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ABSTRACT. As an extension of local geodesic symmetries we study here local reflections with 
respect to a topologically embedded submanifold P in a Riemannian manifold (M, g). First we 
derive a criterion for isometric reflections. Then we study holomorphic and symplectic reflections 
on an almost Hermitian manifold. In particular we focus on the influence of these reflections on 
the intrinsic and extrinsic geometry of the submanifold. Finally we treat these three kinds of 
reflections and their relationship when the ambient manifold is a locally Hermitian symmetric 
space. The results are derived by the use of Jacobi vector fields. 

1. I N T R O D U C T I O N  

Let (M,g) be a Riemannian manifold and B a connected embedded 
submanifold. B, (M, g) and the embedding of B in (M, g)are assumed to be 
analytic and B is assumed to be relatively compact. Our aim is to study local 
reflections with respect to B. These local diffeomorphisms generalize reflec- 
tions with respect to a linear subspace in Euclidean space E n. When B is 
a point, we obtain the local geodesic symmetries. These symmetries have been 
studied extensively and Jacobi vector fields play an important role in this 
study. (See [14] for a short survey.) Jacobi vector fields, combined with Fermi 
coordinates, also provide a useful tool for the study of reflections with respect 
to a submanifold B when dim B > 0. (In what follows we shall always restrict 
ourselves to this case.) 

It is clear that geometric restrictions on a reflection will give restrictions on 
the geometry of the submanifold B and on the curvature of the ambient 
manifold (M, g). We shall study these restrictions in several special cases. In 
Section 3 we derive the necessary and sufficient conditions for an isometric 
reflection. The criterion becomes particularly simple and useful for locally 
symmetric spaces and leads to several examples. In Section 4 we study 
holomorphic and symplectic reflections on almost Hermitian manifolds. It 
turns out that in both cases B must be a holomorphic submanifold. Moreover, 
if the reflection is holomorphic and the ambient space a K/ihler manifold, then 
B is also totally geodesic. This is not the case for symplectic reflections. Any 
reflection with respect to an arbitrary holomorphic submanifold in a K/ihler 
manifold of constant holomorphic sectional curvature is symplectic. Such 
ambient spaces may be characterized using symplectic reflections with respect 
to holomorphic surfaces (Section 6). 
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In Section 5 we derive a criterion for holomorphic and symplectic reflections 

in locally Hermitian symmetric spaces and we study the relationship between 

them and the isometric reflections. 
We refer to [6] for some results about  global symmetries and 9lobal 

reflections and to [7], 1-12] for some additional results concerning harmonic 

and volume-preserving reflections. 

2. P R E L I M I N A R I E S  

We start with a brief description of the basic material we shall need. (See [9], 
[11] for further details.) 

Let m ~ B and let {El . . . .  , E,} be a local or thonormal  frame field of(M, g) 

defined along B in a neighborhood ofm. We specialize our moving frame such 

that E1 . . . .  , Ep are tangent vector fields and Ep+ 1 , . . . ,  E. are normal vector 
fields of the submanifold B of M, where p = dim B and n = dim M. Let 

(yt . . . . .  yp) be a system of coordinates in a neighborhood of m in B such that 

(O/Oyi)(m) = Ei(m), i =  1 . . . .  ,p, and let (x 1 . . . . .  x.) be a system of Fermi 
coordinates with respect to m, (Yl . . . .  ,yp) and {Ep+ 1 . . . . .  E.}. These coor- 
dinates are defined in an open neighborhood U,. of m in M. This means that 

for the normal bundle v = T ± B  of B we have 

x. exp~ = t . ,  ~ = p + l  . . . . .  n. 
\ \ # = p +  I 

Choose a fixed normal unit vector u at m, u ~ T ~ B  c T , .M,  and consider the 

geodesic y(t) = exp,.(tu). We have 

~,(0)  = m ,  ~, ' (0)  - -  u .  

We specialize the frame field {E t . . . .  , E.} in such a way that 

E.(m) = u = ~,'{0). 

