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Abstract. Point processes X of cylinders, compact sets (particles), or flats in R d are mathematical 
models for fields of sets as they occur, e.g., in practical problems of image analysis and stereology. For 
the estimation of geometric quantities of such fields, mean value formulas for X are important. By a 
systematic approach, integral geometric formulas for curvature measures are transformed into density 
formulas for geometric point processes. In particular, a number of results which are known for 
stationary and isotropic Poisson processes of convex sets are generalized to nonisotropic processes, to 
non-Poissonian processes, and to processes of nonconvex sets. The integral geometric background 
(including recent results from translative integral geometry), the fundamentals of geometric point 
processes, and the resulting density formulas are presented in detail. Generalizations of the theory and 
applications in image analysis and stereology are mentioned shortly. 
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1.  I n t r o d u c t i o n  

In many  pract ical  si tuations problems of the fol lowing type occur .  The re  is a 
col lec t ion of  sets in R 2 o r  R 3, f rom which a t ransformed image  is observed ,  e.g., a 

section,  a pro jec t ion ,  or  the par t  within a ' sampl ing  window' .  Typical ly,  the sets 

are c o m p a c t  part icles or  flats (lines, planes) or  cylinders.  In  pract ice  they may  be 

pores  in a porous  medium,  tubules in a tissue, fibres in a fabric,  etc. T h e  problem 

is to est imate geomet r i c  quanti t ies of  the entire col lect ion based on informat ion 
f r o m  the obse rved  image.  This  is a classical s tereological  si tuation to which  the 

statistical theory,  deve loped  on  the basis of integral  g e o m e t r y  by D a v y  and Miles 

(see D a v y  (1978), Miles (1978), or  Well (1983a),  for  surveys),  may  be applied. 

H o w e v e r ,  if the field ~ of  sets is significantly ex tended  (e:g., c o m p a r e d  tO the 

b o u n d e d  sampling window) and if the interest  is mainly in mean  values (mean 

surface area of part icles per  unit  vo lume,  m e a n  thickness of  cylinders per  unit 
vo lume,  m e a n  n u m b e r  of  lines per  unit  area,  etc.), ~ may  be also cons idered  as 

the o u t c o m e  ~ = X(t0) of a r a n d o m  process  X ,  a geomet r i c  point  process.  In 

part icular ,  if X can be assumed to have cer ta in  invar iance  proper t ies  (sta- 

t ionarity,  isotropy) of  its distr ibution,  this point  of view has a number  of  

advantages .  First of  all, sect ions and sampling windows need  not  be chosen  
r andomly  in this case. Moreove r ,  special point  process  models  allow a statistical 
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analysis which is quite complicated in the deterministic case. Finally, various 
geometric point processes can be generated by compute r programs and, hence, 
many numerical results can be obtained by simulation. 

The basic point process model used in the literature is that of a stationary and 
isotropic Poisson process of convex sets (particles, cylinders, flats). Formulas for 
such point processes are collected in Matheron (1975) and Davy (1978). More 
recently it has been shown that many results can be obtained under weaker 
assumptions, for example, for stationary and nonisotropic processes, for non- 
Poissonian processes, and for processes of nonconvex sets. Such results are found 
here and there in the literature and are obtained by quite different methods under 
varying assumptions. Matheron, in his book (Matheron (1975)), already 
emphasized the role of the curvature measures of a set as a basic notion in 
stochastic geometry. This opinion was supported by results in Well (1983b), 
(1984), Z~hle (1986). It turns out that integral geometric formulas for curvature 
measures can be transformed easily into density formulas for geometric point 
processes from which many (but, of course, not all) stereological results for mean 
values come out as special cases. 

In the following this method is exploited systematically in d-dimensional space 
R ~ and the resulting formulas are collected. Most of them are known but some 
arc new and the others are shown to be true under quite general assumptions. In 
order to allow a unified approach to all the results the underlying class of sets is 
of importance. We base our considerations upon the 'convex ring' ~a ,  a choice 
which is essential in view of the integral formulas for curvature measures which 
are used. Since compact sets can be approximated by sets from the convex ring, 
formulas given in the literature for more general sets (e.g., fibres, surfaces, etc.) 
may be obtained immediately from corresponding results on ~a.  This is sufficient 
for applications but it should be mentioned that the approximation of one set 
class by another such that geometric functionals converge is, in general, a 
difficult mathematical problem. 

2. Integral Formulas for Curvature Measures 

We need the following classes of sets in Ra: J/a the class of convex bodies 
(compact convex subsets of Rd), ~d the convex ring (finite unions of convex 
bodies), ~qa the set of q-dimensional linear subspaces of R a, and gqa the set of 
q-fiats (q-dimensional affine subspaces) in R d. For a subspace L c ~qa and a set K 
in the orthogonal space L 1, the vector sum K + L is called a cylinder with basis 
K. Let ~q(K) be the set of all cylinders (properly) congruent to K +  L. The 
Lebesgue measure in R d is denoted by ha. Correspondingly, hE is the Lebesgue 
measure in E ~ ~qa and, for a face F of a polytope or a cylinder, AF is the 
appropriate Lebesgue measure restricted to F. For L, L ' e  ~Le a, [L, L'] is the 
volume (of appropriate dimension) of the paraUelepiped spanned by the following 
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vectors. First choose an ortbonormal basis in L f)L', then extend it to an 
orthonormal basis in L and an orthonormal basis in L'. 

For faces F, F '  of convex polytopes K, K '  (or cylinders with polytopal basis) 
we define the angle T(F, F' ,  K,  K') as the external angle of K N (K' + x) at the 
face F f ) ( F ' +  x), where x ~ R d is such that the relative interior of F meets the 
relative interior of F ' +  x. This definition does not depend on the choice of x as 
long as F N (F'  + x) has dimension at most max{0, dim F + dim F'  - d} for all x. 
If this is the case for all faces, we say that K and K'  are in general relative 
position. 

For K ~ ~d the curvature measures ~o(K, ") . . . . .  ~d(K, ") can be introduced 
by the local Steiner formula 

d 

aa(A,(K,/3)) = ~ ~a-JKa_j*~(K,/3). (2.1) 
i = o  

Here, /3 c R a is a Borel set, Kk is the volume of the k-dimensional unit ball, 
e > 0, and A, (K,  13) is a local parallel set (the set of all x ~ R d such that the 
metric projection projK(x) of x onto K obeys projK(X) ~ /3 and IIx-projK(x)l[ <~ e). 
An important property of the curvature measures is that they depend additively 
on K. An additive extension to sets K ~ 0ta was given by Schneider (1980a). For 
K = U P=~ Ki, Ki ~ Yt'd, this extension ~ j ( K ,  -) fulfills 

• ~(K, ") = ~ ~ ( K , , - ) -  ~ ~j(Ki, f"l K 6, ")+ 
i=1  l~il<i2~n 

. . . .  + ( -  1) "+1 ~s(K1N""  N K,, ') .  
(2.2) 

Equation (2.2) cannot be used as a definition of ~ j ( K , - )  since the right side may 
depend on the choice of the sets K ~ , . . . ,  K , .  An alternative approach was given 
by Schneider (1980a) who showed that there is a generalization of (2.1) to sets K 
in ~a .  For properties of the curvature measures, we refer to the surveys 
Schneider (1979) and Weil (1983a). We mention only that for j-sets K ~ ~ a ,  i.e., 
sets which are the union of convex bodies Kx . . . . .  K ,  of dimension at most j, the 
curvature measure ~s(K, .) equals the j-dimensional Hausdorff measure on K. 
Since the curvature measures are locally defined, they extend immediately to 
unbounded sets, which are locally finite countable unions of convex bodies. In 
particular, this holds for cylinders Z. More precisely, for a cylinder Z, a convex 
body K',  and a Borel set/3 in the interior int K'  of K',  we have 

%(z, /3 )  = . j ( z  N K',/3). 

For stereological applications, the total measures Vj (K)= ",I~s(K,R d) are im- 
portant. Vj(K) is proportional to the ( d - j ) t h  quermass integral of K, in parti- 
cular Va(K) is the volume, Va-I(K) is half the surface area, Va-z(K) is 
proportional to the integral mean curvature . . . . .  VffK) is proportional to the 
(additively extended) mean width, and Vo(K) is the Euler-Poincar6 characteristic 
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of K ~ ~a .  It is convenient to define Vj(Z) for a cylinder Z = K + L not as the 
total curvature measure but as Vj_q(K), j = q . . . . .  d. 

