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Abstract. The development of single channel recordings has 
brought with it the need to analyse enormous amounts of 
data. The data analysis is time consuming and subject to 
observer biases since the: events are random in time and are 
contaminated with uncorrelated noise. We have developed a 
heuristic pattern recognition program which identifies with 
high precision single channel currents and rejects contaminat- 
ing noise. The program interactively provides for a variety of 
amplitude and duration measures. Analysis is flexible and 
rapid: a file containing over 10,000 events can be analysed in 
under 2 h. 

Specific detection features include variable lowpass filter- 
ing, automatic baseline restoration, and adaptive amplitude 
thresholds. A record is analysed through duration histo- 
grams, binomial estimates of the number of active channels 
present, cross-correlation estimates between parameters, 
spectral analysis of events and background noise, and sta- 
tionarity of mean channel current. The graphic output 
facilities can plot raw data (after filtering and baseline 
restoration) with the idealized signal superimposed or with 
detected events underlined. A batch processing facility has 
been included to allow processing of data during periods of 
low computer demand. 

Key words: Ion channels - Single channels - Electro- 
physiology - Computer-patch clamp 

Introduction 

Since the development of the single channel recording 
techniques by Neher and Sakmann (1976), the method has 
been applied to many different preparations (Neher 1981; 
Hamill et al. 1981). The currents from single channels have the 
form of discrete jump-like events of random duration im- 
posed upon an approximately Gaussian background as 
shown in Fig. 1. Since the relevant types of data are the cur- 
rent amplitude, the duration of channel "open" and "closed" 
times, and possible correlations between parameters, extract- 
ing the statistical properties of ionic channels from such 
records can be extremely time consuming. Many events have 
to be measured in order to gather statistically meaningful 
estimates of the transition probabilities between states. 

We have worked for several years on automated analysis 
of this data, and over that period of time, the algorithms for 
analysis have undergone many cycles of complexity and 
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simplification. It is our intent here to discuss what we have 
found as the most useful approaches and some of the hazards 
and pitfalls. There are many possible alternatives and un- 
doubtedly more sophisticated approaches. The program has 
been designed to deal with stationary data and has been used 
exclusively for that purpose, but the modifications necessary 
to analyze channels with time dependent transition prob- 
abilities, such as single sodium channels (Patlak and Horn 
1982), are minor. The analysis will be discussed using mostly 
nicotinic receptor-channel data as examples, since the bulk of 
our experience comes from that system. In what follows, we 
shall use the term "channel" interchangeably with "unitary 
current", to refer to the current that passes through a single 
channel. The term "unitary current" may be more precise, but 
is often clumsy in use. 

The analysis program, titled IPROC, analyzes, off-line, 
the data time series for amplitude and duration information. 
Amplitude information is categorized in several ways. The 
most unbiased output is a total amplitude histogram, follow- 
ing baseline correction, of every data point in the record. This 
histogram contains information on the variations in channel 
amplitude and properties of fluctuations in open and closed 
states, possible dose response data (Sachs and Barkakati 
1980), as well as information on the probability of activation. 
That is, the area under each peak in the amplitude .histogram 
may be taken as proportional to the time spent in that state, or 
the probability of occurrence. The amplitude histogram can 
then be analyzed according to a binomial or Poisson distri- 
bution (see below). 

A second amplitude histogram is generated from all those 
events which are judged by the program to be single chan~els. 
This is a highly biased amplitude histogram since only events 
occurring within definite amplitude limits are accepted, and 
weighting factors for the amplitude, such as the duration or 
steadiness of the amplitude, are lost in the compilation. 
Nonetheless, this histogram is useful for checking program 
operation, and searching for discrete populations of channels 
with different conductance. 

A third amplitude histogram is constructed for events 
which are multiples of the unitary current amplitude (cf. 
Fig. I B). Each data point which fails within an error band 
about a multiple of the unit event amplitude is entered into the 
histogram. This discrete level histogram is subjected to a 
binomial probability maximum likelihood estimate of the 
number of channels contributing to the record and the 
probability of each channel being open (cf. Korn et al. 1981; 
Patlak and Horn 1982). 

Finally, as a rough measure of stationarity, the mean 
current of each record is calculated and plotted as function of 
record number. 
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Kinetic information is gathered in several forms. The 
simplest measures are the distribution of  single channel open 
times and closed times. Currently, multiple amplitude events 
are not analyzed kinetically because of  the ambiguity in rates 
introduced by not knowing which channel is undergoing a 
transition. Provided that the multiple events arise from 
independent channels, unambiguous equivalent information 
can be obtained from single events, al though a bias may be 
introduced by the greater l ikelihood of multiple events 
occurring during long bursts (see discussion). Since all dosed  
states are electrically equivalent, and there are usually several 
closed states, the opening rates must be scaled by the number 
of  channels available to make the transition. 