Next, consider the frame field {el(t) , . . . ,e ,( t)} along 7(0 obtained by 
parallel transport  of {E~(m),. . . ,E,(m)}. Further, let Yi, Ya, i =  1 . . . . .  p, 
a = p + 1 . . . . . .  n - 1, denote the Jacobi vector fields along 7' with initial 

conditions 

0 
Y~(O) = E,(m), Y'i(O) = V.  ~x,' 

L(O) = O, Y'o(O) = Eo(m), 



(2.4) 

where 
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where V denotes the Riemannian connection of (M, g). Note that 

- -  ~Xt y(O ~ y(O" (2.1) Y,(t) - ~ , Y,(t) = t 

Define the endomorphism-valued function t ~ D,(t) by 

(2.2) Y~(t) = Ddt)e~, ~ = 1 . . . .  , n - 1. 

Then the Jacobi equation implies 

(2.3) D'~ + R o D ,  = O, 

where t ~ R(t) is the endomorphism-valued function on (~,'(t)) 1 c T ~ o M  

defined by 

R(t)x = R r , ( o x ~ ' ( t ) ,  x ~ (~'(t))  ±. 

R denotes the Riemann curvature tensor on (M, g) defined by 

Rxr = Vtx.r I - [Vx, Vr-] 

for all tangent vectors X, Y of M. 
To write down the initial conditions for D,(t), where u is fixed, we need some 

facts about submanifolds. Denote by ~ the Riemannian connection of B. 
Further, let X, Y be tangent vector fields and N a unit normal vector field 
along an open domain in B. Then we have the orthogonal decompositions 

V x Y  = ~x  Y + TxY,  V x N  = T ( N ) X  + V~N,  

where T x Y = T (X ,  Y) is the second fundamental form operator of B, T(N)  the 
shape operator of B corresponding to the normal vector N, and V ± is the 
normal connection along B. Note that 

g ( T ( N ) X ,  Y)= - g ( T ( X ,  Y), N). 

Also, we shall use the operator _L defined by [9], [I l] 

_LxN = V~N. 

Now, using the initial conditions for Y~, we easily obtain the following initial 
conditions (in matrix form with respect to the basis { E ~ , . . . , E , _ ~ } , .  of 
(u) ± ~ T,.M): 

:] r,,,,, D . ( 0 )  = , O ' . ( 0 )  = L - ' ± ( u )  ' 

T(u)~ = g(T(u)E~, E~)(m), 

_L(u),~ = g(±~ E°, E.)(m). 
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In what follows we consider the local diffeomorphism 

cps: p --, tpB(p), exp.(tu) ~ exPm ( -  tu) 

for u ~ T ~B, Ilull = 1 ~PB is called the reflection with respect to the submanifold 
B. Using Fermi coordinates, ~ps is locally given by 

~ 0 B : ( X I , . . .  , x p ,  X p +  l . . . . .  X n ) ~  ( X l , .  . . , x p ,  - -  X p +  l . . . . .  - -  Xn)" 

3. I S O M E T R I C  R E F L E C T I O N S  

We start by determining the necessary and sufficient conditions for an 

isometric reflection ¢p~. 

T H E O R E M  1. Let (M, g) be a Riemannian manifold and B a submanifold. Then 
the reflection ~PB is a local isometry if and only if 

(i) B is totally geodesic; 

(ii) (V2k...R),vu is normal to B, 
2k+ 1 (V ..... R).vu is tangent to B and 
2k+l (V ..... R). ,u is normal to B 

for all normal vectors u, v of B, any tangent vector x of B and all k ~ N. 
Proof. First, we suppose that ~p~ is an isometry. Then, since B belongs to the 

fixed point set of ¢PB, B is totally geodesic [10]. Further, tp B preserves R and its 
covariant derivatives. Hence we have 

(Vg.x ..... , .x  R ), ,r ,.z**v* *ve = (V ~.. .x R )rzvw. 

Now, let u, v, w ~ T~B, x, y ~ TmB. Then 

t p , u = - u ,  c p , v = - v ,  ~ p , w = - - w ,  ~ p , x = x ,  c p , y = y  

and hence 

p p+3 p (V,... . .**.R),.,,  ~**=~.~ = (-- 1) (V ..... R) . . . . .  

p p+4  p (V,,....~,.R)~.,,v~.,~,w = ( - 1 )  (V, .... R) . . . . .  

