When the combined compression and 
vibration stresses (a) was applied to a specimen, the cross- 
sectional wall of the tracheids deformed mainly at the radial 
walls, as shown in Fig. 5c. In this case, the radial wall was 
placed about in the 10th early wood from the boundary of 
the annual ring. Figure 5c is expressed in Fig. 5d. The pair of 
radial walls whose lengths are ll and 12 are bent by a. A 
magnified view of a wall deformed by cr is shown in Fig. 5e. 
From the equilibrium condition, the component of force 
acting on an area normal to the a axis must be zero. On the 
other hand, the component of a force (P) acting on an area 
normal to the tangential axis is expressed by the following 
equation: 

A (h. cos 03 + 2 × l 1 . sin 01 ) '  1/12" a P =  - - . o =  
2 (2) 

(11 sine1 = 12 • s ine2)  

where A = the side area of the model as shown in Fig. 5b; 
l and h = the lengths of the radial and tangential walls, 
respectively; and t and w = the thickness and width of the 
wall, respectively. As shown in Fig. 5e, the normal force 
(P 9 applied to the radial wall is described by the following 
equation: 

P 
e '  - (3) 

cos0 

If the radial wall shown in Fig. 5e is viewed as a column 
with both ends fixed as shown in Fig. 5f, Euler's buckling 
stress PEu~er obtained using the elastic line method is defined 
by the formula 
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Fig. 5. Deformation of a cross- 
section of a tracheid, a Hexago- 
nal model of a tracheid, b Cross 
section of a nondeformed tra- 
cheid, c Example of an scanning 
electron microscopic image of 
a cross section of a tracheid 
deformed after applying com- 
bined compression and vibra- 
tion stresses (a). d Model of a 
tracheid to which the com- 
bined compression and vibration 
stresses (o) have been applied, e 
Model of a deformed radial wall. 
f Model of a piece of buckled 
column, l, h, length of the radial 
and tangential cell walls, respec- 
tively; t, thickness of the cell 
wall; P, compressive load; P', 
component force of P; M, bend- 
ing moment; 01, 02, angle be- 
tween the radial cell wall and the 
a direction, 03, angle between 
the tangential cell wall and the T 
direction 
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Here,  Young 's  modulus of a radial  wall (Et) is calculated 
from the following formula a 

E E 
Et p k 1.500.997 (5) 

where k = a shape factor whose value was calculated by 
Ogama and Y a m a d a  2 from Yamai ' s  exper imenta l  results7; 
and E = Young 's  modulus of a specimen. The restr ict ional  
factor of the end, which provides a constraint  condit ion 
be tween a cell and a neighboring cell (n), is given by the 
following formula 6 

n -  2ga* (6) 

where ~0" = the root  of the following equation:  

2l 
tan~0 = - -  (7) 

h~p 

That  is, 

~p3 ~p5 

73-  3! + 5~ 120~p z -  2 0 @ +  ~p6 2l _ ~ t a n ~  -~ ~0. = 
~2 ~D4 120 - 609 2 + 5~p 4 h 1 - - - + - -  
2! 4! 

F rom these relations,  we obta ined  the following equat ion 
for the elastic buckling stress oo,1. 

/'/2 ~'g2 t3 COS01 E 

Goal = 12lff(hcos03 + 2/1sin01) ' 1.500.997 (8) 

Figure 6 was obta ined  by plot t ing Ocol., calculated from 
Eq. (8) versus the propor t iona l  l imit of the P-D curve. The 
exper imenta l  values of the cross-sectional shape of the tra- 
cheid measured  with N I H  Image (Table 1) were used in the 
above equation.  A l inear relat ion holds be tween these 
values and can be approximate ly  given by the following 
equation: 

acot. = 0 .83 'eBb (9) 

F rom Eqs. (1) and (9) it is observed that  the radial  wall of a 
t racheid generates  elastic buckling at a point  equal  to half 
the value of the load at the p ropor t iona l  limit. As  clarified 
from Eq. (9), it is es t imated that  the elastic buckling stress 
of a radial  wall of a t racheid  is only about  80% of the value 
of ap_o. F r o m  these results it is found that  there  are two 
consecutive regions before  the propor t iona l  limit of the P -  
D curve: One is the region up to the spot where the radial  
cell wall generates  the elastic buckling, and the other  is the 
region starting from the end of the above region up to the 
propor t iona l  limit of the P - D  curve. Hence,  the P - D  curve 
changed from the l inear-elast ic region to the convex-curved 
region as soon as a radial  wall of the t racheid genera ted  
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Table 1. Measurements of the cross-section of tracheids 

Measurement Value 

Length of radial cell wall (1) (#m) 
l 1 31.3-34.4 
l 2 19.4-21.4 

Length of tangential cell wall (h) (~m) 24.6-28.4 
Thickness of cell wall t (~m) 

t, 1.2-2.4 
t 2 1.4-2.4 

Angle (0)(°) 
01 8.7-14.0 
02 22.7-24.2 
03 14.0-15.3 

Restrictional facto¢ 0.62-0.85 

Restrictional factor of the end, which provides a constraint condition 
between a cell and a neighboring cell. 

elastic buckling. A maximal point on the convex curve was 
observed. The maximal point of the P-D curve coincides 
with the proportional limit of the L - D  curve. After reaching 
the proportional limit of the L - D  curve, the piezoelectric 
voltage decreased gradually. The L - D  curve after the 
maximal point increased and shifted toward the plateau 
part caused by the buckling fracture of the specimen. 
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Analysis of the P-D curve beyond the proportional limit 
is beyond the scope of the present study. As reported in our 
previous paper, 1 a small uprush appears around the bound- 
ary of the annual ring and there is a clear peak of piezoelec- 
tric voltage at the shearing fracture in the 45 ° direction after 
the proportional limit; these generative mechanisms of 
piezoelectric voltage will be examined elsewhere. 

Conclusion 

This study investigated the relation between the piezo- 
electric voltage and microscopic fractures of hinoki 
(Chamaecyparis obtusa Endl.), in particular deformation of 
the cross-sectional wall of tracheids in linear-elastic regions 
under combined compression and vibration stresses. By 
applying these stresses to a specimen, the cross-sectional 
walls of tracheids were deformed mainly at the radial walls. 
The tracheid was regarded approximately as a hexagonal 
prism, and the elastic buckling stress of the cross-sectional 
wall of the tracheid was estimated from SEM images and 
our method, based on a modification of that of Gibson and 
Ashby. As a result, as soon as a radial wall buckled, the 
P-D curve changed from the linear-elastic region to the 
convex-curved region, and there was a maximal point on 
the convex curve. The maximal point of the P-D curve 
coincides with the proportional limit of the L - D  curve. 
From these results, it can be concluded that the generative 
mechanism of piezoelectric voltage is related closely to the 
deformation (particularly to the elastic buckling) of 
cross-sectional walls of tracheids in the linear-elastic region. 
However, changes in the piezoelectric voltage after the 
proportional limit of the P-D curve still need to be 
investigated. 
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