The basic integral geometric result for curvature measures is the following 
translation formula for cylinders (Schneider and Weil (1986)). Let L ~ .oq? d, K '  c 
~d with K ' c  L ±, K ~ 9Zd, and Borel sets /3 c R a, /3 'c  L ± be given. Then, for 
j ~ {0 . . . . .  d}, 

IL ~ f') (K'  + L + x), f') L + dALe(X) ~ j ( K  /3 ( /3 '+  x)) 

d--1 

=,I, AK,/3)'Vd-q(K',/33+ ~ ~o~(K, K'+L,/3 x/3')+ (2.3) 
k = j + l  

+ * a ( K ,  /3)xtri-q(K', /3') 

(curvature measures with index m < 0 are defined to be zero). ~0J~)(K, K '  + L, -) is 
a (signed) Borel measure on R d × R d which depends in an additive and measur- 
able way on K,  K '  (and L). For k > d + j - q ,  q~)(K, K ' +  L, .) vanishes, hence 
the summation in (2.3) really extends only to d + j - q ,  if j < q. The measures 
~0~)(K, K '  + L, .) with k ~< d + j -  q, are concentrated on bd K x bd K'  (here bd 
denotes the boundary). For k ~< d + j - q, ~o~)(K, K '  + L, .) is explicitly known if 

K,  K '  are convex polytopes and K,  K ' + L  are in general relative position. 
Then we have 

q~)(K, K ' +  L, -) 

= ~'. ~ 3 , ( F , F ' + L , K , K ' + L ) ×  (2.4) 
F ~ k ( K )  F'~.~:a+i_q_k(K') 

x [L(F),  L(F') + L]Ar~ (~) AF,. 

Here, ~m(P) is the set of m-dimensional faces of the polytope P and L(F)  ~ ~ 
is the subspace parallel to F ~ ~ , ( P ) .  Two special cases of (2.3) are of interest. 
First, if L = {0}, we get 

~a~ f') ( K ' +  x), f') (/3'+ x)) dAd(X) Wi(K /3 

= Wj(K,/3)*d(K', /3 ')  + (2.5) 
d--1 

+ ~., q~ , ) (K ,K ' , / 3x /3 ' )+Wd(K, /3 )* i (K ' , / 3 ' ) .  
k=j+l  

Next, if K ' =  {0}, the measure q~)(K, K ' +  L,-)  is concentrated on bd K x {0}, 
hence it may be viewed as a measure on R a (concentrated on bd K). Since 
q~)(K, K '  + L, .) depends homogeneously of degree d + j -  q - k on K '  it must 
vanish as long as d + j - q - k ~: 0. Hence, from (2.3) it follows that 

~L ~ f') (L + X), fq (L + x)) dALe(X) Wj(K /3 
(2.6) 

= q~+j-q(K, L,/3).  
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An important property of the measure q~)(K, K' + L, ") concerns its rotation 
integral. If SOa denotes the rotation group with invariant measure v, v(SOe) = 1, 
then 

fs q~/)(K, O(K'+ L),/3 x 0/3') dr(O) 
On 

= adjk~t 'k(K, /3) ' t 'd+j -q-k(K' ,  /3'). 
(2.7) 

Combining (2.7) with (2.3), we get the kinematic formula for cylinders (Schneider 
1980b) 

~s Sr ~ts(K N O(K' + L + x), ISM O(jS' + L + x))dAr~(x)dv(O) 
O d  ± 

d 

= ~, aajk~k(K, 18)~,,+j-q-k(K', ~8'). 
k=l 

(2.8) 

Again as special cases, (2.8) contains the principal kinematic formula and the 
Crofton formula for curvature measures. Instead of using double integrals we 
consider here the group Ge of rigid motions with invariant measure /z and the 
space ~ with invariant measure /a~. Then 

f f  'ttj(K N gK',/3 N g/3') d/z(g) 
d 

d 

= ~ aajk~k(g,/3)xlte+l-k(K ',/3') 
k=j  

(2.9) 

and 

~ xttj(K f-) E,/3 f) E) d/zq(E) = ctdiq~e+i_q(K,/3). 

The coefficients a,qk occurring in (2.7) to (2.10) are given by 

(2.10) 

A variant of (2.3) and (2.8) concerns the case of projected thick sections. For a 
cylinder K'+ L denote by A l L  the projection of the set A c R d onto the 
direction space L of K' + L. Then, we have for K, K' c ~Kd 

fL l qtj([K VI (K' + L + x)][ L, [/3 f') (/3'+ L + x)] I L) dALe(X) 
(2.11) 

= q~e+j-qLh*(-K'), L,/3 + (-/3')), 

where 

-K'={-xlx~K'}. 
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Is IL ~ i ( [ K  (q O(K' + L + x)] I OL, [~ f') O(fl'+ L + x)] I OL) dAL.~(x)dv(O) 
0 a ± 

a+j-q (2.12) 
= ~'. 3~nikq~k(K, /3)~a+i-q-k(g',/3'1 

k = j  

3,~jkq = 

d d k)  r,q_ff~rj 

So far, (2.12) is known only for the quermassintegrals, i.e., for /3 = R a, /3'-- L ± 
(see Schneider (1981)). The two formulas can be extended to sets K ~ ~a which 
are unions of convex bodies K 1 , . . . ,  K , ,  provided the different parts KI . . . . .  K ,  
of K can be distinguished in the projection and the integrands are modified 
appropriately. For practical applications, the following case is important: K is a 
1-set, i.e., KI . . . . .  Kn are line segments, no two of which have more than one 
point in common. Then, (2.12) holds for the quermassintegral V1 without further 
modification, if d/> 3. 

Since 

• ~(K,R d )=  Vj(K), j = 0  . . . .  , d , K ~ a ,  

the integral formulas (2.3) to (2.12) contain, as special cases, integral formulas for 
quermassintegrals. It is therefore of interest to obtain more explicit expressions 
for the total measures ~, ) (K ,  Z) = q~,)(K, Z,  R d x R a) (resp. ~ ) ( K ,  L) = 
q~)(K, L, Ra)). We have (Goodey and Well (1986)) 

(d) 
O~+i q(K, K'+ L ) -  q-~J V(K  . . . . .  K, B L , . . . ,  BQ, (2.13) 

Kq-i d+i-q q-i 

where V(K1 . . . . .  Ka) denotes the mixed volume of K1 . . . . .  Ka and BL is the 
q-dimensional unit ball in L. Also, 

~,°)(K, K ' +  L) (2.14) 

V(K  . . . . .  K , -  K', . . . .  - K ' ,  B L , . . . ,  BL), 
~ . ~ , ~ _ . . . _ J  ~ ~ . - 

k d - - q - - k ,  q 

k = 0 . . . . .  d - q, and 
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K'+ L) 

d d - q  d 

KqKd-jKj 

x f  V ( K N E , . . . , K N E , - K ' , . . . , - K ' , B L  . . . . .  BL) d/za_j (E), 
J~  d d j x. J x. , ,  

k--j  d+j--q--k q 

k = j +  1 , . . . ,  m i n ( d -  1, d + j -  q). Because of the use of mixed volumes, these 
results first hold for convex bodies K, K' ,  but they can be extended to sets K,  
K ' e  ~n  by additivity. The extension is possible since the mixed volumes in 
(2.13), (2.14), and (2.15) depend additively and continuously on the sets K,  
K '  e ~d (see the article of McMullen and Schneider (1983), for more details). 

Of special interest is the case where K is an r-dimensional convex body, 
0 ~< r ~< d - 1. Then using (2.15) we see that ~ ) ( K ,  K '  + L) = 0 if k > r. Thus, if 
we assume 0 < r - j  ~ d - q ,  the last summand in (2.3) (for /3 × / 3 ' =  R a ×  L ±) is 
• O/)(K, K ' + L ) .  Here, formula (2.15) can be simplified (Goodey and Weil 
(1986)): 

• ,U)(K, K ' +  L) 

d d -  (2.16) 

Kr--jKq 
V,( K) V( K', . . . .  K', BL . . . . .  BL, BM . . . . .  BM) 

d + j - r - q  q r-1 

(M e ~ r  a is the subspace parallel to the affine hull of K). 

3. Geometric Point Processes 

Let ~q be the set of all cylinders in R a with q-dimensional direction space and 
basis in ~d .  For some fixed L e Ltqa, Zq is the union of all sets ~q (K), K c L ±, 
K e ~d. A point process X on ~q is given by a probability measure Px, the 
distribution of X, on the set ~ (~q)  of locally finite counting measures on ~q 
supplied with its usual o--algebra. Since :~q is a measurable subset of the set ,~ of 
all closed sets in R u, this definition of X fits into the general theory of point 
processes on f f  (see Matheron (1975) for details). Contrary to the definition of 
point processes in general spaces (see e.g., Neveu (1977)), we call a measure q~ 
on ~q locally finite, if 

q~({Z c .~q I cony Z f) g ~ 0}) < o0 

for all K e ~a .  Alternatively, we consider a point process X as a measurable 
mapping from some abstract probability space (1~, ~/, P) into ~t(~q). We there- 
fore write X(to) for a realization of X. Since we only work with simple point 
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processes, we may interpret a counting measure ~/ on ~q also as a collection of 
cylinders. This allows us to write Z e X(to) or Z e X. 