P = 1) (V ..... g).x.y. (V**,...,.,R)**,,,,,p,,**y (__ p+2 p 

This implies the result. 
Next, we prove the converse. Let p = expm(tU), Ilull = L u ~ T~B. Then we 
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have, using (2.1), (2.2), 

(3.1) g~j(p) -- g(D.(t)el, D.(t)ej), 

gia(P) = g(D.(t)ei, ~ D.(t)ea), 

1 D,(t)eb) ' gab(P) = g(~  Da(t)ea, t 

for i, j = 1 . . . .  , p and a, b = p + 1 , . . . ,  n - 1. Since B is totally geodesic we 
have from (2.4) 

o Oo] o,] 
and so, (2.3) and (3.2) yield 

! 

(3.3) D~*~(o) = -  • C,~R~'-~(0)D~k)(0). 
k=O 

Further,  conditions (ii), together with (3.2), (3.3), imply 

D,t,2t)(0)v is tangent, Dt~2°(0)x is tangent, 

D,t,2z+l)(0)v is normal, Dt2t+l)(0)x is normal, 

± TmB. Hence we have for v ~ T~B, x E 

Da(t)e , = ~i(t) + [3i(t), 

1 
t D"(t)ea = O~a(t) + fla(t)' 

where ~ ,  cq are tangent  and fl~,fla normal  along B. Moreover, cq, ft. are even 
functions of t and fl~, 0~ a are odd functions of t. Hence 

gJp) = g(~,(t), ~}t)) + g(~,(t), ~}t)) ,  

g,~(p) = o(~,(t), ~a(t)) + g(/~,(t),/~a(t)), 

gab(P) = g(~a(t), ~b(t)) + g(,aa(t), fib(t)) 

and so we get 

go(~°~(P)) = go(P), g:a(~%(P)) = --g,o(P), ga~(~%(P)) = ga~(P) 

which proves the desired result. 
This criterion becomes much simpler for locally symmetric spaces. We have 
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COROLLARY 2. Let (M, g) be a locally symmetric Riemannian manifold and 
B a submanifold. Then the reflection q~n is an isometry if and only if 

(i) B is totally geodesic; 
(ii) Ruvu is normal to B for all u, v ~ T ± B. 

Next, we give a useful geometric interpretation for conditions (ii) in Corollary 

2. 

T H E O R E M  3. Let B be a totally geodesic submanifold in a locally symmetric 
space (M, g). Then Ruvu is normal to B for each u, v ~ T±B if and only if through 
each m ~ B there exists a totally geodesic submanifold B such that TmB = T ~B. 

Proof. First, suppose that such a/~ exists for each m ~ B. Then the Codazzi 
equation I1] implies at once that 

g.vu ~ TmB = T ~mB 

for all normal vectors u, v. 
To prove the converse we first note that Corollary 2 yields that the reflection 

cp B is an isometry. Since (M, g) is locally symmetric, the geodesic symmetry s,. 
centered at m ~ B is an isometry and hence SmOCp B is also an isometry. 
Moreover, m is a fixed point of s,~ o q~B. Further, at m we have 

(3.4) (stag gag). =sm,  o ~os. = - tpB , .  

Now, let/~ be the connected component of the fixed point set of s., o q~n through 
m. Then B is a totally geodesic submanifold of M through m. Moreover (3.4) 
yields that T./~ = T~B. 

Finally we treat some applications of Corollary 2. First, let (M, g) be a space 

of constant curvature c. Then we have 

Rxrzw = c {g(X, Z)g( Y, W) - g(X, W)g( Y, Z)} 

and hence 

(3.5) Ruvu = c { g(u, u)v - g(u, v)u }. 

For a K~ihler manifold of constant holomorphic sectional curvature c we have 

= C  Z Rxrzw ~ {g(X, )g(Y, W) -- g(Y, Z)g(X,  W) 

+ 2g(JX, Y)g(JZ,  W) + g(JX, Z)g(JY, W) 

- g(YX, Z)g(YX, W)} 
and so 

(3.6) 
c 

R=u = ~ {g(u, u)v - g(u, v)u + 3g(Ju, v)Ju}. 
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Further, we note that a totally geodesic submanifold in a K~ihler manifold of 
constant holomorphic sectional curvature c # 0 is either a holomorphic or 
a totally real submanifold [2]. This remark, (3.4) and (3.5) prove at once 

COROLLARY 4. (a) Let (M, g) be a space of constant curvature. Then q~ s is an 
isometry if and only if B is totally geodesic. 