Closed periods may cover a wide range of  time scales, 
from tens of  microseconds to tens of seconds. In order to 
preserve the information with a wide dynamic range, three 
closed time durat ion histograms are constructed with bin- 
widths an order of magnitude apart.  

A third type of durat ion accounting is concerned with 
activity that  occurs in bursts, as shown in Fig. 1C. These 
bursts of  activity are categorized by a class of  closed times 
much shorter than the class of times between bursts, and 
generally represent repetitive activity of  one channel (Neher 
and Steinbach 1978; Nelson and Sachs 1979, 1981). There is 
always some ambiguity in defining criteria for identifying 
these bursts, but in relatively sparse records, the ambiguity 
can be minimal (Colquhoun and Hawkes 1981). We catego- 
rize a burst  as a series of  events of unit ampli tude preceded 
and followed by a closed time greater than some threshold. 
The burst  parameters  that  we currently measure are the burst 

length, and the number of  events per burst. The motivation 
for these measures can be seen from the simple sequential 
model for the nicotinic receptor-channel shown below, where 
A represents an agonist, Rc represents the channel in its 
closed conformation and Ro the channel in its open confor- 
mation, and rate constants as indicated 

ARc + A ~,~ A A R c , ~  AARo.  (1) 
kd c~ 

Interpreted according to the above model for binding and 
channel opening, the mean intraburst  closed time represents 
the inverse of  (fi + ka), the intraburst  open time represents the 
inverse of ~. The number of events per burst combined with the 
opening rate gives the dissociation constant, ka (Colquhoun 
and Hawkes 1977), and with an assumption about the num- 
ber of channels, k, can be derived (Nelson and Schs 1982). 

We have adapted the program to analyze, for example, 
ampli tude-durat ion cross correlations for open and dosed  
times (cf. Auerbach and Sachs, in preparation),  power spectra 
of open and dosed  channels and bursts, and durat ion 
correlations between events. 

Methods 

A unitary current can be easily recognized by even the casual 
observer as a sharp step in the current-time trace, as shown in 
Fig. 1. For  long steady events, with a good signal-to-noise 
ratio, and only a single populat ion of identically sized unitary 
currents, the identification task is simple. With signal-to- 
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Fig. IA--C. Different types of unitary current records recorded from chick myotubes in tissue culture. In all panels inward currents are shown 
downward. The program has identified valid unitary events by drawing straight lines through the events at the unitary amplitude. (A) A record of single 
events recorded in 100 gM carbachol, 18 ~ C, - 80 mV, with a bandwidth of 2 kHz. No bursting is seen in these records. The mean number of events/burst 
over the whole experiment was 1.3 (DT ] 42460. CA). (B) A record containing multiple events, illustrating the need to deal with multiple level events and 
events crossing record boundaries. This record has little baseline present. Much of the record has been ignored by the program because of the presence of 
multiple events. (50 p.M earbachol at t0 ~ C, -50mV, bandwidth 2kHz, DT142930.CA). (C) A record of burst behavior recorded with 80nM 
acetylcholine at 10 ~ C. Membrane potential - 116 mV, bandwidth 2 kHz. The burst crosses the record boundary (DT130550.AC) 
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Fig. 2 
Flow chart of the main program flow of 
IPROC. Important subroutine names are 
shown in parentheses. Some variable names are 
shown for brevity (Note, EOR stands for end 
of record). Refer to the text for more details 

noise (p-p) levels less than five, and the need to analyze short 
events in the possible presence of  multiple channel activity, 
the analysis is much more difficult. The algorithm currently 
employed is diagramatically illustrated in Fig. 2, and de- 
scribed in the following text. 

Data is digitized from analog magnetic tape, stored in 
binary on a 5 MB hard disk, and read in 0.25 to 4 kword 
blocks. (In what follows "/cword" indicates thousands of 
16 bit computer words.) For consistency in programming all 
significant deflections are taken as positive. Thus, inward 
currents, normally recorded as negative going deflections are 
inverted prior to analysis. 

In order to provide for variable filtering of the data, 
subroutine ILPF uses a finite impulse response (FIR) digital 
filter to reduce the bandwidth below the normal Nyquist limit 
applied to data conversion (Peled and Liu 1976). The F IR  
filter chosen for its simplicity of  implementation was mod- 
elled after an ideal low pass filter (zero phase, flat frequency 
response to cutoff, and zero thereafter). For infinitely many 
terms, such a filter overshoots by 17 ~ ,  but if the coefficients 
are Hamming tapered, find the number of  coefficients is small, 

the overshoot can be reduced to a few percent (at the expense 
of the slope of  the cutoff region of  the filter). This filter offers 
the advantage of  extremely steep cut-off in the frequency 
region just above the 3 dB cutoff. I fa  monotonic step response 
is desired, other filter functions such as a Gaussian or Bessel 
could be implemented. These filters, however, have a slow 
transition from the pass band into the stop band, and for the 
same cutoff frequency, pass more noise. No effort is made to 
decimate the data (remove correlated or redundant data 
points) following filtering, an operation that would increase 
processing speed proportionately. The filter routine is cur- 
rently being expanded to permit frequency response cor- 
rections for the limited bandwidth of  the head stage amplifier 
(Ostrem and Falconer 1981). 