The point process X on ~q is stationary if Px is translation invariant, it is 
isotropic if Px is invariant w.r.t, rotations. The intensity measure @ of X is defined 
by 

O(~ )  = E X ( ~ )  

for any Borel set ~ c ~q. We assume throughout that O is locally finite. If X is 
stationary (isotropic), O has the same invariance properties but the converse is 
obviously false. X is called weakly stationary (weakly isotropic) if O is stationary 
(isotropic). 

The following decomposit ion is important. Let s: ~d--~R a be a measurable 
mapping which associates to each set K ~ ~a a center s(K) in a motion covariant 
way. Familiar choices of such centers are the midpoint of the circumsphere or the 
Steiner point (the usual centroid does not exist for all sets in ~a).  

Let ~o  be the set of all cylinders Z = K + L  such that L c ~ ,  K ~  
~a ,  K c L ±, and s(K) -- 0, and let 

~q ={(x,  Z) I Z ~  :Z °, Z =  K + L ,  x c  Ll}. 

Then i: (x, Z) ~--~ Z + x  is an isomorphism of ~q onto ~q. Assume now that X is 
weakly stationary. Then there exists a number y t> 0 and a probability measure Po 
on L~q such that 

i o @(A x C) = 3' Ic  AL(Z3~(A) dPo(Z), (3.1) 

for Borel sets A c R d, C c :Z °. Here, L(Z)  is the direction space of the cylinder 
Z. We call y the intensity and Po the shape distribution of the point process X. 
Moreover,  X is weakly isotropic, if and only if Po is rotation invariant. 
Frequently, we use the abbreviation Po(f) for the integral ~ f ( Z )  dP0(Z). If X is 
a process of (convex) particles, Po is concentrated on ~ o  or N °, the set of 
particles K in ~a resp. Xa with s(K)= 0. If X is a process of q-fiats, Po is 
concentrated on ~?qa. 

An important tool for the following is the Campbell  theorem. In view of (3.1), 
it states that for every measurable and O-integrable function f on :Zq 

E y I(z)-- (3.2) 

We first use this result to give an interpretation of 3'. For K ~ ~a let 

and let l~q(r)( ') be the indicator function of ~ ( K ) .  Let B denote the unit ball in 

R a . 
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1 e  ~ l~,,(,m(Z)" y = lira 
r--~o~ r d - q K d - q  Z e X  

Proof. From (3.2) we get 

E 1 ~q~,m(Z) 
Z ~ X  

= 7 J ~  IL. 1 ~(,m( K + L + x) dat.~(x)dPo(K + L) 

= V I n  ar*[(rB CI L ±) + K] dPo(K + L). 

In the same way, we get from the Steiner formula (2.1) 

O({Z e e~q I conv z N rB # 0}) 

--- 3, Lo ALI[(rB f-) L ±) +conv K] dPo(K + L) 

d-q I~r~q = ~ ra-q-JK._q_j Vj(conv K)dPo(K+L). 
j=O 

Since 

]r~lqKa_q ALI[(rBN L J-)+ K][ 

d--q 

< ~ r- i Ka_q_j V/(conv K) 
j=o Kd-q 

and since {9 is locally finite, the integrand in the following integral is uniformly 
integrable and we get 

1 
lim - - E  ~ l:zq(rm(Z) 
r.--~oo rd -q l (d - -  q Z ~ X  

---~,[ l i m ~  ALI[(rBNL±)+K]dPo(K+L) 
j~o r__,o~ r Kd-q 

= %  

If in Theorem 3.1 the indicator function 1 ~q(m) is replaced by 1 ~rq(,m "f, where 
f is a translation invariant function on ~fq such that 

I~o V,(conv Z)lf(Z)l dPo(Z) < 
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for i = q, . . . ,  d, then the same arguments hold true and we get 

1 
lim a-q E ~,, I ~ ( , m ( Z ) ' f ( Z )  
r--*~ r K d - - q  Z ~ X  

= T" Po(f). 

We are especially interested in the case f = Vj. 

T H E O R E M  3.2. Suppose S~ Vi(conv Z)  I Vj(Z) I dPo(Z) < oo for i, j = q , . . . ,  d. 
Then 

1 
Dj(X) := l i m - -  E ~ I ~ ( , m ( Z ) V j ( Z )  

r ---*r~ r d - - q K d - - q  Z c X  

exists and fulfills 

Dj(X) = TPo(V~), j = q , . . . ,  d. 

We call Dj(X) the flh quermass density of the point process X. If the cylinders 
Z of the process are all simply connected,  then Vq(Z) = 1 and, hence, Dq(X) = 

T. 
Results similar to Theorems 3.1 and 3.2 hold if the unit ball B is replaced by an 

arbitrary convex body K with dimension at least d - q ,  but  the normalizing 

constant ra-q then looks more complicated. It has a simple form, namely 
Wd-q(K), if X is weakly isotropic. Two special cases are of interest. If the 
cylinders are a.s. q-flats, i.e., if P0 is concentrated on those Z = K + L ~ y o  with 
K = {0}, and if X is weakly isotropic, then - /g ives  the mean number of flats of 
the process X per unit (d - q)-dimensional volume. A better  mathematical basis 
of this interpretation of Y will be given later. Second, if q = 0, then X is a process 
of particles. In this case we have 

= lim va'l-'%)~rJx E ~, 1 ~(rKo)(g) T 
r ---*°° K E X  

and 

1 
Dj(X) = ~P0(Vj) = lim E ~ I%(,~o)(K)Vj(K) 

,--,~ Va(rgo) K~X 

without requiring that X is isotropic. Here  K0 e ~a is arbitrary (but with inner 
points) and ~a(rKo) = {K ~ ~a I K f'l rKo ~ 0}. The  proof is similar to that of 
Theorem 3.1 and Theorem 3.2 but, instead of the Steiner formula, mixed 
volumes have to be used. 

4.  Formulas  [or Q u e r m a s s  D e n s i t i e s  

With the help of (3.2) it is now easy to apply integral formulas for curvature 
measures to point processes. Let us start with (2.3). Our assumptions are the 
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following. We consider a point process X of cylinders (i.e., a point process on ~q 
with q c { 0 , . . . ,  d -  1}) which is weakly stationary (and fulfills the appropriate 
integrability conditions of Section 3) and a set K0E ~d which serves as a 
sampling window. Moreover,  we fix a Borel set/3o (associated with K0) and we 
assume that to each cylinder Z = K + L a Borel set /3 (Z)= /3(K)  + L is asso- 
ciated in a measurable and translation covariant way, i.e., we have 

/3(Z + x) = 13(Z) + x 

for all x c R n. Then from (3.2) and (2.3) we get 

E • j(Ko N Z,/3oN/3(Z))  
Z ~ X  

= ~/ ~L~q IL ± ~ j (Ko N (K + t + x),/30 n (/3(K) + L + x)) d)tL±(X) dPo(K + L) 

r j .  

= ~/t*i(Ko, ~o) J~, *a-q(K,/3(K)) dPo(K + L) + (4.1) 

d--1 

+ ~ f q~k~)(Ko, Z,/30 x/3(LO) dPo(Z) + 
k =i+1 J ~  

+ ~a(Ko,/3o) I~o*i-q(K,/3(K))dPo(K + L)] ,  

for j = 0 . . . .  , d. 
Because of our notation, the last summand in (4.1) vanishes if j < q and, in this 

case, the summation is from j +  1 to d + j -  q. 
Let us examine some special cases of formula (4.1). First, if /30 =/3(Z)  = R a, 

then we get 

e Z v (KonZ) 
Z ~ X  

= TVj(Ko)Po(Vd) + (4.2) 
d--1 

+ 3' ~ Po(@~)(Ko, ")) + TVa(Ko)Po(Vj). 
k = / + l  

The right-hand side can be expressed by means of mixed volumes using (2.14) 
and (2.15). In view of the homogeneity properties, (4.2) implies the following 
interpretation of Dj(X).  

T H E O R E M  4.1. We have 

1 
Dj( X) = ~--,~lim Va( rKo) E z~ ~'x Vj( rKo M Z) 

for all Ko c ~a with inner points, j = q . . . . .  d. 

To  give another interpretation of Dj(X) let /30 c i n t  Ko and /3(Z)= R a. Then 
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Wj(Ko,/30) = 0, for j <  d, and q~)(Ko, Z,/3oXR a) = 0, for k < d. Hence, (4.1) 
implies 

• Z z,/3o) ---  ,i,,(Ko,/3o)Po(Vp. 
Z ~ X  

(4.3) 

Since the curvature measures are locally defined and since we may choose to 
each bounded Borel set /30 a set Ko ~ ~d with /30 c i n t  Ko, this implies the 
following result. 

THEOREM 4.2. We have 

e Z ,I,j(z, . ) = D j ( x ) .  xd, 
Z E X  

[or j =  q , . . . ,  d. 

