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0. ]INTRODUCTION 

The definition of isotropic immersion was first given in [8]. An isometric 
immersion f: M" ~ A '~ is said to be 2-isotropic if, for each x e M n, the ellipse of 
curvature {H(X, X): X is a unit vector tangent to M n at x} in a normal space is 
contained in a sphere with radius 2(x), where H denotes the second 
fundamental form of f. Moreover, if 2(x) does not depend on x, then f i s  called 
a constant isotropic immersion. 

Isotropic immersions have been studied by several authors (for instance, see 
[5]-[9]). They seem to form a wide class. For example, the composition of 
isotropic immersions and their Euclidean products are also isotropic, and 
furthermore there are many constant isotropic immersions in equivariant 
isometric immersions of homogeneous spaces (of. [7]). However, all isotropic 
submanifolds which appeared in [51 [71 [81 [9], [10] are homogeneous. It is 
certain that an isotropic non-homogeneous surface exists in a sphere. This can 
be seen in the study of minimal surfaces homeomorphic to a sphere. If 
f : M 2 ~  S m is a full minimal immersion (with m necessarily even) of 
a differentiable sphere M 2, then the complex vector ~ = H(X, X) + ill(X, Y) is 
isotropic in virtue of the Riemann-Roch theorem, {X, Y} being any ortho- 
normal basis for the tangent space of M 2, and hence f i s  isotropic in our  sense 
(see [3] and [6, p. 140]) and it is certain that many non-homogeneous minimal 
2-spheres are immersed in S" (cf. [3, Th. 3]). But we  do not know whether 
a constant isotropic non-homogeneous surface exists in S" or not. 

Constant isotropic surfaces immersed in a 4-dimensional real space form 
A4(c) were determined in Theorem (5c) of [6]. More generally, constant 
isotropic submanifolds, all of whose geodesics are contained in 4-dimensional 
totally geodesic submanifolds of Mm(c), were classified in [9]. However, 
constant isotropic surfaces, with no other assumptions, immersed in an 
odd-dimensional space form have not yet been studied. 

This paper is concerned mainly with the two circumstances mentioned 
above, and we shall study constant isotropic surfaces immersed in a 5-dimen- 
sional space form. We shall prove that if f: M 2 ~ MS(c) is a constant isotropic 
immersion, then f i s  totally geodesic, totally umbilical, the second standard 
immersion of a 2-sphere into a totally geodesic or umbilical hypersurface of 

Geometriae Dedicata 29 (1989), 293-306. 
© 1989 by Kluwer Academic Publishers. 



294 K U N I O  S A K A M O T O  

hiS(c), or a certain immersion of the Euclidean space R 2. Unfortunately, 

a constant isotropic non-homogeneous surface does not exist in ,~S(c), so it 
seems to be of interest that we study constant isotropic surfaces in .M6(c) 
(especially $6). Is there a constant isotropic non-homogeneous surface in $67 

In Section 1 we prepare notations and basic equations that we use later. 
Moreover, we show that if the dimension of the first normal space N~ is not 
greater than 2 for every x, then it is independent o fx  ~ M 2. As a result, we have 
two non-trivial cases: (A) dim N~ = 2 for every x (minimal case), (B) dim N~ = 3 
for some x. In Section 2 we study case (A) in which the Gauss curvature K is 
constant (i>0) and c > 0. If K > 0, f:  M 2 ---, $5(c) is determined by Calabi's 
theorem [2]. If K = 0, then f: R 2 --, $5(c) is the immersion given in [1]. In 

Section 3 we study case (B). Under the assumption that K is not constant, we 
shall obtain second-order differential equations satisfied by Kin  two ways and 
derive a contradiction from these equations. 