After filtering, the next step is to find the baseline using 
subroutine BASE (see Fig. 3). This operation has produced a 
surprising number of  complications. Low pass filtering will 
not produce a reliable baseline, since the presence, duration 
and location of unitary currents within the record is variable, 
and filtering will give the mean rather than the zero current 
baseline. Our simplest and most reliable algorithm fits a 
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Fig.3. Flow chart of subroutine BASE which finds the baseline of a block. The reader is refered to the text for further details 

Fig. 4. Flow chart of subroutine IVAR which calculates the mean deviation of the background noise. Data is delivered to this routine following baseline 
correction. The mean deviation of the data and the mean is computed relative to the baseline. The maximum amplitude point is chosen, and all 
contiguous data points greater than the mean of the data are deleted to the right and left of the maximum. A new mean and mean deviation are 
computed, and the cycle repeats until the change in deviation is less than some error limit, ERR. 

straight baseline which maximizes the number of zero cross- 
ings. The algori thm operates as follows. Given that the 
currents are positive going, the most negative point  in the 
record is chosen and a straight line is passed through it. The 
line is stepped in the positive direction until a significant 
maximum in the number of zero crossings occurs. Signif- 
icance is measured by an arbi trary set of standards which have 
proved satisfactory in most circumstances: (1) there must be 
at least ten crossings in a 1 kword record sampled at the 
Nyquist  limit; (2) there are no other maxima within ten steps 
in the positive direction from any suspected maximum. 
(Selection of the appropria te  step size is discussed below.) 
Once the baseline is found, it is subtracted from the data  
record, and the data  is returned to the main program for 
further processing. 

We have encountered two types of  problem with the 
algorithm. With very long durat ion events, such as those 
shown in Fig. 1B, i.e., those which occupy most of a record 
block, the program may locate the baseline at the channel top 
rather than at true zero. By taking long enough record 
lengths, this problem may be minimized. Long record lengths, 
however, lead to another problem. The baseline may not be 
flat, but  sloping or even curved. We have handled the linearly 
sloping baseline by dividing the record in half, fitting a flat 
baseline to each half  and passing a straight line through the 
midpoints of each subdivision. This strategy is generally 
successful, but  the subdivision of the record causes problems 
for currents occupying most of a subdivision by again 
confusing channel tops for baselines. We have also used 
higher order spline fits for curved baselines, but  these 
algorithms are even less stable although they can work very 
well on some data  sets. 

The problem of  confusing the top of  the channel with the 
baseline could be avoided by having a more global view of the 

data  than a 4 kword record permits. This, however, entails 
baselines with more drift and curvature. Our experience is 
that the straight baseline, al though not  fitting as well as might 
be desired, rarely makes drastic errors, and evaluation of the 
baseline, record by record, rather than bringing in data  from 
previous records, prevents errors from propagating.  The 
record length should be chosen to be short  enough so that  the 
baseline slope errors are minimized, and there is enough 
"closed time" to clearly define the baseline (at least 10 ~o of the 
record should be closed time, using Nyquist  sampling 
frequencies). We have introduced one simple trap to extend 
the effective record length. We test whether the current 
baseline is within, typically, two s tandard deviations of the 
background noise (see below) from the previous baseline. If  
the current baseline estimate is deviates by more than two 
standard deviations from the previous baseline, the previous 
baseline is used for the current record. This process is only 
carried on for a limited number of records to prevent 
propagat ing errors. 

In the process of finding the baseline, the step size for 
advancing the putative baseline could be increased if the 
background noise level were known. For  the first record, 
where we do not  yet have a measure of the background noise, 
we have conservatively taken the step size to be the minimum 
value, i.e. one bit (typically 2.5 fA). The step size would ideally 
be computed as a fraction of  the s tandard deviation of the 
background noise. Unfortunately,  if the channels have not yet 
been identified, there is no way to measure the baseline noise. 
An estimate of  the s tandard deviation could be input  by the 
operator,  but  we found that unnecessary since the algori thm 
used in subroutine I V A R  produces good estimates of back- 
ground noise. 

Once the baseline has been found for the first record, the 
s tandard deviation of the background noise is computed by 
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Fig. 5A and B. Comparison of algorithm performance in the presence of noise. (A) A record containing both single channel data (top line) and significant 
amounts of noise (lower line) was analysed by a simple threshold-crossing algorithm, with extensive false identification. In this figure, inward currents 
are shown upward going, baseline and channel detection are drawn in, and bursts are underlined. (B) Same record analysed by the burst variance 
algorithm. Amplitude thresholds were identical to those used by the threshold-crossing algorithm (+ 5 s.d.). Data (inward currents) are shown 
downward going, identified bursts are underlined, but baseline and channel detection are not plotted 

subroutine IVAR. The essential algorithm is shown in Fig. 4. 
The routine seeks out the largest (most positive) events and 
deletes them from the record. The deletion is discontinued 
when deletion of  an event results in a negligible change in the 
remaining record variance, as expected for deletions of 
stationary noise centered about the baseline. We have found it 
unnecessary to calculate the standard deviation for each 
record, since it varies little, and consequently we usually use 
the value obtained from the first record. The first record 
should be of relatively low duty cycle to reduce errors. 