Whilst the equation 

Dj(X) = TPo(Vi), j = q . . . .  , d, 

presents the most direct way to define the quermass density Di(X) for the point 
process X, the formulas in Theorems 3.2, 4.1, and 4.2 describe other possible 
approaches, namely approaches of 'ergodic' type and the random measure 
approach. As the results show, the different methods lead to the same quantity, 
namely Di(X). Similar considerations have been made for random sets and point 
processes of sets from other set classes (Weil, 1984; Weil and Wieacker, 1984; 
Z~ihle, 1986). Using Lemma 6 in Weil and Wieacker (1984) one also gets 

D~(X)=E ~ [~(CoNZ)- ~(8+Corlz)] 
Z ~ X  

j = q . . . . .  d, where Co is a unit cube and ~+Co its 'upper right' boundary (see 
Weil and Wieacker (1984) for details). 

If the point process X is ergodic, then the formulas in Theorems 3.2 and 4.1 
hold for almost all realizations X(~o) (or in L 1) without the expectation sign. In 
particular, any Poisson process X is ergodic (see Nguyen and Zessin (1979) and 
Wieacker (1982) for more details). 

As a consequence of Theorem 4.2 (or (4.3)) we get the following interesting 
formula: 

E ~ ~ j (Z ,  int Ko) = Va(Ko)Dj(X), j = q . . . . .  d. (4.4) 
Z c X  

As other special cases of (4.1) we put/30 = R a and/3(Z) = int Z. Then 

E ~ ~j(Ko, int Z) = Vj(Ko)Da(X). (4.5) 
Z E X  
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For ¢1o = bd Ko and/3(Z)  = bd Z, we get 
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E ~ ~ j ( K o N Z ,  b d K o n b d Z )  
z~x (4.6) 

d 1 

= 7 ~,, Po(~O)(Ko, ")) 
k = / + l  

which can be expressed by mixed volumes again. 
For weakly isotropic X, these formulas can be simplified further in view of the 

integral formula (2.8). In this case, (4.1) becomes 

E ~ %(Kon Z, ~on t3(z)) 
ZE:X 

= "l' ~ Oldsk~k(Ko, ¢!0) ~d+j-q-k(K,  ¢t(g)) dPo(K + L), 
k=j  

j = 0  . . . . .  d. 
The corresponding changes in (4.2) and (4.6) are obvious. 
For a process X of particles (i.e., q = 0), (4.2) can be written as 

(4.7) 

E ~ V,(KonK) 
K ~ X  

[ d--1 (kd___j)(~) Kd 
= 7 V~(Ko)Po(Va) + ~, x k=j+l Kd-jKj 

x J~f Po( V(~- Ko N E . . . . .  - Ko n E, ~ )) d/~a-j (E) + 
~-J k--~j d+j--k 

+ Vd(Ko)Po( Vj)]. 

(4 .8)  

For weakly isotropic X, this formula becomes 

d 

e Z V,(KoN n)= v Y. ~d~kVk(Ko)Po(Vd+j--~), 
K c X  k=j 

a result which was first obtained by Fava and Santal6 (1978), (1979). 
For another consequence of (4.2) let X be a process of flats. If j = q, we get a 

sharper form of Theorem 4.1. 

T H E O R E M  4.3. For a process X of q-flats we have 

1 
v= Vd(Ko----~ E L~,,E V~(Kon L). 

Thus, the intensity of X can be also interpreted as the mean q-dimensional 
volume of the q-flats in X per unit volume of R d. If j ~ q, there is only one term 
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on the right side of (4.2) which does not vanish, namely the summand 
p -(I) (j) o( a+i-q(Ko,-)). It can be expressed more explicitly with the help of (2.13). 

T H E O R E M  4.4. Let  Ko ~ ~a and X be a point process of q-fiats. Then 

C ~ Vj (KoML)  
L e X  

q - j  
= Y Po(V(Ko . . . . .  Ko, B . , . . . ,  B.)). 

r~_j . -_ 
d+j -q  q - j  

d In particular, if the affine hull of Ko is (d + j - q)-dimensional (and Lo ~ oTa+i-q 
parallel to this atIine hull), then 

and hence 

c  (Kon L) = y Vd+j-q(Ko) I ~  [Lo, L]dPo(L). (4.9) 

If X is weakly isotropic, we use (4.7) instead of (4.1) and get a generalization of 
Theorem 4.3. 

T H E O R E M  4.5. Let X be a weakly isotropic point process of q-fiats, let Ko c f~d, 
and q E {0 . . . . .  d - 1}. Then 

1 
Y -- aajqVa+i-q(Ko) L~X ~ Vi(K° M L) 

forj--O . . . . .  q. 

In particular, this result includes q different interpretations of 3' as mean value 
per unit content  if we take a (d + j -  q)-dimensional set Ko. 

5. Point Processes Induced on Lower Dimensional Flats 

Let  X be a point process of cylinders with the properties mentioned at the 
beginning of the last section (weakly stationary, etc.) and let Er be a fixed r-fiat, 
r ~ {1 . . . . .  d - 1}. We consider the intersection process X f-I E, which consists of 

the sets Z fq E, ,  Z e X. If Z = K + L and if L and E, are in general relative 
position, then Z N E ,  is either empty or a cylinder in ~ with p =  
max{0, q + r -  d}. Let  0 ~q,E, be the set of all cylinders Z = K + L e ~o ,  for which 

L and E, are not in general relative position. Then  

~({E,  I Po(~°,~,) > 0}) = O, 
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i.e., for H-almost all Er, almost all realizations X(to) of X have the property that 
L and Er are in general relative position for all K +  L e X(to). Hence, for 
almost all E, the intersection process X O E, is a process of cylinders in Zp. It 
may, however, be possible, even in this case that Z O E~ = 0 for all Z c X. This 
event occurs either with probability zero or with probability one. While the first 
possibility is, of course, of no significance, the second occurs, if and only if X is a 
process of q-flats and q + r < d. We may then include this 'empty' process X n E, 
into our considerations as a point process of cylinders with intensity zero. 

After these explanations we can assume that X O Er is a point process of 
cylinders in ~Zp (lying in E,). It is obvious that X O E~ has the same invariance 
properties as X. In particular, for weakly stationary X, X n Er is also weakly 
stationary. Therefore, its intensity measure is determined by the shape dis- 
tribution P~, and the intensity 7E•. Our goal is to express 3%, the mean values 
PoE,(Vj), and the quermass densities Di(XNEr) by means of 7, Po(Vk), and 
Dk(X). For this purpose, let Ko c Er be r-dimensional, r >/j, /3(Z) = R a, and /30 
in the relative interior of Ko. Then 

~Fj(Ko N Z,/30) = ~ j ( Z N  E,,/30). 

Also, 

q~U)(Ko, Z,/30 x a a) = O, 

f o r k ~ r ,  a n d ( f o r Z = K + L a n d r - j < ~ d - q )  

q~U)(Ko, Z,/30 x R a) 

_ q r - j  V (K , . . . ,K ,  Btz,,...,BE,,BL,...,BL).An,(/3o). 
K r - - j K q  ~ - -  ~ 

d + j - - r - q  r - ]  q 

This follows for polytopes K, Ko (in general relative position) from (2.4) and 
(2.16), for K, K o c X a  by approximation, and for K, Koc  ~a by additivity. 
Hence, we conclude from (4.1) 

E 2 
Z ~ X  

d d - q  

X 
K,-iKq 

• _ ~  • ~ r ' ° ° ° '  l r  ° '  • 

d+j--qIr r - -  1 qI 

for j = p , . . . ,  r. 
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On the other hand, 

E Y. % ( z n  E, ,  .) = E ~ % ( Z , . )  
Z~X Z~Xf'IE, 

= Dj(X f l  E,). )tE~ 

by Theorem 4.2. Thus, we have proved the following formula for the quermass 
densities of the induced point process X N E,. 

THEOREM 5.1. We have 

Dj( X N IF,,) 
d d -  

K,_ j ~q 

x 3' [ V(K,. . . ,  K, BE,,..., BEr, BE . . . . .  BE) dPo(g + L), J~ 
d + j - q - r  r - j  q 

for j =  p . . . . .  r .  