1. I S O T R O P I C  I M M E R S I O N S  OF S U R F A C E S  

Let M be a Riemannian manifold and let ~t(c) be a simply connected real space 
form of curvature c. According to c > 0, c = 0 and c < 0, ~ (c )  is isometric to 
a Euclidean sphere, Euclidean space and hyperbolic space. Let f: M ~ M(c) 
be an isometric immersion with differential f , .  The tangent bundle T M  of 
M may be considered as a subbundle of the induced bundle f *  TM and the 
orthogonal complement N M  of T M  in f *  TM is called the normal bundle of 

the immersion f. The Levi-Civita connection on TM induces a connection 
/5 on f *  TM, which is decomposed to connections D on T M  and D z on NM. 
Then D coincides with the Levi-Civita connection of M and D ± is called the 
normal connection. Connections D and D x induce a connection on the bundle 
(E ®" T* M ) ®  NM.  We shall also denote it by D. Thus the covariant 
derivative of the second fundamental form H of the immersion f is defined as 

(DxH)(Y,Z)  = Dx(H(Y,Z))  - H(D x Y,Z)  - H(Y, D x Z  ) 

for vector fields X, Y, Z tangent to M. The Weingarten map Ag corresponding 
to a normal vector ~ at x is a symmetric transformation of T x M defined by 
(Ag X, Y) = (H(X,  Y), ~). Let R and R l be the curvature tensors of D and D ±, 
respectively. We have the following basic equations: 

(H)  

(1.2) 

(1.3) 

(1.4) 

/sx Y = Dx Y + H(X, Y), 

/sx~ = - A g X  + Dx~, 

R(X, Y)Z = ¢{ (Y ,  Z ) X  - (X ,  Z ) Y }  + A, .~ ,z )X - Au~x, zj Y, 

(D x H)(Y, Z) = (D r H)(X, Z), 
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(1.5) g l ( x ,  Y)~ = H(X, Ae Y) - H(A~X, Y) 

for vector fields X, Y, Z tangent to M and ~ normal to M. 
An isometric immersion f: M + M is said to be (2-) isotropic if 

(1.6) IIn(x,g)ll = 2 ( ~ ( s ) )  

for every X E  UM,  where re: U M  ~ M is the projection of the unit tangent 
bundle U M  of M and 2 is a function defined on M (cf. 18]). Moreover, if 2 is 
constant, then immersion is said to be constant isotropic. It is easily proved that 
f is isotropic if and only if 

(1.7) <H(X, X) ,  H(X ,  Y)> = 0 

for all orthogonal vectors X and Ytangent to M at every point. For  ortho- 
normal vectors X and Y, we have, from (1.6), 

(1.8) < H ( X , X ) , H ( Y ,  Y)> + 2IIH(X, g)ll 2 = 22. 

In the sequel, we assume that M is a connected surface and f a constant 

2-isotropic immersion into a 5-dimensional space form ffl(c). Let K be the Gauss 
curvature of M. By (1.3) and (1.8), we have 

22 
(1.9) K = t2 -~- 2 2 - -  3/Z 2 = C - -  -~-  + 2/V, 

where # = IIH(X, Y)II and v = ( H ( X , X ) , H ( Y ,  Y ) )  for orthonorrnal vectors 
X and Y. Thus K always satisfies K(x) ~< c + 22 at x e M and when 2 ~V 0, 
equality holds if and only if x is an umbilical point. Let N~ be the first normal 
space at x which is the subspace spanned by {H(V, W): V, We T x M}. 

LEMMA 1.1 ([8, 1]). We see that c-222 ~< K ~< c + 22 and 

dim N~ = 0,:~2 = O,~total ly  geodesic, 

dim N~ = l ~ K ( x )  = c + 22,:~.x is umbilical, 

dim N~ = 2 ,~K(x)  = c - 222~=:,r/(x) = 0 (2 ~ 0), 

dim N~ = 3¢*(K(x) -- c - 22)(K(x) - c + 222) ~ 0, 

where r 1 is the mean curvature vector. 

Proof. Let X and Y be orthonormal vectors tangent to M at x. N~ is 
spanned by H(X,  X),  H ( X , Y )  and H(Y, Y). Computing the Gramian of these 
vectors, we see that Gramian = (~)(K - c - 22)2(K- c + 222). Thus c - 222 
~< K ~< c + 22, and (K(x) - c - 22)(K(x) - c + 222) ~ 0 if and only if dim 
N~ = 3. Assume that 2 ~ 0. We have already seen the case K(x)  = c + 2 2. 
K(x) = c - 222 if and only if 2 = # because of (1.9). Using (1.8), it follows that 
K(x) = c - 222 if and only if H(X,  X )  = - H ( Y ,  Y) for orthonormal vectors 
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X and Y. Since the mean curvature vector is defined by ~/= {H(X, X ) +  
H(Y, Y)}/2, we have the assertion. Q.E.D. 