The next step is to detect valid transitions in the current. 
The main feature of a transition is that there is an abrupt 
change in amplitude. Since transitions between multiple, 
independent, channels yield events which are ambiguous in 
duration, we have chosen to ignore the kinetics of  multiple 
level transitions. For transitions between zero and one event, 
we have found that a simple threshold crossing criterion is the 
most reliable. The threshold is set symmetrically at one half 
the unitary current amplitude, so that on the average, there is 
no net time skew from the low pass filtering. The initial 
estimate of  unitary current amplitude is input by the operator. 
The subroutine named TRANS detects transitions. It 
searches a given record starting at the location of  the last 
transition, and returns with the location and polarity of the 
next valid transition. 

We have tried identification of  unitary currents using 2 
different algorithms. In our initial efforts, the amplitude of 
individual events was determined by a maximal zero crossing 
technique similar to that used for baseline correction. 
Channel acceptance was based only on the comparison of this 
amplitude to upper and lower adjustable thresholds sym- 
metrically distributed about the estimated unitary current 
amplitude. This method offered ease of  implemention, fast 
execution, and worked reliably for well characterized data 
such as shown in Fig. I. Unfortunately, not all data from 
single channel preparations has such ideal characteristics. A 
common non-ideality can be seen on the second line of 
Fig. 5A. This artifactual signal, which we currently believe to 
be a membrane-glass seal breakdown, is often observed at 
high electrode potentials. To avoid accidentally accepting any 

of these events we developed a second algorithm which 
compares the raw data to a binary switching model. 

Visual examination of Fig. 5 reveals that there are two 
essential differences between the desired single channel signal 
and the artifactual signal. First, all events in the desired signal 
are reasonable approximations to a rectangular pulse, which 
is not necessarily true for the artifactual signal. Second, and 
most important, the desired signal consists of a burst of  equal 
amplitude events (the unitary current), while the events 
comprising the artifactual signal are of  essentially random 
amplitude. These observations suggest that we could get 
better artifact rejection by analysis of  the entire burst as a 
single entity. 

This concept is implemented in subroutine BVAR, which. 
determines the amplitude for a burst of single channel events 
and the rms (root mean square) deviation of the data from the 
model, which consists of a string of equal amplitude pulses. 
The amplitude of the events in a burst is obtained by 
computing the mean of  those points above the detection 
threshold. The value returned as the rms deviation from the 
model is divided by the already computed baseline standard 
deviation. The entire burst of  events is accepted if the scaled 
deviation is less than an adjustable threshold and the 
amplitude is within acceptable limits as discussed above. Due 
to finite amplifier settling times, the amplitude of a burst 
calculated from the mean may be significantly below the true 
amplitude depending on the channel open time. This ampli- 
tude, however, is only used for detection. The true channel 
amplitude is estimated as a mean of  open channel currents 
measured after allowing for settling. 

Once a potential burst has been identified, a running 
estimate of  the channel amplitude is updated. The estimate is 
a weighted average of the amplitude of  all unitary events, and 
since the threshold for detection is tied to the current 
amplitude, this provides an adaptive feature that simplifies 
program setup and increases reliability. The weighting used in 
calculating the best estimate of channel amplitude is the 
length of  the burst divided by the standard deviation from the 
model. Long, steady amplitude events contribute more than 
short or unsteady events. 
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Fig. 6A and B. The analysis of burst behavior. (A) Flow chart of subroutine BSGET which is called at the first opening transition of a burst. The routine 
moves a segment of data containing a putative burst into an analysis buffer, and constructs a list of opening and closing transition times. NEV is the 
number of events in the apparent burst. LIST (1, NEV) is the location of the opening transition for event number NEV. LIST (2, NEV) holds the location 
of the closing transition. Each open period is checked for multiple activations, and a flag (MULS[NEV]) is set if the upper amplitude threshold is 
exceeded. Additionally, flag MUL indicates the presence of a multiple activation anywhere in the burst. LBST is the intraburst closed time threshold (in 
sample intervals). (B) Flow chart of subroutine BSTST. BSTST is called after the apparent burst has been stored in the analysis buffer by BSGET. 
Subroutine BVAR returns the mean amplitude of the open periods and the mean deviation of the burst from the model (see text). Acceptance is based 
upon comparison of these values to adjustable thresholds. The amplitude acceptance thresholds are continuously updated as a weighted mean of the 
amplitude of accepted events, with weight w = (burst length) * SD (baseline)/SD (burst) (SD = standard deviation) 

The measurement of channel closed times is constrained 
to measure the times between events of unit, or larger, 
amplitude. Not  uncommonly,  a noise spike, or perhaps a 
channel located under the pipette rim will cross the amplitude 
threshold, but when tested by BVAR will have an amplitude 
below the lower cutoff for valid single channel events. These 
low amplitude events do not terminate a closed time. Closed 
times are defined as times between unitary or larger currents. 
Thus, a closed time can only be measured after a unitary or 
multiple event is terminated and validated. Closed times are 
entered into the three closed time histograms. 