If the cylinders of the process X are all convex, then Dp(XN E,) = ~/E, for all 

E,, hence, Theorem 5.1 gives an expression for 7E,, 

d d - q  

d-q-, , q 

I~/ I [E,,L]dPo(K+L), q+r>~d. 

q+r<d, 

(5.1) 

Here, we have used 

Kd-ql(q 
V(BE . . . . . .  B~r, BL . . . . .  BL) = [E, ,  L]. 

d--q q 

Also, in this case, Theorem 3.2 implies 

Po~,(vj) 

= q r - j  ~ / x  
K,-j% TE, 

X f V(K,.. .  K, BE, BE,Br_,.. BL) dPo(K+L). 
J~ o d+ j - -q - - r  r - - j  q 

(5.2) 



POINT PROCESSES OF CYLINDERS, PARTICLES AND FLATS 119 

Matheron (1975) has corresponding formulas for Poisson processes of convex 
particles. In order to show the connection, let X be a process of convex particles. 
Since 

V ( K . . . .  , K,  B E ,  BEr) 

d - - r  r 

is (up to a constant) the (d - r)-content of the projection K 1 5,1 of K onto E~, 
we get from (5.1) 

3,~ = ( d ) "  3,Po(Va-r('IE~,)). (5.3) 

For j 1> 1, the following projection formula can be deduced, e.g., from (9.7) in 
Schneider and Weil (1983): 

I~e,% V~.j-,(K I M ±) du,~-'j(M) 

: 

(~) "d÷j-r d+;-, r-j 

(5.4) 

E Here ~,,~_,j is the normalized invariant measure on ~r-'j ,  the space of ( r - j ) -  
dimensional subspaces in E,.  Therefore, (5.2) implies 

3, f ~ Po(Va+~_,(. I MI))d~,~:~(M), (5.5) 
Kr-jKj 7Er J~,~i 

j = l , . . . , r .  
Equations (5.3) and (5.5) are Matheron's formulas; as we have seen, they are 

valid without Poisson assumptions. 
If X is weakly isotropic, then we use (2.8) instead of (2.4) and get 

D i ( X  I-I Er) = a d~,3,Po(Vd+~-r), (5.6) 

] = p . . . . .  r. For convex cylinders, (5.6) implies 

f aao~YPo( Vd-r), q + r < d 
~/E, = |t aa q+r-a , ,  q + r I> d, (5.7) 

and 

r Po(Vd+j_r). (5.8) P&(Vj) = ~dj, - -  

For Poisson processes of particles (q = 0), (5.7) and (5.8) were first proved by 
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Matheron (1975); his result was extended to non-Poissonian processes by Stoyan 
(1979), (1982). 

If X is a process of flats, Theorem 5.1 implies that 

Dj (X  N Er) = 0, 

for all ] if q + r < d. In particular, ~/tsr = Do(X f-I E , ) =  0, hence X f ) E ,  is the 
'empty process',  as we have mentioned earlier. If q + r t> d, then 

Dj (X  N E,) -- 0 

for j = q + r -  d + 1 . . . . .  r. The  following formula for Dq+,-a(X fq Er) is just the 
second part of (5.1). 

T H E O R E M  5.2. Let X be a point process of q-fiats with q + r >! d. Then 

= V f [E, ,  L] dPo(L). ~'/s, J~ 

Equation (5.7) gives the corresponding result for weakly isotropic X. Again, 
for Poisson processes of flats, similar formulas are obtained in Matheron (1975). 

Finally, let us assume that X is a process of ]-sets K ~ ~a ,  j c {0 . . . . .  d - 1}. 
Then  we can strengthen the formula in Theorem 5.1. For a ]-set K ~ ~ a ,  there 
are sets K 1  . . . . .  Kn ~ ~a  of dimension at most j with K = (.J n = l K  n and 

qri(K, ")= ~'. Wj(K,, .), 
i=1 

Let 

r/K = L Vi(Ki) EL(r,) (5.9) 
i=l  

where EL(r~ is the Dirac measure on L(K~) c ~ ,  a subspace parallel to the afline 
hull of Ki. It is easily seen that r/r depends only on K and not on the special 
representation K = U 7=1 Ki. r/r  is a measure on Lf~ with r / r ( ~ )  = V/(K), hence 

/5 0 _ 1 Po(r/.) 
Po(Vj) 

is a probability measure on ~Lf~. (Here we have to assume P0(Vj) > O, but the case 
P0(Vj) = 0 is of no interest for the following. We also leave out the details for the 
measurability of K ~ "OK, which follows from the definition of X by counting 
measures.) 

We call /50 the directional distribution of X.  

T H E O R E M  5.3. For a process X o[ j-sets K ~ ~a we have 

Dj+,-a (X  f'l Er) 

=Dj(X)  f [L,E,]dPo(L), r = d - ]  . . . . .  d. 
J~ 
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Proof. From Theorem 5.1, we know that 

Dj+,_~ (X tq Er) 

v(K  . . . . .  - _ -  . . . . . .  deo(K). 

i a - i  

Using the representation K = LJ ~'=1 K~ underlying (5.9), we get 

V ( K,  . . . , K ,  BE , . . • _ , B E )  
j d - j  

= ~ V ( K , , . . .  K , , B E ,  B~,) 
i = I  ) a - j  

= Kd_-~ t V j (K , ) [L (K , ) ,  E,] 

= Ka-jf.~ [L,  Er]d,riK(L) ' 

hence 

D~+,_~(X N E)  

= 3' I.~, [L, E,] d(P0(7/.)(L)) 

= D j ( X )  f [L, E,]dPo(L). 
J~e 

For a process X of j-sets we may consider the union set Y, 
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Y(to) = U K, 
K ¢ X(~) 

which is a weakly stationary, random closed set in R a. If the particles of X do not 
overlap (i.e., if their intersections are ( j -D-sets) ,  then the quermass densities 
Dr(X)  and D j + , _ a ( X  VI Er) depend only on Y. 

More precisely, from Theorem 4.2 it follows that D j ( X )  = 19](Y) and 

D j + r - a ( X  [') Er) = Dj+r-a( YVI E,) 

(see Weft (1983b) for details on quermass densities of random sets). Also, the 
directional distribution /5o of X depends only on Y. To see this, the following 
formula can be derived similarly to (4.3). Let M be a Borel set in ~?~ and, for a 
j-set K ~ ~a ,  let fl(K, M) be the closure of all midpoints of j-dimensional balls in 
K which are parallel to subspaces in M. As one can easily show, K ~->/3(K, M) is 
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measurable and translation covariant. Let Ko be a ball with Va(Ko) = 1. Then 

/5o(~)- 1 Dj(Y) E~j(Ko N Y,/3(Ko n Y, .~)). 

For stationary fibre processes (j = 1) in R 2 or R 3 and for stationary surface 
processes (j = 2) in R 3, Theorem 5.3 was obtained by Mecke and Stoyan (1980a), 
Mecke and Nagel (1980), and Pohlmann, Mecke, and Stoyan (1981) (see also 
Stoyan, Mecke and Pohlmann (1980) for a special nonisotropic fibre process in 
R2). Here fibre processes and surface processes are point processes on more 
general set classes but, as we have mentioned in the introduction, our model can 
serve as an approximation. As a more general result, which contains Theorem 5.2 
and Theorem 5.3 as special cases, Z~hle (1982) proved intersection formulas for 
point processes of Hausdorff rectifiable closed sets. The correspondence of /50 
with the distribution of tangents or normals in the above-mentioned papers can 
be seen from (5.9). We finally remark that /50 can be interpreted as the 
distribution of the tangent space in a 'typical point' of the random set Y. 

In order to obtain a second point process in Er we consider the case of 
projected thick sections. Let the convex cylinder Z0 --- K0 + Er be a thickening of 
the flat E, by a set Ko c ~d, Ko c E ,  ~ . If X is a weakly stationary point process of 
convex particles, we denote by (X N Zo) I E, the collection of projected inter- 
sections (K N Zo) ] E,, K ~ X. (X N Zo) I E~ is also a weakly stationary process of 
convex particles (in Er). We denote its intensity by 7~  and its shape distribution 
by Po zo. In order to get formulas for y~ ,  PoZo(Vj), and D j ( ( X  N Zo) ] E,), let/3 be 
a Borel set in the relative interior of a convex body K' c E,. As in Section 4, we 
get from the Campbell theorem (3.2) 

E ~ % ( ( K n Z o ) l ~ , / 3 )  
K~X 

= 7 I ~  IR k * j ( ( (K + x)N Zo)[ ~ , / 3 )  dha(x)dPo(K) (5.10) 

Using (2 .11 ) ,  w e  can  simplify the inner integral 

u ~ j ( ( ( K  + x + y) n Zo) I E,,/3) dAu~,(y) 

= ~u q'j(((K + x) N (Zo+ Y))I E,,/3) dAub(y) (5.11) 

= ~ j _ r ( K  + ( -  no) + x, E,,/3 + E,~). 

If K, Ko are polytopes in general relative position, (2.4) implies 
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I~, q~)+j-,(K + ( -  Ko) + x, E, ,  [3 + E#) dA~• (x) 

= f E  ~" " y ( F , E , , K + ( - K o ) + x , E , ) x  
r Fc~:d+i-r(K+(-Ko)+X) 

x [L(F), E,]A~(/3 + E#) dAE,(x) (5.12) 

= ~, v(F,  E, ,  K + ( -  Ko), E,)[L(F), 17.,] × 
F~d+j-r(K+(--Ko)) 

By (2.3) 

E, AF(/3 + X + E ,  x) da~(x)  

= [_ ~/a+i-,(F f'l (K '+  E~ + x), [3 + E ~, + x) dAE,(x) (5.13) 

= Va+j_,(F)~t~,(18 ). 

Combining (5.12) and (5.13) and using (2.13) and the multilinearity of mixed 
volumes, we get 

,~,÷j_.(g + ( -  go) + x. E..  13 + E~.) dX~r(X) 
(J) 

= Cba+j_,(K + ( -  Ko), E,))tE•([3) 

K,-S i=S i . ":'9 ~ , ' .  •, 
i d+j--r- - i  rZ j  

first for polytopes in general relative position, then for arbitrary K, K0 by 
approximation. 