Denote the open subset (x e M: dim,N 1 = 3} by U. Since 2 is constant, if U is 
empty, then we see from Lemma 1.1 that K is constant. Totally geodesic and 
umbilical surfaces in 37(c) are well known (cf. [10]). So, in the subsequent 
sections, we shall consider the following two cases: 

. (A) M is a non-totally geodesic minimal surface of constant curvature 
c - 222, 

(B) U ~ (3. 

2. CASE (A) 

In this section we deal with case (A). Thus f i s  a constant isotropic minimal 
immersion of the connected surface M of constant curvature c - 222 (,~ ~ 0) 
into M(c). To begin with, we prove 

LEMMA 2.1. Let [IDHII be the length of the covariant derivative of the second 
fundamental form. It is given by IIDHII 2 = 8~2(322 _ c). In particular, 22 t> c/3. 

Proof. Let {X, Y} be an orthonormal basis for the tangent space of M. 
Taking account of the fact that 2 =/~, we set ~1 = H(X,X)/2 and 
~2 = H(X, Y)/2. They are orthonormal because of (1.7). Take the unit normal 
vector Ca so that (X, Y, ~1, ~2, Ca } give the oriented basis for the tangent space 
of M(c). Then we have 

0) a, 0 
where we have put A~ = A¢, for i = 1, 2, 3. These are easily verified by the 
equations (AiX,  X )  = (H(X, X), ~) ,  (A~X, Y) = (H(X, Y), ~ )  and 
H(X, X) = - H(Y,, g). Thus the length of the second fundamental form II/-/II is 
given by IIHII 2 = trace(A~ + A~ + A~) .= 422. By a routine calculation, we 
have 

½A[IH[[ 2 = (AH, H)  + [[DH[[ 2 

- -  2 ( D D ~ , H )  - 4cll~l) 2 

( /  -- E(tr(A,Aj)) 2 + 2Etr(A,AjAIAj) -- 2 tr ~ A  2 

+ I[DH[[ 2 
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(cf. [10, p. 42]. Substi tut ing r / =  0, IlnLI 2 = 422, the fifth term = 824, the sixth 

term = 0 and the seventh term = 824 in the above  equation,  we obta in  
IlDHll 2 = 8 2 2 ( 3 2 2  - c) .  Q.E.D. 

Let  {X, Y} be an o r thonorma l  local f rame field and let {~1,42,43} be the 
o r thono rma l  normal  field defined as in the p roof  of L e m m a  2.1. 

L E M M A  2.2. Denote (DzH)(V, W) by (DH)(Z, V, W). The subspace spanned by 
{(DH) (Z, V, W): Z, V, W ~ T~M} is orthogonal to the first normal space. I f  we set 

(OH) (X, X, X) = - (OH) (X, Y,, Y) = ~t~3, 

(DH) (Y, Y, Y) = - (OH)(X, X, Y) = fie 3, 

then ~2 + f12 = 222(322 _ c). 

Proof. Let x be an arbi trar i ly fixed point  of M. We m a y  assume that  DX = 0 
at x. Since <H(X, X), H(X, X)> is constant  we have 

<(DH)(X, X, X), H(X, X)> = ((DH)(Y, X, X), H(X, X)> = 0 

at x. Since X m a y  be arbitrari ly chosen at  x, the equat ion <(DH)(X, X, X), 
H(X, X)> = 0 holds for every X tangent  to M at x. By symmetr izat ion,  we 
have 

3((DH)(X, X, Y), H(X, X)> + 2((DH)(X, X, X), H(X, Y)> = 0 

and hence ( (DH)(X,  X, X), H(X,  Y)> = O. Not ing  t h a t f i s  minimal  and using 

L e m m a  2.1, we have the assertion. Q.E.D. 

Let  ~: M ~ M be the universal  Riemannian  covering. The  preceding lemmas  

are valid for the immers ion  f o n .  We assume that  M is complete.  