Bursts which cross record boundaries necessitate elab- 
orate bookeeping. We have simplified the analysis by going 
from a record-oriented to an event-oriented system using a 
dynamically allocated buffer to hold each burst (subroutine 
BSGET). The flow of control in subroutine BSGET is shown 
in Fig. 6A. The buffer for burst storage is divided into an 
integral number of frames. When BSGET is called, the 
beginning of the putative burst is placed in the first frame of 
the buffer. BSGET searches from the opening transition to 
the end of the frame for a closed period longer than the 
threshold selected to terminate bursts. If a long enough closed 
time is not found, the next frame of the record is read, stored 
in the next frame of the buffer, and searched for a terminating 
closed period, and so on. During this process, the program 
constructs a list of opening and closing transition locations 
(measured in sample periods). Each open period is tested 
against an upper amplitude threshold to assure that it is not 

the result of multiple channel activations. Any interval which 
fails this test is flagged as a multiple event. 

After acceptance of the string of unitary events by BVAR, 
the event string is validated by BSTST (Fig. 6B). Bursts are 
defined as a series of unit  amplitude events separated by 
closed periods less than some threshold duration. This series 
must both begin and end with closed times greater than the 
burst defining threshold. The intrusion of multiple events 
invalidates the measurement of burst length, but will not 
interfere with the measurement ofintraburst  kinetics. Isolated 
single events are included in the accounting as bursts consist- 
ing of one event with a length equal to the open time. 

An important part of the analysis is a constant com- 
parison of the raw data and the recognition program output. 
As shown in Fig. 1, both the real and idealized data can be 
plotted superimposed, or alternatively, only identified bursts 
may be underlined (cf. Fig. 5 B). Switches set in the interactive 
portion of the program permit the display of either all records, 
only those records containing unitary events, or none at all. 
The latter option is often used when detection criteria are 
remaining fixed, but classification criteria, such as histogram 
resolution or threshold need to be changed. 

At the end of the complete data file, the mean and the total 
number of counts of all histograms are printed out in order to 
provide a quick summary of the data and provide starting 
values for subsequent curve fitting. 

In order to estimate the number of channels active in the 
patch so that rate constants for independent channel opening 
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Fig. 8. Discrete level histogram and the log of the binomial likelihood function. We observed the overlap of two unitary events in the record. The 
likelihood function peaks with a pool size of three�9 The noise in the likelihood function at large pool sizes is due to single precision numerical errors, and 
points out the futility of estimating large pool sizes with a low probability of occurrence 

can be scaled properly, the discrete level histogram is 
subjected to a maximum likelihood analysis assuming a 
binomial distribution of' independent channel activity (Korn 
et al. 1981). Subroutine POOL calculates the likelihood that 
the number of observations at each level came from a 
binomial distribution of N channels each having a probability 
p of  being open at anyone  time. The likelihood function, L, is 
given by, 

N 

L = 17 P(i, N,p) ~, 
i = 0  

where P(i, N,p) represents the binomial probability of ob- 
serving level i with N channels in the pool, each with a 
probability p of being open, and xi represents the number of 
observations at level i. The logarithm of L is a sum of terms 
rather than a product and somewhat simpler to manage. L is 
analytically maximized with respect top  by setting to zero the 
partial derivative of L with respect top  (see Korn et al. 1981). 
Thus, p = <i>/N. The likelihood function is maximized with 
respect to N by calculating the log(L) for each N from the 
observed maximum level up to 80 channels and searching for 
the maximum. The parameters N and p are printed out and 
the log of  the likelihood of  function is plotted to further judge 
validity of the maximum (cf. Fig. 8). 

IPROC has been built with a number of  convenience 
features that simplify setup and repetitive, or batch process- 
ing. For setting up the run time parameters, an interactive 
dialog (DIALOG) presents default parameters for potential 
modification. The output is generally directed to a Tektronix 
graphics terminal to display the results of  identification. 
Following the presentation of each data record, the operator 
has the option of  altering any of  the parameters, typically 
bandwidth, estimates of the single channel amplitude, or error 
limits. Following each adjustment, the parameters are written 
out to the parameter file for that data record. When 
satisfactory parameters have been fixed, the file may be 
rewound and analyzed, or the program terminated for later 
batch processing. In batch mode, the data file is specified 
following the call to IPROC, and the existing parameter file is 

used for setting run time parameters. A local edit mode switch 
can be set after the file name to permit editing an existing 
parameters file. This feature is useful for making minor 
modifications in a preexisting parameter file. 