In view of (5.10), (5.11), and Theorem 4.2, this result gives a formula for 
Dj ( (X fq Zo) l Er). 

THEOREM 5.4. We have 

oj((xn Zo) I ~r) 

= .yd 

Kr-- j  l 

x J~cf V ( K  . . . . .  K,  - K o  . . . . .  -1(o ,  B ~  . . . . .  BEr) dPo(K), 
i d+j--r--i r&j 

[or ] = O . . . . .  r. 



124 WOLFGANG WElL 

For weakly isotropic X, 

I V ( K , . . . ,  K ,  s K o  . . . . .  - K o ,  BE . . . . .  , BE,) dPo(K) 

= I s  L V(OK,. L''_' OK, -~Ko , . .  . ,  - K o ,  . , . . . ,  BE,)dPo(K)dv(O). 
o4 o i a+)-r-i ,-j 

o 0 4  i d + i - - r - - i  r - j  

= K~_j 3~di,,fo(V,)Va+s_,_,(Ko) ' 

r - j  

where we have used a rotation formula in Schneider (1981). Thus, Theorem 5.4 
implies 

d+j-r 

Ds((XN Zol l E,) = ~ ~ 3~ai,,Po(V,) Va+j-,-,(Ko), (5.14) 
i = j  

j = O , . . . , r .  
Since Tzo = D o ( ( X N  Zo)[Er), formulas for ~/Zo and PZo(Vj) follow from 

Theorem 5.4 and (5.14). For circular cylinders Zo, (5.14) is due to Davy (1976). 
As we have mentioned, (2.11) and (2.12) can be generalized to sets in ~a with 
appropriate modifications. We only consider the case of a fibre process X, i.e., a 
process of 1-sets. Here 

D,((X n ~ )  I Er) 

r 
3~ | V( K,  ~ Ko . . . .  , - Kg, Bs  . . . . . .  BE) dPo( K), 

K,-~ j~o d2-, , - ~  

which can be simplified using the directional distribution/50 

O1((X N Zo) I E,) 

r 
- D, (X)  I V(BL, Ko, . . . .  Ko, B ~ . , . . . ,  B~.) dPo(L). 

K1 K r -  1 J - ~ t  ~ " 
d - - r  r--1 

If X is weakly isotropic, then 

(5.15) 

DI( (X  ffl 7-.o) I E,) = rK'~--------L DI (X)  Va-,(Ko). (5.16) 
dK,-l ~ 

If the fibres of the process X have no segments in common, i.e., if the 
intersections of different fibres are 0-sets, then for/a,-almost all E, and for d >/3, 
D1 ((X fl Z0) I E,) depends only on the union set of (X n Z0) I Er. 

For Do((X FI Zo) lEr) or ~/zo no simple formulas exist, in general. If X is a 
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weakly stationary process of simply connected fibres each fibre K c X intersects 
Zo in finitely many (simply) connected parts. In order to determine Yz,, not only 

the number of these parts must be recognized from their projections onto Er but 
also it must be clear which parts in Zo come from the same original fibre K ~ X. 
Quite often this is impossible and it is much more realistic to consider the 
different connected parts of K f-) Zo, K c X, as the fibres of a new fibre process 
(in Zo) which are then projected onto Er. Let the resulting fibre process in Er be 
denoted by )~z~, and its intensity by ~/z~,. For Tz,, a simple formula can be given. 
By construction of .~z~, and from Theorem 3.1 we have 

1 
~ ,  = lim - -  E ~ V o ( g  f-) (Kt, + tBEr)). 

, ~  Vr(tBEr) K~x 

Now we can use (4.8) 

1 
7 z ' = l i m  V~(tBE ) ~/[Vd(Ko+ tBEr) + 

+ dPo( V ( -  Ko + tBE . . . . . .  - Ko + tBEr, "))] 

1 
= lim - -  y[ Va-,(Ko) V,(tBE,) + 

, ~  V,( tBE,) 

+ dPo( V ( -  Ko . . . . .  - K o ,  t B ~ , , . . . ,  tBEr, ")) + 
d ~ r  r~--I 

+ dPo( V(  S Ko . . . . .  ~ Ko, t B E , . . ,  tBE, "))], 
d - - r - 1  r 

hence 

. . . . .  ...... , ]  
K r • 

d--r--1 r 

Analogously to (5.15), a simplification of (5.17) is possible using /50. For weakly 
isotropic X, (5.17) becomes 

= Y[ Va-,(Ko) + 2Ka-1 Vd-r-l(go)Po( Vl)]. (5.18) 

For d = 3  and r = 2 ,  (5.15) and (5.16) were proved by Nagel (1983); for 
arbitrary d and r = d -  1, (5.16) and (5.18) are due to Zhhle (1984). 

6. Discuss ion and C o m m e n t s  

Before we study a few applications of the results obtained so far, we want to 
discuss some generalizations and interrelationships between the formulas. Also, 
some comments on the literature are in order here. 

We have studied point processes X of cylinders not only because they are 
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interesting models for several natural phenomena, but also as a unifying notion 
for both, point processes of particles and point processes of fiats. An important 
step in our considerations was the decomposition (3.1) of the intensity measure, 
which was based on the isomorphism i. i -1 transforms X into a point process ~" 
on ~q c R d × ~o .  ~ can be interpreted as a marked point process in R d, given by 
an underlying point process X in R a (which is the process of centers s(K), 
K + L ~ X) and with mark space ~o .  Some authors prefer to work with these 
marked point processes instead of X. For processes of particles, the two concepts 
are indeed equivalent (as long as the mark space contains only the shapes X ° and 
no additional information). For cylinder processes our approach is preferable 
since then the mappings X---~ ~ and X---),~ do not preserve invariance proper- 
ties, i.e., for stationary X, X and X need not be stationary. For a stationary 
process of particles, y is the intensity of the underlying ordinary (and stationary) 
point process X and Po is the mark distribution. Of course, X may have multiple 
points even if X is simple. 

As an even more general notion, point processes X of closed sets may be 
considered (see Matheron (1975)). Especially, if the sets C c X are in the class 5¢a 
of locally finite, countable unions of convex bodies, then the curvature measures 
~ ( C , - ) ,  j =  0 . . . . .  d, exist as (signed) Radon measures. However, a decom- 
position of the type (3.1) is more difficult in this case and, therefore, methods and 
results of the last sections do not immediately generalize to such processes X. For 
weakly stationary X, the quermass densities Dr(X) can be defined by 

E ~, q~s(C, ") = Os(X)" ha, j = 0 . . . . .  d. (6.1) 
C a X  

Here, of course, some conditions on X are necessary (similar to the conditions in 

Theorem 3.2) which guarantee that E ~ c ~ x  ~ i (C ,  ") is a locally finite (signed) 
Radon measure on R a. (6.1) then follows from the stationarity of O and the 
Campbell theorem. If X is, moreover, weakly isotropic, a modification of the 
argument in Section 3 (see Z~ihle (1986) for a similar proof) leads to the following 
analog of (4.7) 

d 

E ~., ~ i (Ko fq C, [30) = ~., aajkq~k(Ko, [30)" Da+s-k(X), (6.2) 
C ~ X  k = j  

j = O  . . . . .  d. 

In the same way, (5.6) and (5.14) can be generalized to processes X on 5¢a : 

Dj(X  f3 15,) = aai,Da+i-r(X), j = 0 . . . . .  r, (6.3) 
d+j--r  

Ds((X n Zo) I E,) = ~ y,o,,D,(X) Va+i-r-,(Ko), j = 0 . . . . .  r. (6.4) 
i=] 

Since cylinder processes X are special processes on 5¢a, (6.4) implies that (5.14) 
is true for processes of cylinders, too. 

There is an obvious connection between point processes on ~a (or 5¢a) and 
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random fled-sets, since for each point process X we can consider its union set Y. 
If the curvature measures obey 

• Fj(Y,-)= Z 
C ~ X  

(this is the case if the sets C e X have at most ( j -  1)-dimensional intersections), 
then 

Dj(Y) = Dj(X), 

hence, we have similar formulas for the jth quermass density of X and Y. Such 
formulas for random b~u-sets are obtained in Davy (1978), Weil (1983a), (1984), 
Weil and Wieacker (1984). For more general random sets, see Mecke (1981a) 
and Z~ihle (1982), (1986). A result in the opposite direction was obtained by Weil 
and Wieacker (1984) who show that any random flea-set Y is the union set of 
some point process X on 5(a. The construction can be modified so that X has the 
same invariance properties as Y (Weil and Wieacker (1986)). The connection 
between X and Y has led some authors to use the term 'process' in some cases 
for Y, too. For instance, fibre processes are sometimes random aggregates of 
fibres, where the individual fibres cannot be distinguished. 