L E M M A  2.3. Assume that K is non-positive. Then K = 0 and c must be 
positive. 

Proof. If  22 = c/3, then K = 22 > 0 which contradicts  the assumption.  Let  

x ~ M and let {X, Y} be an o r thonorma l  basis for TxM. Define Xo and 0 o 
(0 ~< 0 o ~< n) by X o = cos OX + sin OY and cos 0 o = ~/(222(322 - c)) 1/2, res- 
pectively, where ct = ((DH)(X, X, X), 43 > (see L e m m a  2.2). Then we have, f rom 

L e m m a  2.2, 

(DH)(Xo, X o, Xo) = {222(322 - c)} x/2 cos (30 + 00)43. 

Therefore,  we see that  II(DH)(Xo, Xo, X0)ll 2 at tains a m a x i m u m  222(322 - c) at 
0 = (m~z - 00)/3 and a m i n i m u m  0 at 0 = {(2m + 1)n/2 - Oo}/3(m ~ Z). In  
other  words, the m a x i m u m  points  of the function @x(.) = II(DH)(', ", ")ll 2 on 
the unit  circle in TxM are vertices of  the regular hexagon,  one of whose vertices 

is cos(Oo/3)X- sin (Oo/3)Y and the min imum is at tained at their middle 

points. 
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Now,  we construct  globally defined parallel  o r t hono rma l  vector  fields 
V and Z on ~ such that  the funct ion tI) x at tains a m a x i m u m  at  V(x) a min imum 

at Z(x) for every x ~ ~ .  Since ~ is isometr ic  to R 2 or a hyperbol ic  surface H 2 of 

constant  curvature  there exists an o r thono rma l  f rame field {X, Y} defined on 

)~t. Let  43 be the unit  no rma l  vector  field defined as in L e m m a  2.1 and  put  

a = ((DH)(X, X, X), ~3). Then a is a smooth  function on i f / b u t  00(0 ~ 0 o ~< rr) 

is defined only continuously.  If  we define V by V =  cos(Oo/3)X - sin(0o/3 ) 
Y, then V is a cont inuous  unit  vector  field such that  Ox at tains a m a x i m u m  at 
V(x) for every x ~ )~t. In  fact, V is smooth.  This is shown as follows. Let  x o e 

be arbi t rar i ly  fixed and let X* be a unit  vector  field on a ne ighborhood  of x o 
such that  [I(DH)(X*,X*, S*)ll 2 ~v 2),2( 322 -- C). Let  Y* be a unit  vector  field 
o r thogona l  to X*.  Since cos 0F = a*/{222(322 - c)}l/2 ~ ___ 1, 0F is smoo th  

a round  x 0. V is writ ten as V = cos O'X* + sin 0* Y*, where 0 ~< 0* ~< rr, and 

hence 30* + 0F = m n  (m e Z). Since 0* and 0* are continuous,  m is constant.  

Thus  0* is smooth .  If  we choose a unit vector  field Z or thogona l  to V, then 

{V, Z} is an o r t h o n o r m a l  f rame field on/~r  such that  (DH)(V, V, V) = 2x¢ 3 and 
(DH)(Z, Z, Z) = 0, where x = {2(342 - c)} x/2. 

We shall p rove  that  V and Z are parallel. Let  ~b and ~k be functions defined 

by DvV = c~Z and DzZ = ~bV. Covar ian t ly  differentiating (DH)(V, V,Z) = 0 in 

the direction V, we have 

(D2H)(V, V, V,Z) + 2(DH)(DvV, V,Z) + (DH)(V, V, DvZ ) = O. 

I t  follows that  (D2H)(V, V, V, Z)  = 32~bx~ 3. In order  to prove  that  ~b = 0 we 

have only to show tha t  

((D2H)(V, V, V,Z), (DH)(V, V, V)) = O. 

By Ricci identity, (1.5) and L e m m a  2.2, 

((D2H)(V,Z, V, V) - (D2H)(Z, V, V, V),(DH)(V, V, V)) 

= (R±(V, Z)H(V, V) -- 2H(R(V, Z)V, V), (DH)(V, V, V)) 

= (n(v ,  Ax(v,v)Z) 

- H(An(v,v)V, Z) - 2H(R(V, Z)V, V), (DH)(V, V, V)) 
= 0 .  