(b) Let (M, g, J) be a K?ihler manifold of constant holomorphic sectional 
curvature c ~ O. Then tpB is an isometry if and only if either B is a holomorphic 
totally geodesic submanifold or a totally real totally geodesic submanifold of 
dimension ½ dim M. 

Further, we have the following result already proved in [16]: 

THEOREM 5. Let (M, g) be a Riemannian manifold. Then (M, g) is a space of 
constant curvature if and only if the reflections with respect to all geodesics are 
isometries. 

Proof. Let (M, g) be a space of constant curvature and tr an arbitrary 
geodesic. Corollary 4 implies that ~p, is an isometry. 

Conversely, let tpo be the reflection with respect to a geodesic a and suppose 
that ~po is an isometry for all a. Then, from Theorem 1, we have that Ruvu is 
normal to tr and 

(3.7) V.Ruvuo = 0 

for all u, v ~ T±a. Since this must hold for all geodesics, (3.7) yields 

VxRxyxy = 0 

for all x, y ~ TraM and all m ~ M. Hence (M, g) is locally symmetric [8], [16]. 
This proves the result for dim M = 2. For dim M > 2 we use 

R . . . .  = 0 

for all u, v e T±a and x ~ Ta. Hence 

Rxy~z = 0 

for any orthogonal triple of tangent vectors x, y, z of M. Now the result follows 
from Cartan's characterization of spaces of constant curvature [1]. 

REMARK. The situation of Theorem 3 occurs in many examples. We 
mention the M+ and M_ submanifolds in compact symmetric spaces as 
introduced by T. Nagano and the first author in their study about geodesic 
submanifolds and related problems [3], [4], [5]. Our theory implies that any 
reflection with respect to an M + or an M_ submanifold is a (global) isometry. 
But this follows also easily from the theory developed in these papers. For 
further results concerning global symmetries and reflections we refer to [6]. 
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4. H O L O M O R P H I C  AND SYMPLECTIC REFLECTIONS ON ALMOST 

HERMITIAN MANIFOLDS 

Let (M, g, J) be an almost Hermitian manifold and B an arbitrary submani- 
fold. The reflection ~a with respect to B is said to be holomorphic if 

(4.1) gon, oJ = Jo~on, 

and go n is said to be symplectic if 

(4.2) ~o;f~ = t~ 

where f~ denotes the K/ihler form on (M, g, J) determined by f~(X, Y) = 
g(X, JY), for all tangent vector fields X, Y of M. We have 

T H E O R E M  6. I f  the reflection go n is holomorphic, then B is a holomorphic 
submanifold. 

Proof. Let X be a tangent vector field of B. Then (4.1) implies 

rps, J X  = Jgon,X = JX.  

Hence, J X  is also tangent. 

T H E O R E M  7. I f  the reflection rpn is symplectic, then B is a holomorphic 
submanifold which is minimal. 

Proof. Let X, Y be vector fields on M along B. Then (4.2) implies 

(4.3) g(tPn, X, J~n ,  Y) = g(X, J r ) .  

First, let X be normal to B. Then gon,X = - X  and so (4.3) yields 

JtPn, Y + J Y  is tangent to B. 

So, for Y tangent, we get 

Jrpn, Y + J Y  = 2 JY  

and hence, J Y  is also tangent. 

Moreover, since rpn is symplectic, go e, preserves the volume and so B is 
a minimal submanifold [12], [15] (see also Theorem 9 for a proof). 

COROLLARY 8. I f  q~n is holomorphic and symplectic, then B is a totally 
geodesic holomorphic submanifold. 

Proof. The result follows from Theorem 6 or Theorem 7 and the fact that go n 
is an isometry. 

The theorems already indicate that the conditions 'rp n is holomorphic'  and 'rp n 
is symplectic' must have a strong influence on the extrinsic geometry of the 
submanifold B. We now determine some of the consequences on the second 
fundamental form. 
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THEOREM 9. Let (M, g, J) be an almost Hermitian manifold and B a sub- 
manifold such that the reflection tpa is symplectic. Then B is a holomorphic 
submanifold and the second fundamental form operator satisfies 

T(X,  Y) + T(JX,  Jg)  -- 0 

for all tangent X, Y to B. Moreover, (VuJ)X is normal to B for all u e T±B, 
X ~ T B .  