Results 

We have found that with data having a signal-to-noise ratio of 
greater than five to one and a steady baseline, the reliability of 
the program is virtually as good as a trained observer. The 
program is constructed in a conservative manner so that false 
positive identifications are rare. That is, virtually no multiple 
events enter the histograms, but some single channel events 
are missed, usually due to excessively short duration or low 
amplitude. The usual sort of tradeoffs of time resolution and 
reliability operate here. If  very short events are to be identified 
(i.e., those events of  only one point duration), then the 
number of  false positive triggering events will increase. 
Similarly, excessive low pass filtering will increase the loss of 
short events. The program has not been optimized for 
running speed, although integer operations have been used 
wherever possible to increase speed and reduce storage 
requirements. The current analysis time is about three 
seconds per 2 kword block of  data, although the actual 
runtime may be limited by the plotting output speed�9 Typical 
output histograms of  the runtime analysis are shown in 
Figs. 7 - 1 0 .  

Figure 7 shows a typical total amplitude histogram. In the 
example shown, the width of  the peak corresponding to single 
channels, approximately bin 40, has about the same width as 
the background noise peak at bin 20 (note, the origin of the 
histogram has been shifted to bin 20 to encompass the positive 
and negative components of  the background noise). Some 
amplitude histograms show pronounced skewing toward the 
low amplitudes indicative of  currents arising from channels 
within the sealing region between the membrane and the 
pipette (Sachs and Barkakati 1980) or speed limitations. We 
have seen cases, notably with suberyldicholine at very positive 
membrane potentials, where the channels appear to be 
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Fig.9. Open times and burst length for a 70pS potassium selective 
channel in tissue cultured chick muscle. Data was curve fit with a single 
exponential function (solid lines) by a non-linear regression program. 
(Data courtesy A. Auerbach.) Fit parameters were for the open times: 
12,800 +_ 300 counts and 1.68 _+ 0.040 ms and for the burst length 5,830 
• 190 counts and 4.21 _+ 0.15 ms. Error limits are for 90 % confidence 
based on "support plane" estimates which takes into account cross 
correlations between parameters (Marquardt 1964) 

~ d  
g. 

oo ~'.oo g .o~ " " I ~ . ~ 0  ~ " i B . 6 0 "  " 2~ .~0  2~ .00  2'8.00 
NUMBER OF E V E N T S / B U R S T  

Fig. 10. Histogram of the number of events per burst, with a burst defined 
as a series of unitary events separated by closed times less that 5 ms. The 
smooth curve represents a weighted nonlinear regression to a geometric 
probability law. P(n) = P"- 1 (1 - P). For these data, P is given by 0.67. 
(100 gM carbachol, 10 ~ C) 

flickering at frequencies beyond the bandwidth of the system, 
so that  there is a wide variation in recorded channel 
amplitude. 

Figure 8 shows the discrete level histogram and the log of 
the l ikelihood function. The maximum observed level was 2, 
and the l ikelihood function peaked with pool size of 3 and a 
probabi l i ty  of 0.019 per channel of being open. Most  

l ikelihood estimates have been in the range of 1 to 7 channels. 
The meaning of this number is not immediately clear since all 
measurements of channel density with labelled bungarotoxin 
give densities of hundreds to thousands/square micron 
(Sytkowski et al. 1973; Elson 1979). With pipette openings of 
a square micron or so, there should be many more than 3 
channels present. Several possible explanations are that the 
densities observed with labelled toxin do not  reveal micron 
level inhomogeneities, that all toxin binding sites are not  
acitve channels, or that  a rapid component  of desensitization 
removes channels from the observed pool. 

Data  on transition rates is summarized in histograms of 
the open and closed times, and the burst lengths. These 
histograms are generally multiple exponentials, al though 
some channels appear  to produce single exponentials. One of 
these exceptionally simple distributions is found in a potas-  
sium selective channel (ca. 70 pS) in cultured chick muscle 
(data courtesy A. Auerbach).  Figure 9 shows the distribution 
of open times and burst  lengths (inset) for a 2 megaword 
record containing about  5,000 bursts and 10,000 open times. 
The data in each case have been fit with a single exponential 
function using a nonlinear regression program weighted with 
Poisson statistics for counting processes and corrected for 
finite binwidths. Fo r  the open times (outer panel), the time 
constant was 1.6 _+ 0.040 ms and for the burst length, the time 
constant was 4.21 _+ 0.15ms. The error limits stated cor- 
respond to 90% support  plane confidence limits, which 
estimate the confidence in a parameter  regardless of the values 
of the others (Marquardt  1964). The details of  the kinetics are 
not  important  here, but the parameters  are quoted to 
emphasize the program's  ability to analyse large amounts of 
data  and thereby increase resolution. 