Thus  it suffices to show that  ((D2H)(Z, V, V, V),(DH)(V, V, V))  = 0. Since 
II(DH)(V, V, V)II 2 is constant ,  we have 

0 = Z.  ((DH)(V, V, V),(DH)(V, V, V)) 

= 2((D2H)(Z, V, V, V) + 3(DH)(DzV, V, V), (DH)(V, V, V)) 

= 2((D2H)(Z, V, V, V),(DH)(V, V, V)). 
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Similarly, covariantly differentiating (DH)(V, V, Z) = 0 in the Z direction, we 
have (D2H)(Z, V, V, Z) = - 3~k2x~ 3. Since 

((D2H)(Z, V, V, Z), (DH)(V, V, V))  

= ((D2H)(V,Z, V,Z) + Rz(z ,  V)H(V,Z) - H(R(Z, V)V,Z) 

- H(V, R(Z, V)Z), (OH)W, V, V)) 

= -((D2H)(V,  K V, V),(DH)(K K V))  

= -½V-II(DH)(V, K V)]I 2 

= 0, 

we obtain ¢ = 0. Therefore V and Z are parallel and hence K = c - 222 = 0. 
Q.E.D. 

If K > 0, c must be positive. We see that case (A) occurs only when c > 0. 
There is a minimal immersion of SZ(c/3) into $4(c) which is called the second 

standard immersion (or Veronese surface, cf. [5], [10]). This is constructed by 
making use of an orthonormal basis for the second eigenspace of the Laplace 
operator. We can also construct a minimal immersion of Euclidean surface 
R 2 into $5(c). This is defined by 

1 

T(u, v) = ~ c c  (2 cos x cos y, 2 cos x sin y, x/~ cos 2x, 

2 sin x cos y, 2 sin x sin y, x/~ sin 2x) 

$5(c) c R 6, 

where (u, v) e R 2, x = x / ~  u and y = (x/~/2)v (cf. [11 [10]). In fact, T gives 
rise to a minimal imbedding of a flat torus into SS(c). Moreover, we can easily 

examine that T is x /~ - i so t rop ic .  

P R OP OS ITI ON 2.4. Let f be a constant 2( ~ O)-isotropic minimal immersion 

of a connected complete surface M into a 5-dimensional simply connected space 
form Ill(c). I f  c ~ O, then such an immersion does not exist. I f  c > 0, 
f o ~: ~ --} SS(c) is one of the following: 

(1) ~ = $2(c/3), f o ~ ,,~ z o (second standard immersion)., 
(2) ~ = R z, f o g  ~ T, 

where the notation F ~ G means that there exists an isometry ~P of SS(c) such 
that F = ~P o G and t: S*(c) ~ SS(c) is a totally geodesic imbedding. 

Proof I f K  > 0, then we conclude (1) by Calabi's theorem ([2, p. 123]). Next 

suppose that K = 0. For  two x / ~ - i s o t r o p i c  minimal immersions F = f  o 
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and T of R 2 into SS(c), we have parallel orthonormal frame fields {V, Z} and 
(V, Z), respectively, as in the proof of Lemma 2.3. Without loss of generality, we 
may assume V = Pand  Z = g. Denote ~F by the isometry of SS(c) which maps 

the adapted frame {x/~ F, F,V,F,Z,  41,42, ~3)o at O to {v/~ T, T,V, T,Z, (1, 
(2, (3)0, where F and T are considered as position vectors, the 4i's are defined 
in the proof of Lemma 2.1 and O isthe origin of R 2. We can show F = ~F o Tby 
the following standard argument. Let x e R 2 be any point, 4" = ~,~'~ and 

G = ~Fo T. Then the adapted frame fields {x/~F,F,V,F,Z,~I,~2,~a} and 

{x/reG, G,V,G,Z ,4~ ,42 ,4a}  coincide at O and their restriction to the 

segment Ox are the solution of a system of ordinary linear differential 
equations with constant coefficients: 

v~ = v/~(pvl + qv~), v~ = - v / ~ p v o  + ,~(pv~ + qv,), 

v'2 = - v / ~ q v o  + 2 ( - q v 3  + pv4), v'3 = ,~(-pvs + qv2) + ~pvs, 

v'4 = -2(qvl + PV2) - rqv5, v'5 = r ( -p% + qv4), 

where the v{s are R6-valued functions and p, q are constants satisfying 
Ox/[[OxJ] = pV+ qZ. Therefore, we have F = G at x. Q.E.D. 