Proof. From (4.2) we get 

(4.4) l'~ij(q~B(p)) = f~,j(p), 

where f~ij = f~(~/ax~, ~/Sxj), i, j = 1 , . . . ,  p. Now we use the technique deve- 
loped in Section 2 and state an expression for f~j(p) using the endomorphism 

± 
Du(t). Let p = exPm(tU), ue T=B, LluH = 1. Then 

~ = g(D~(t)e,, JD.(t)ej). 

Using the initial conditions for D.(t) we have 

D~(t)e~ = E~(m) + t(TE~ - t_l_Ei)(m ) + O(t2). 

Note that LI_E~(m) ~ T~B. Hence we have 

(4.5) [~,j(p) = g(Ei, JEj)(m) ÷ t{g(rE, ,  JEj) + g(Ei, JTEj) 

+ g(E,, J'ej)} (m) + o(t:). 

So (4.4) and (4.5) yield 

g(TE,, JEj) + o(E,, JTEj) = -g(Ei, J'Ej) 

or, equivalently, 

g(u, T(E,, J E j )  - -  T(JE,, E j)) = -g(E, ,  J'Ej). 

Since B is holomorphic (Theorem 6), this is also equivalent to 

g(u, T(JE,, JE3) + T(E,, E))) = -g(JE, ,  J'Ei). 

So we have 

g(u, T(JX,  JY)  + T(X, Y)) = --g(JX, J 'Y) 

for all tangent vectors X, Y. Note that the left-hand side is symmetric in X and 
Y. But, as is easily seen from g(JX, JY)  + g(X, Y) = 0, the right-hand side is 
skew-symmetric. This yields the desired result. 

REMARK. The minimality in Theorem 7 follows at once from T(X, Y) + 
T(JX,  JY)  = O. 
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THEOREM 10. Let (M, g, J) be an almost Hermitian manifold and B a sub- 
manifold such that the reflection go B is holomorphic. Then B is a holomorphic 
submanifold and the second fundamental form operator satisfies 

(4.6) T(JX,  JY )  - T(X,  Y) = 0 

for all X, Y tangent to B. Moreover, (V.J)X is normal to B for all u e T±B, 
X e  TB. 

Proof. First we note that 

- J ~ = D ~ O  ~, ot, f l=  l . . . .  ,n. 

Hence 

--  J i = ~ ikg  kj -~- ~'~iag aj 

and hence, 

(4.10) gO(p) = g(E,, Ej)(m) - 2tg(TE,, Ej)(m) + O(t2), 

o ' " ( p )  = o ( t ) ,  

g"~(p) -- g(E., Eb)(m) + O(t). 

Using (4.5), (4.7), (4.8), (4.9) and the fact that B is holomorphic, we get 

--Ji(P) = g(Ei,JEi)(m) + t{g(E,,J'Ej) + g(TE i, JEj) 

+o(E, ,JTEj)  + 2g(TJE,, Ej)}(m) + O(t2). 

Hence, when q~a is holomorphic, one must have 

g(E,,J'EJ + g(TE,,JE i) + g(TJEj, E i) = O. 

(4.7) 

where i,j,k = 1 , . . . ,p ;  a = p + 1 , . . . , n -  1, since g "j = 0. 
Now, once again we use power series expansions. Note that 

f~i,(P) = g(D.(t)e,, ~ D.(t)e.) = g(Ei, JEa)(m ) + O(t) 

and since B is holomorphic, 

(4.8) ~ ( p )  = O(t). 

Further, we easily get 

(4.9) gii(P) = g(Ei, Ej)(m) + 2tg(TE i, Ej)(m) + O(t2), 

o ,o (p )  = o(t), 
gab(P) = g(Ea, Eb)(m) + O(t) 
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Proceeding in the same way as in Theorem 9, we get the desired result. 
Note that the second author proved in [ 13] that if (M, g, J) is a quasi-K~ihler 

manifold, i.e. 

(VxJ)Y+ (VjxJ)JY= O, 

then 

T(X, Y) + T(JX, J Y) = 0 

for a holomorphic submanifold. Hence, Theorem 10 yields 

T H E O R E M  11. Let (M,g,J) be a quasi-Ki~hler manifold and let B be 
a submanifold such that tp B is holomorphic. Then B is a totally geodesic 
hoiomorphic submanifold. 