For a process X of q-flats, the intensity 3' coincides with Dq(X), the mean 
q-content of X per unit volume (Theorem 4.3). Thus, the intensity 3' depends 
only on the union set Y of X. For a process X of q-sets (without overlapping), 
the intensity ",/and Dq(X) are different quantities. While y depends strongly on 
the number of different particles of X, Dq(X) is the same as Dq(Y) (where Y is 
again the union set). For this reason, some authors call Dq(X) the intensity of X, 
especially if the process is only given by its union set Y. 

From the intersection formulas which we have given, it is quite easy to obtain 
formulas for quermass densities of intersections and superpositions of two (or 
more) independent processes. The invariance conditions must be imposed only 
on one of the processes. In particular, this means that there are generalizations of 
the formulas of Section 5, where the r-flat Er is replaced by an r-set Ko or a (not 
necessarily stationary) point process Xo of r-sets. Formulas of this kind have been 
investigated in Mecke (1981b) and Z~ihle (1986). 

As we mentioned, the quermass densities of the process X and the union set Y 

are the same only in special cases. General formulas for the connection between 
Di(X) and Dj(Y) are known only for Poisson processes (see Davy, 1976, 1978; 
Wieacker, 1982; Weil, 1983a; Kellerer, 1984; Well and Wieacker, 1984; Z~ihle, 
1986 for more details). 

We have exploited the basic formula (3.2) only for the curvature measures 
since we aimed to apply the integral formulas of Section 2. It is obvious that the 
procedure underlying Section 4 can be performed if the curvature measures are 
multiplied by a 'weighting factor' g =  g(Z) which depends on Z 6  Lrq in a 



g(L)={[L,E,] -' 

then 
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translation invariant way. For example, (4.1) then reads 

E Y, g(Z) %(Ko n Z,/30 n t3(z)) 
,ZEX 

7[*i(Ko,/30) I g(K + L)*a-q(K,/3(K))  dPo(K+ L)+  

d--1 

+ ~, f g(Z)~o~)(Ko, Z,/3o x/3(Z)) dPo(Z)+ (6.5) 
k=]+l  J~'° 

+ ~a(Ko, [3o) ~:~,~ g(K + L)W~_q(K, ~O(K)) dPo(K + L)], 

j = 0  . . . .  ,d .  

Analogously, the other formulas in Sections 3 and 4 can be modified. Of 
course, the integrability conditions on X must be changed according to g, too. 
The variants which follow from this concept are too numerous to mention them 
all. We will use some special weighting factors in the following section. We give 

only two further results of this kind. If X is a process of convex cylinders, 
Ko c .Y[a, and g = Vj, then using (4.2) we have 

E 
Z~X 

d-q 1 (6.6) F 

L k= l  _1 

If Ko is a point Xo, (6.6) holds for arbitrary cylinder processes X and becomes 

E ~ Vi(Z)= 7Po(Vj" Va). 
ZeX,  
xo~Z 

If X is a process of q-flats, E, e ~a,  ~ c ~ a Borel set, ~ = {L + x lL  c 2 ,  
x ~ L-L}, and 

i f L ~  

i f L ¢  ~ '  

L ~  (6.7) 
= 3'P0(~)h~,, 

by Theorem 5.2 and the argument before Theorem 5.1. Similarly, for a process X 
of convex q-sets, 

1 
E x I t q + r _ d ( K  f'~ E~ ,  ") 

K~x [L(K), E,] 
L(K)~ (6.8) 

= D q ( X )  Po(~)XUr. 
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Since each process X of q-sets can be decomposed into a process X '  of convex 

q-sets with the same density Dq(X)= Dq(X'), (6.8) holds for arbitrary (weakly 

stationary) processes of q-sets with the appropriate definition of L(K). Special 
mention should be made of the case q = d - 1 .  Here,  the result applies to the 
process of boundaries of a particle process X,  provided bd K ~ ~a for K c X 
(e.g., boundaries of convex polytope processes). For dimensions 2 and 3, (6.7) 
and (6.8) are due to Ambartzumian (1977), (1982), Mecke and Stoyan (1980a), 
Pohlmann, Mecke and Stoyan (1981). Again, there are similar formulas with E, 

replaced by an r-set Ko or a process X0 of r-sets (e.g., Ohser (1981)). 

Formula (6.5) and its consequences have a close connection to another famous 
problem in stereology. If the shape distribution Po is concentrated on a class 
~ c  z o ,  the elements of which are characterized by one real parameter  h(Z) 
(e.g., diameter of balls), or if we are interested only in one real parameter h(Z) 
for Z ~ Zo and its distribution Ph (which is the image of Po under h), then we 

may choose h as weight g in (6.5). Consequently,  we obtain results analogous to 
those of Section 5 in which the distribution of h for those Z ~ X with Z ~ Er # 0 
is related to Ph. Notice that these formulas involve h(Z),  for Z f"l Er :P 0, Z c X, 
and not h(Z N 17,,). This is a variant of the classical Wicksell problem; formulas 
for processes of balls, discs, etc. are investigated by Mecke and Stoyan (1980), 
Pohlmann, Mecke and Stoyan (1981). 

Finally, we mention a special class of processes X of particles, the random 

mosaics. X is a random mosaic, if the union set of X is almost surely R d and if 
the intersection K fq K'  of different particles K, K ' ~  X(oJ) is a ( d - 1 ) - s e t  (for 
almost all realizations of X). The particles then constitute the cells of the mosaic 
(random mosaics with cylindrical cells can be defined in a similar way, but are of 

less interest). The  classical case are mosaics with convex cells (i.e., necessarily 

convex polytopes as cells), random curved mosaics have been treated by Weiss 
and Ziihle (1986). The  /-dimensional faces of the cells of a random mosaic X 

with convex cells form another point process X (j), j = 0 . . . . .  d - 1, with the same 
invariance properties as X. The main interest is in relations between the 
quermass densities of the processes X (°) . . . . .  X Ca-t) and X. Formulas of this kind 

are collected in Ambartzumian (1974), Cowan (1980), Mecke (1980), (1984), 

Radecke (1980), Weiss and Z~ihle (1986). 

7. Applications 

The formulas which we have presented deal with the quantities 3, and Di(X), 
j = 0 . . . . .  d, and the distribution Po (resp. /50) of a given geometrical point 
process X,  as well as corresponding notions of transformed images of X. 
Therefore ,  they can be used for the estimation of 3', Dj(X),  Po; in particular, 
they show which natural estimators are unbiased and which are not. In principal, 
each of the formulas can be exploited in this way. In the following, we will give 
some examples which are of special practical interest. 
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As a first example we consider a typical problem in image analysis related to 
edge effects in sampling windows. Let X be a stationary process of simply 
connected particles, in ~2.  The process X is observed in a sampling window 
Ko ~ ~2 (with area 1). The mean number of particles 3' is to be estimated. Natural 
estimators of 3" are gl = 'number of particles intersecting Ko' and g2 = 'number of 
particles K e X with K c Ko'. Of course, gl is an overestimation of % and g2 an 
underestimation of % More precisely, if X is isotropic and if the particles of X 
and Ko are convex the bias of gl is given by 

3~2Po(V1) • VI(Ko) + Po(V2)] 

(in view of (4.8)). If in gl each particle K is counted with weighting factor 

[1 + 2 VI (Ko) VffK) + V2(K)] -1, 

the new estimator gl is unbiased. Analogously, g2 can be changed into an 
estimator g2 if each particle K c  X, K c Ko, is weighted by a factor which 
depends in a more complicated way on the geometry of K and Ko (see Miles 
(1974) and Weil (1982) for details). If all particles are small enough w.r,t. K0, g2 
is unbiased. The disadvantages of these estimators are the following, g2 is no 
longer unbiased if there are particles K c X which do not fit into Ko. Moreover, 
if the particles of X and Ko do not have simple shapes, the calculation of the 
weighting factor is quite complicated. The weighting factor in 61 c a n  only be 
determined if VI(K) and V2(K), K c X, are known. This requires either know- 
ledge about the shapes in X or the possibility to observe the part K\Ko of the 
particles K e X with K fq Ko ~ 0. 

Since 3' is also the intensity of the underlying point process X of centers s(K), 
K ~ X, an obviously unbiased estimator of 3" is g3 = 'number of particles K c X 
with s(K)~ Ko'. This method of 'associated points' can be generalized by 
associating more than one point with each particle and by counting particles 
K c X with weights a ,  0 ~< a ~< 1, according to the number of associated points of 
K which are in Ko. For more details, see Jensen and Sundberg (1985), (1986). A 
variant of the method of associated points is the tangent count of DeHoff (1978). 
If the particles do not have simple shapes, the associated points method usually 
also has to use information outside the sampling window. Another disadvantage 
is that not all particles which are observed in Ko are represented in the estimator. 