3. CASE (n) 

We assume that M is orientable and complete. In case (B), U = {x 
M: dimN~ = 3} ~ ~ .  Denote by U' the open set {x e M: (grad K)(x) ~ 0}. 
Then U' c U by Lemma 1.1. Let X = grad K/]lgrad KH and take the unit 
vector field Y orthogonal to X so that the frame {X, Y} gives the orientation of 
M. The frame field {X, Y} is defined on U' and satisfies Y. K = Y'/~ = Y. v = 0 
because of (1.9). 

LEMMA 3.1. Define unit normal fields ~1, ~2 and 43 by 

q H(X, X) - H(Y, Y) H(X, Y) 
4 1 = 1 ] ~ '  42=  2/~ ' 4 a =  # 

Then they are orthonormal. On U' we have 

(3.1) 

(3.2) 

(3.3) 

(DH)(X, X, X) = 8~p (X" v ) ~  1 - h~2), 

(DH)(X, X, Y) = - ~ (X" v)~a, 

(DH)(X, Y, Y) = ~--~(X'v)~l  + h~2), 
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(3.4) (DH)(Y, Y, Y) = O, 

where we have put h = I[nll, 

Proof The first assertion is easily derived from (1.8). In the proof of Lemma 

2.2, we proved that 

(3.5) <(DH)(X, X, X), n (x ,  X)> = <(DH)(Y, X, X), n (x ,  X)> 

= <(on)(x, X, X), H(X, Y)> = 0. 

Let X* (resp. Y*) be a vector field around x such that X*(x) = X(x) (resp. 
Y*(x) = Y(x)), DX* = 0 (resp. DY* = 0) at x and X* £ Y*. Differentiating 

<H(X*, X*), H(X*, Y*)> = 0 in the Y* direction, we have 

<(DH)(Y, X, X), H(X,Y)> + <H(X, X), (DH)(X, Y, Y)> = 0 

at x. Since <(OH)(V, V, V), H(V, W)> = 0 for every orthonormal vectors V and 

W, we have 

3<(DH)(Y,X,X),H(X, Y)> + <(DH)(X,X,X),H(Y, Y)> = 0. 

It follows that 

<(DH)(X, X, X), H(Y, Y)> = 3<H(X, X), (DH)(X, Y, Y)) 

at x. Thus 

(X. v)(x) = X*. <H(X*, X*), H(Y*, Y*)>(x) 

= 4<H(X, X), (DH) (X, Y, Y)>(x). 

We have proved 

(3.6) <(DH)(X, Y, Y), H(X, X)>  = - <(DH)(X, X, Y), H(X, Y)> = ¼X-  v, 

<(DH)(X, X, X), H(Y, Y)> = ¼X. v. 

Note that (3.5) and (3.6) also hold when we exchange X for Y. We use (3.5) and 
(3.6) to calculate the components of (DH)(X, X, X), (DH)(X, X, Y) . . . .  with 

respect to the frame {41, 32, ~3}. Then we have (3.1) and (3.4). 

LEMMA 3.2. Let dp and d/ be functions on U defined by OxX = O Y and 
DrY = d/X. Then q~ = 0 and ~k is 9iven by 

Proof 

(3.7) 

1 f{ 2 ~2 } 
+ 

By Ricci identity, (115) and (1.8), 

(D2H)(X, Y, Y, Y) - (D2H)(Y,X, Y, Y) = 2 ~  2 - K)/~¢3. 
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The first term of the left-hand side is given by 

(3.8) (D2H)(X, Y, Y, Y) = - 3(DI-1)(D x Y, Y, Y) = 34~(DH)(X, Y, Y) 

3~ 
(X" V)(/.t~l -I- h¢2), 

= 8h/a 

where we have used (3.3) and (3.4). We next compute the second term. Since 
2h 2 = 22 + v, Y. h = 0. It is easily verified from (3.2) and (3.4) that 

1 
(3.9) Dy~I = 8h# (X" v)~3, 

0,42= 2o}e,. 