Finally, Fig. 10 shows the number of  events per burst for a 
100 gM carbachol activated nicotinic channel with a re- 
gression to a geometric probabil i ty  law (Colquhoun and 
Hawkes 1977). The geometric probabil i ty  function comes 
from considering the sequential scheme of  Eq. (1). When a 
channel closes it may either reopen or the agonist may 
dissociate. A burst with n openings comes about  by not 
dissociating for n - 1 times and undergoing dissociation the 
last time. Thus, p ( n ) = p " - I  0 - p ) ,  where I - p  is the 
probabi l i ty  of  dissociation. 

D i s c u s s i o n  

The automated nature of the analysis permits the accumu- 
lat ion of large numbers of  events, thus increasing the 
sensitivity for testing of kinetic models. In addit ion the 
automated system lowers the labor  cost for such time 
consuming characterizations as cross correlations, con- 
ditional probabil i ty  estimates and power spectra of  selected 
port ions of the record (such as open and closed channels). For  
example, we have made cross correlations of  amplitude and 
durat ion of  flickers that occur during bursts and find that 
some apparent  closing transitions go to a non-zero con- 
ductance level (Auerbach and Sachs, in preparation).  

Given the fact that the data  are random with regards to 
amplitude, durat ion and duty cycle, we found it useful to let 
the program be somewhat adaptive in its identification 
procedures. This reduces the need for operator  intervention. 
The main adaptive feature is the adjustment of the threshold 
for event identification based upon a weighted average of all 
successfully detected unitary events. The procedure has 
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proven to be robust and reliable. The program could be made 
more adaptive by using multiple pass procedures, such as one 
pass to examine the amplitude histogram for peaks and 
setting the thresholds accordingly, but in the interests of speed 
and simplicity, we have found that operator input of a few 
starting parameters is simple and straightforward. 

Although we have tried a variety of  complex identification 
algorithms, we keep coming back to the simplest versions, 
since the probability of serious errors is minimized. Given the 
wide variability, particularly in amplitude and duty cycle, 
complex algorithms which may be successful on certain data 
sets are unreliable on others. The simplest algorithms remain 
the most reliable and least in need of adaptation to particular 
data sets. 

We have examined some of  the dynamic limitations of the 
analysis scheme, particularly with regard to detecting short 
closed times and the effect of  missing short closed times on the 
interpretation of open times. The Bessel response filters used 
for anti-aliasing and the digital filter in the program, provide 
an undistorted record of event widths if the events pass a little 
beyond half of  the unitary current amplitude, which is why we 
have chosen to use that point as the threshold for detection. 
Since the program measures the event duration at half 
maximum, we examined the full width at half maximum 
(FWHM) of pulses sent through both the four pole hardware 
anti-aliasing filter and the software F IR  filter. The F W H M  is 
essentially independent of  bandwidth until the product of 
bandwidth (BW) and pulse duration (Tp) is less than 0.4. 
When B W * T p  = 0.31 the output pulse just reaches half 
amplitude and the F W H M  = 0. Thus, in the absence of noise, 
the system will miss all events shorter than 0.31 of  the inverse 
analog bandwidth. Most of the longer events will be correctly 
measured for duration. In a noise-free record the probability 
of  detection is a steep function of the duration-bandwidth 
product, varying from essentially one with a product greater 
than one, to 0.5 with a product of  0.33, to 0 at a product of 
0.31. (There is a probability even in the noise free system since 
the sampling clock is uncorrelated with the data and a sample 
may or may not be taken during the time that the pulse is 
beyond threshold.) Thus, the shortest events will obviously 
not be digitized with full resolution, but those longer than 
about 0.3 of the inverse bandwidth will be recorded and 
placed in the proper bin of the histogram. The presence of 
noise-will reduce the steepness of the detection curve so that 
events which are too short to be detected in a noise free system 
may yet be recorded, and similarly, some events which are 
large enough to be recorded in a noise free system will be 
missed because of  opposing noise. As a rough guideline, 
however, we expect to detect all events longer than 0.5 of the 
inverse bandwidth and miss all events shorter than 0.3 of the 
inverse bandwidth. 

Missing short closed times will tend to make the open 
times appear longer, and decrease the number of  events per 
burst. We can estimate the magnitude of  the effect by 
considering the distribution of  open times when the system is 
unable to detect events shorter than some dead time T o (F. 
Sachs and R. S. Spangler, unpublished). Assuming an expo- 
nential distribution of true open and closed times with 
respective time constants T O and T~, and absolute dead time 
To and assuming, for simplicity, that Tc ~ To, one can show 
that the open times will be distributed exponentially, but with 
a time constant given by: 

T o (observed) = T O x exp (To~To). 