An unbiased estimator which uses the full information of X (-I K0 can be based 
on the isotropic version of the system of linear equations (4.8), for j = 0, 1, 2. 
Solving this system yields unbiased estimators of Do(X), DI(X), D2(X) which are 
linear combinations of 

Y'. Vo(Kof'l K), Y. VI(KoN K) and ~ V2(KoN K). 
K ~ X  K ~ X  K ~ X  

Of course, here one has to assume that either X is isotropic or Ko is circular. 
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This estimator was proposed in the book of Santal6 (1976), pp. 282-286; it was 
studied in more detail by Schwandtke, Ohser and Stoyan (1986). Another 
estimator of 7 which uses the full information is the sum of the total Gaussian 
curvatures in int K0, 

g4 = ~ Wo(K,  int Ko). 
K E X  

In view of (4.4), g4 is unbiased. This estimator works for nonisotropic X and for 
arbitrary shapes K ~ X without requiring that the different parts of K in Ko are 
recognizable. Since in the plane ~F0(K, int Ko) is determined by the angles 
between the normals of bd K in the points of bd K n bd Ko, the estimator is also 
mathematically simple. If normals are difficult to determine in practice, DeHoff's 
tangent count with different directions of tangents can be used as a discrete 
approximation. Finally, if Ko = Co a simple unbiased estimator for 3' is given by 

[Vo(Co N K ) -  Vo(cS+Co N K)] 
K c X  

(see the discussion after Theorem 4.2). For more details about edge effects in 
particle counting, see the survey of Gundersen (1978) and the recent paper of 
Schwandtke, Ohser and Stoyan (1986). 

Concerning the variances of these estimators, simulations of special point 
process models with simple shapes have been performed recently by Kellerer 
(1985), Jensen and Sundberg (1986), Schwandtke, Ohser and Stoyan (1986). 

As a second example, we remark that (5.6) contains, for d = 2 or 3 and r = 0, 
1, 2, the set of 'fundamental formulas of stereology'. For simplicity, we consider 
only the case of a process X of simply connected particles. In the notation which 
is used in the stereological literature, the volume density Da (X) is written as Vv, 
AA, LL, Pc, for dimensions d = 3, 2, 1, 0, respectively. The surface area density 
2Da_I(X) is written as Sv, LA, PL, according to the dimensions 3, 2, and 1. 
Moreover, (2~-/(d- 1)) Da-z(X) which is the density of the integral mean cur- 
vature is denoted by Kv if d = 3, and the number density (or intensity) Do(X) = 
7 is denoted by Nv and NA, for d = 3 and 2. The same symbols are used for the 
intersection processes X f'l Er, r = 0, 1 , . . . ,  d - 1. The set of fundamental for- 
mulas then reads 

Vv = A A  = L L  = Pc, Sv = _4 L A  = 2 P L  , K v  = 27rNA . (7.1)  
"11" 

For lower dimensional particles (sheets or fibres) the same symbols are used, 
partially with a different (but obvious) meaning; e.g., for fibre processes in R z, LA 
stands for DI(X) (and not for 2DI(X)). Also other symbols with obvious 
interpretations may be used (Av, Lv, PA, etc.), see Stoyan and Mecke (1983) for 
the modifications. If the point process X is not weakly isotropic, the formulas 
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(7.1) still hold for expectations if the sectioning plane is chosen with a random 
direction (independently of X). 

If the intersection processes X (3 E, are used to get some information about the 
anisotropy of X then of course one has to work with fiats Er of different 
nonrandom directions. In particular, this is the case if information about the 
directional distribution /50 of fields of fibres or sheets is wanted. Since the 
direction of a plane in R 3 as well as the direction of lines in R 2 or R 3 is determined 
by a unit vector, the directional distribution/5o for d = 3 or 2 can be viewed as an 
even probability measure on the unit sphere l)  in R 3 or R 2. The quermass 
densities Dj+r-a(X (3 F~), for d = 3 and r = 1, 2, or d = 2 and r = 1, when E, is 
supposed to be variable, are functions on ~ d ,  hence, they can also be represen- 
ted as functions on 1~. With the notation used earlier, Theorem 5.3 then gives the 
formulas 

LA(x) = Sv In [sin o6u, x)[ d/5o(U) (7.2) 

and 

eL(x) = Sv I. Icos x)l d&(u) 

for a process X of sheets in R 3, 

(7.3) 

NA(X) = Lv In Ic°s a(u, x)l d/5o(U) (7.4) 

for a process X of fibres in R 3, and 

PL(x) = LA In Isin a(u, x)l d/5o(U) (7.5) 

for a process X of fibres in R 2. Here, a(u, x) is the angle between u and x and x 
is the direction in which the intersection is taken. By a well-known uniqueness 
result (see the survey of Schneider and Weil (1983)), /50 is uniquely determined 
by any of the functions on the left sides of (7.2) up to (7.5). The inversion is 
simple in the case of (7.5), since here PL(') is the support function of a centrally 
symmetric convex body Ko c R 2 and t5o is just the normalized 'length measure' of 
Ko (the image of q~l(Ko, ") under the spherical image map from bd Ko onto l)). 
For smooth Ko, /50 can be determined analytically; for a polygon Ko, /5o can be 
given directly. This also indicates a simple procedure for the estimation of 15o if 
PL(x) is only known for finitely many directions x. The inversion of (7.2), (7.3), 
and (7.4) can also be done analytically (under appropriate smoothness assump- 
tions) but the estimation of /50 from finitely many directions is a much more 
complicated problem. As we already mentioned in the last section, the situation is 
much easier if it is possible to observe in the plane (line) of intersection E, the 
angles of the sheets or fibres with Er. Then, /50 can be estimated directly from 
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(6.8). Another method is possible if the fibres are replaced by cylindrical tubes 
(Stoyan (1984), (1985b)). 

Finally, we want to discuss the situation of projected thick sections. The most 
interesting case for applications is that of a circular cylinder Zo = E1 + tBE~ or a 
thickened plane Zo = E2 + tBE~ in R 3, t > 0. 

If we first consider a weakly isotropic field of convex particles, then the 
quermass density on the left side of (5.14) is a function of t alone and we get for 
the two situations mentioned above 

1 PL ( t) = ~ Sv + tKv + 2 7rt2 Nv  , 

LL(t) = Vv  + ~ tSv + ½ t2Kv, 
4 

(7.6) 

and 

1 
NA(t) = ~ K v  + 2tNv,  

LA(t) = 4 Sv + tKv,  (7.7) 

AA(t) = Vv  + ½ tSv. 

Of course, for t = 0 the formulas (7.6) and (7.7) reduce to (7.1). If thick sections 
with at least two different thicknesses are available, Equations (7.6) or (7.7) can 
be solved for Nv,  K v ,  Sv,  and Vv and, hence, unbiased estimators for these 
quantities result. In particular, this allows an estimation of the intensity Nv (as 
was first observed by Matheron (1976)) which is not possible by sections of zero 
thickness. If more variation of the thickness is possible, regression methods can 
be applied (see Voss and Stoyan (1985)). By combination of (7.6) or (7.7) with 
(7.1) simple approximation formulas for Vv (or Sv) can be obtained (see Stoyan 
(1985a) for details). 

If X is a fibre process, then (5.16) (or (7.6) and (7.7)) gives 

'77" 2 "/1" 
L L ( t ) = ~ t L v  and LA(t )=-~tLv .  

If we write /~/A, respectively ½ PL, for the intensity z/s,, (5.18) gives 

PL(t)= "rrtLv + 2~rtZNv and NA(t)=½ Lv + 2tNv.  

For nonisotropic processes X,  the formulas are more intricate. We mention 
only the results for fibre processes. Of course, now the densities for the projected 
thick sections depend on t and on the direction x of the cylinder Zo, x ~ l-l. From 
(5.15) we then get 

LL (t, X) = 7rt2Lv Ia Ic°s a(u, x) I d/50(u) 
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and 

LA( t, X) = 2tLv J~ Isin ¢x(u, x)l dP0(u), 

(5.17) implies 

PL(t, x) = 27n2Nv + 4tLv Io Isin a(u, x)] dPo(u), 

lQa ( t, x) = 2tNv + Lv f ,  Icos a(u, x)l dlho(U). 

WOLFGANG WEll_ 

8. Final Remarks 

The main purpose of this article was to transform general integral formulas for 
curvature measures into density formulas for geometric point processes. To this 
end, the integral geometric results, the fundamentals of geometric point proces- 
ses, and the resulting general density formulas have been presented with the 
corresponding background and complete proofs, if necessary. The generaliza- 
tions in Section 6 and the applications in Section 7 are treated in a much more 
cursory fashion, they have been included to show the variety and significance of 
the theory as a unifying approach to the many existing results in the literature. In 
some cases, the situations have to be studied in more details, and this will be done 
elsewhere. In others, the interested reader should be able to fill in the gaps. 

More information about geometric point processes (in particular, higher-order 
properties which we have omitted completely), and applications in image analysis 
and stereology can be obtained from the book of Stoyan and Mecke (1983) (see 
also the forthcoming English version by Stoyan, Kendall, and Mecke). There one 
also finds additional literature, since our list of references is concentrated on 
those articles which are directly connected with the material presented here. 
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