1 f[' x V } 

By the first equation above, 

3dpX. v = X" (Dv)(Y) - (Dv)(D x Y) = ~kX. v 

and since 3X .v  = 2 X . K  = 211grad g]l ~ 0 on U', we have 4, = 0. Q.E.D. 

Since DxX = 0, the integral curves of X are geodesics. Let s be the arc-length 
parameter of the integral curves. 

LEMMA 3.3. The function la satisfies 

,u" 3v ( , )2 = ~  /~ +2/~(K--/~2) 

(3.10) 

Therefore we can easily compute the right-hand side of 

(DZH)(Y, X, Y, Y) = Dr((DH)(X, Y, Y)) - (DH)(DrX, Y, Y) 

- 2(DH)(X, DrY, Y). 

Using (3.2) and (3.4), Y . X ' r  = (DZv)(X, Y) and/~2 + h 2 = 22, we have 

(3.11) (DZH)(Y, X, Y, Y) = 8---~ (D2v)( X, Y)(/~I + h~2) 

+ {~-~(X.v)~, 64h22~(X- v)}~3. 

Substituting (3.8) and (3.11) into (3.7), we see that 

3cpX.v = (D2v)(X, Y), 
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along each inteoral curve of X, where #' = d#/ds. 
Proof By Ricci identity (1.5) and (1.8), we have 

(3.12) (D2H)(X, Y , X , X )  - (D2H)(Y ,X ,X ,X)  = 2#(K - #2)~ a. 

Firstly, we compute the first term of the left-hand side of (3.12). Noting that 
DxX = DxY  = 0, we have 

(D2H)(X, Y, X, X)  = Dx((DH)(X, X, Y)). 

Moreover, it is easily verified from (3.2) and (1.8) that Dx~ 3 = 0. We 
differentiate covariantly both sides of (3.2) in the X direction. Then 

(3.13) (D2I'I)(X, Y , X , X )  = ~,-4--~2# v - V' ~3. 

Secondly, we compute the second term of the left-hand side of (3.12). We use 
(3.1), (3.9) and (3.10) to compute the right-hand side of 

(D2H)(Y, X, X, X)  = Dy((DH)(X, X, X)) - 3(DH)(DrX, X, X). 

Taking account of the equations Y.X. v = 0 and h 2 = v + #2, we have 

(3.14) (D2H)(Y, X, X, X) - 3v 64h2#a (v')2~a • 

Substitute (3.13) and (3.14) into (3.12). Then we obtain the desired equation. 
Q.E.D. 

By the definition R(X, Y) = [D x, Dr] - Dtx.r I of the curvature tensor, @' - ~,2 
= K. Thus the equation obtained in Lemma 3.2 gives a second-order 

differential equation satisfied by #. Lemma 3.3 implies that 

LEMMA 3.4. I f  we put y = #2, then y satisfies 

22(y') 2 = 32yh2{-5y 2 + 922y - 22(c + 22)} 

along each integral curve of X. 
Proof Note that K' = -6##% hh' = - # # '  and v' = -4## ' .  By Lemma 3.2 

and a routine calculation, 

(3.15) 
@, 2 2 f h 2 - - 2 #  2 1 ,,] 

= 4 [  #2h* (#,)2_~_~U f - 2 ( K - - # 2 ) + 1 6 # 2  

2 ~" + 2#(K - # ) (-~-,, .#)_ 
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Substituting the equation given in Lemma 3.3 into (3.15), we have 

(3.16) ~#' = 22 h2 - -  5/22 t 2 2- 3v - 22 4/22 /22)2 
+ ( K  - / 2  + - 

- 2(K -/22) + 16/22. 