Suppose we take T O to be 0.3 of  the analog bandwidth, which 
for the sake of illustration, we take to be 1 kHz, T~ = 1 ms, 
then To (observed) = 1.8 To. If  we use a more conservative 
estimate of the dead time, i.e., 0.5 of the inverse bandwidth, 
then To (observed) = 2.7 To. We have observed mean closed 
times in the range of  0 . 2 - 2  ms. To reduce the error in the 
open time (also the number of  events/burst) to 20 ~ with a Tc 
of  0.3 ms, requires a deadtime of less than 0.05ms, or a 
bandwidth of  between 6 and 10 k Hz depending upon the dead 
time assumptions. This bandwidth is difficult to achieve with 
good signal to noise ratios. Readers are referred to Hamill et 
al. (1981), for a discussion of  head stage circuit limitations. 

A second type of bias in durations comes from eliminating 
multiple events from the burst duration accounting. The error 
may estimated as follows. 

Multiple events arise from the overlap of bursts. Let the 
mean burst duration be called TB, and kB = 1/TB. Now, if the 
probability of observing double events is small, the occur- 
rence may be treated as a Poisson process with mean rate, 

k 2 = Pz/TB 

where P2 is the probability of having two or more channels 
open at the same time. The probability of no multiple events 
for a time t is given by, 

P(no  multiples in t) = e x p ( -  k z t  ). 

The probability density for a burst of duration t containing no 
multiple events is then (assuming an exponential distribution 
of burst lengths), 

p d f (  t) = k B e x p ( -  kB t ) �9 e x p ( - k 2 t  ) . 

The mean duration of the analysed bursts, that is, those of  
duration t and containing no multiple events, is given by 

( tB) = ~ t pd f ( t ) d t  = TB/(I + P2) 2. 
0 

For P2 = 0.01 (cf. Fig. 8), (tB) = 0.98 Tu. The error is small, 
and if necessary, can be used to recursively correct the data. 
The same type of  error applies to the measurement of  open 
times in general. 

The program, as it currently exists, requires a large 
amount of  data storage, since there is no data compression. 
There are three possible approaches to dealing with storage 
requirements, and possibly increasing speed. A brute force 
approach is to simply increase storage capability. Digital 
magnetic tape can provide efficient storage of sequential data 
so that a 90 Mbyte tape can store up to 30min of  data 
digitized at 20kHz. This method preserves all the data, 
although possibly requiring substantial time for analysis. We 
are adapting the program to deal with data stored this way in 
a two pass system. In one pass, events are identified and their 
locations are stored in a list on disk. A second pass using a 
related program looks only at the identified events and 
performs the requisite analysis on those segments. Thus, data 
may be filtered to a low bandwidth for reliable identification 
of  channels, and the post-processor can reread those events 
with a high (.possibly software corrected) bandwidth. Since 
many channels appear to have multiple open states (cf. 
Auerbach and Sachs, in preparation), understanding channel 
kinetics requires measuring amplitudes as well as open-closed 
transition probabilities. 

A second scheme to reduce digital storage requirements is 
to process the data on-line either from analog tape or from 
direct recording (i.e. sodium channel records). The program 
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as it current ly exists can process on-line da ta  at about  250 
samples/s.  A few modif ica t ions  to the code would  be nec- 
essary to al low mul t i tasking of  da ta  convers ion and analysis. 
Addi t ional ly ,  fur ther  effort  could  be made  to speed up the 
most  t ime consuming  parts  of  the program,  the software filter 
and the baseline correct ion.  

A third scheme to reduce storage requirements  would  
delete i rrelevant  data  pr ior  to storage. An  abbrevia ted  
baseline and threshold  crossing rout ine (hardware  or  soft- 
ware) could  trigger s torage of  only record  blocks with active 
events. This me thod  obviously has biases, but  can produce  
enormous  space savings in low duty cycle records. 

With  regard to general izat ions,  the main  l imitat ions o f  the 
p r o g r a m  are the necessity for events to be unidirect ional  and 
modera te ly  un i fo rm in ampli tude.  I f  several species o f  
channel  with different conductances  are present,  such as 
junc t iona l  and ext ra junct ional  nicot inic  receptors  (Hamil l  et 
al. 1981), each channel  type can be separately identified and 
ca ta loged in mult iple  passes by setting na r row limits on the 
ampl i tude  acceptance criteria. The p r o g r a m  could  be mo-  
dified to keep track of  several classes of  uni tary ampl i tudes  in 
the same pass. To  analyze da ta  conta in ing bipolar  currents,  
the duty cycle would  have to be relatively low so that  the 
baseline could  be reliably determined f rom a global  m a x i m u m  
in the number  of  zero crossings o f  a presumpt ive  baseline. 
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Note in Proof 

The program is now available on magnetic tape, 1,600-3,200 bpi, in 
Data General dump format. The reference (Auerbach and Sachs, in 
preparation) is in press: Auerbach A, Sachs F: Flickering to a sub- 
conductance state of the nicotinic ion channel. Biophysical J 