On the other hand, 

24 22 4/22 /22)2. 
(3.17) ~k 2 - 16~-~(f f )  2 + ~ ( K  - /22)  + ( - ~ ( K  - 

It follows from (3.16) and (3.17) that 

322 , 2 2h2 + 3/22 
(3.18) K = -- 8-h-~(/2 ) + 16/22 h2 (K -/22). 

Equation (3.18) can be rewritten as 

(3.19) 22(ff) 2 = 8h2{(22 + 5h2)/22 - 22K}. 

We multiply both sides of (3.19) by 4ll 2 and obtain the desired equation. 
Q.E.D. 

P R O P O S I T I O N  3.5. Let f be a constant 2( ~ O)-isotropic immersion of  

a connected complete surface M into a 5-dimensional simply connected space 
form ffl(c). I f  U = {x ~ M: dimN~ 3} ~ ~ ,  then 22 > max {c /3 , -c} ,  the 

universal Riemannian covering manifold ffl is isometric to $2((c + 2 2 ) / 4 )  and 

f o ~ ~ ~ o (second standard immersion: JVI ~ $4(3(c + 22)/4)), where i': $4(3(c + 
22)/4) ~ M(c) is an umbilical immersion (cf. 1-10, p.28]). 

Proof. Suppose that U' = {x e M: (gradK)(x) ~ 0} is not empty. Then U' 
is contained in U. Consider the integral curve of X- -g radK/ l [g radKI I  
passing through a point in U'. The image is contained in U' on a small interval 
I and we have equations obtained in Lemmas 3.3 and 3.4 on I. The equation in 
Lemma 3.3 is rewritten as 

722 - 10y (y,)2 + 4y(c + 22 - 4y), 
(3.20) y" = 8y(22 _ y) 

where we have used (/2,)2 = (y,)2/(4y), 2/2/2" = y" - (y')2/(2y). If we differentiate 
both sides of the equation in Lemma 3.4, then 

(3.21) 22y " = !6{20y a - 4222y 2 + 222(c + 1022)y - 24(c + 22)}. 

Using the equation of Lemma 3.4 and (3.21), we eliminate y" and (y,)2 from 
(3.20). Then 

10y 3 - 1322y 2 + 22(222 - c)y + 24(c + 22) = 0, 
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which implies that y is constant on I. Thus K is constant on I. This is 

a contradiction. Therefore K is constant on M and hence, from Lemma 1.1, we 
conclude that U = M. Since (3.5) and (3.6) in the proof of Lemma 3.1 do not 
depend on the particular choice of orthonormal vector fields X and Y, we see 
that the second fundamental form is parallel. Isotropic submanifolds with 
their parallel second fundamental forms immersed in real space forms were 
classified in [10] (see also [4])~ In particular, if such a submanifold with 
constant sectional curvature is not totally geodesic, umbilical and minimal, 
then it is Veronese submanifold contained in a totally umbilical submanifold 
of positive curvature. Let ~ (>  0) denote the sectional curvature of the totally 
umbilical submanifold N in whichf(M) is contained as a Veronese surface. By 
Lemma 1.1 and Proposition 2.4, we see that K = z 2 = ~/3, where z is the 
isotropy constant of the immersion M --, N. If ( denotes the mean curvature 
normal vector of N in h4(c), then g = c + I1~112, )`2 = T2 + i1~112 and so 

= 3(3, 2 + c)/4. Q.E.D. 

Finally, we state the main theorem. By virtue of Propositions 2.4 and 3.5, we 
have 

THEOREM.  Let f :  M ~ ffl(c) be a constant 2-isotropic immersion of a con- 
nected, complete, simply connected surface into a 5-dimensional simply connected 
real space form of curvature c. Then it is one of the following: 

(A1) M = S2(c/3) ,  f ,.~ l o (second standard immersion), 

(A2) M = R 2, f ,~ T, 

(B) M = S2((c + 22)/4), f ,,~ ~o (second standard immersion), 

(C) totally umbilical immersion, 

(D) totally geodesic immersion, 

where z (resp. T) denotes a totally geodesic immersion (resp. totally umbilical 
immersion S~(3(c + ),2)/4) --* ]~(c)). We note that cases (A1) and (A2) occur only 
when ffl(c) = $5(c). 
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