COROLLARY 12. Let (M, g, J) be a K?thler manifold and B a submanifold such 
that q~B is holomorphic. Then B is a totally geodesic holomorphic submanifold. 

5. H O L O M O R P H I C  AND SYMPLECTIC REFLECTIOI~S ON 

LOCALLY HERMITIAN SYMMETRIC SPACES 

In this section we concentrate on K/ihler manifolds which are in addition 
locally symmetric. For  this case we have more complete results. The 
fundamental reason for this is that we can write a complete solution of the 
Jacobi equation (2.3) with initial conditions (2.4). 

Indeed, let (M, g) be a locally symmetric space. Then it is easy to see that 

(,1, sin  - 

where Rm = R(O). From this we get 

s in  t , / - / :  - ' ± E , ) ( m ) ,  
(5.2) D~(t)e, = (cos tx/~mm)E,~m ) -t X/~m 

D~(t)e~ sin t x / ~ .  
- EoIm), 

for i = 1 , . . . ,  p, a = p + 1 . . . .  , n - 1. Hence we obtain the following useful 
expressions: 

(TE, - '±E,), 
sin t x / / ~  

(5.3) gij(P) = g (cos tx /~)Ei(m)  + 
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sin tx//-~ (TEj - t l Ei)(m)) (cos tx /~)Ej(m ) + x /~s  

sin t , j - ~  
9~(P) = 9 (cos tx//-~)E,(m) + ~ (TE, - tlEi)(m), 

sin tx/~ t,/-~ Eo(m)), 
/'sin tx//-~ sin t~-R-~ 

Next, let (M, O, J) be a locally symmetric K/ihler manifold. Then we have 
from (5.2), since J is parallel, 

sin tx/~ 
(5.4) no(P) = 9 (cost t~/-~)E,(m) + ~ ( T E , -  '_l_E,)(m), 

J(cos t,/~.)E,(m) + J sin tv/-~. (TEj - 'J_EA(m) ), 

sin t,/~. 
n~(p)- -  o (cos t , , / ~ )E , (m)  + ~ (TE~ - '.l_E,)(m), 

x/Rm 

J sin t~'R-~ t,/g2~ Eo(ml), 
/sin tx/-~ sin tx/~s \ 

f~.b(p)=9~ - t x / ~  Ea(m),J -~tx/Rm E~(m)],./ 

ai.(p) = g((cos tx/~m)Ei(m ) + sin tX/~m ( T E l -  t l  Ei)(m),Ju), 

f2..(p) = O( sin t ~  E,(m), Ju~. 
k tx /R .  / 

Now we prove 

THEOREM 13. Let (M, g, J) be a locally Hermitian symmetric space and 
B a submanifold. Then q~B is symplectic if and only 

(i) B is holomorphic; 
(ii) Ruvu is normal to B for all u, v z T " B; 

(iii) RTJ + JRT = 0 and RTRJ + JRTR = 0 on tanoent vectors. 
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Proof. We start with the condition 

n , ~ ( ~ ( p ) )  = - ~ , n ( p ) .  

From (5.4) we see that this is equivalent to 

o((cos tv /~s)e,(m),  Ju) = o 

for all sufficiently small t. So, the first condition we get is 

(5.5) R u j u u  x = 0 

for all normal u and tangent x. We linearize (5.5) and use the first Bianchi 
identity and the K/ihler identity R x y j z j w  = Rxyzw to get 

(5.6) 3Rujvux - -  RuvuJx  = O, 

or replacing x by Jx: 
(5.7) 3R~jwjx + R . . . .  = 0. 

Replace v by Jv and x by Jx in (5.7) to get 

(5.8) 3R . . . .  + Rnjv~jx = 0. 

So, (5.7) and (5.8) yield 

R~,x = 0 

or equivalently, R~vu is normal to B along B. 
Using this, the expressions (5.4) become 

(5.9) ~q(p) = g((cos tx/~)E,(m), j s i n  tx/~ (TEj)(m)) 

/'sin t x / ~  ~/=- ~ 
+o ---~ ~,/"m)E~(")) (TE,)(m), J(cos 

+ g((cos tx/r~)E,(m), J(cos tx/~)Ej(m)) 

fsin t x / ~  sin tx//-~m , \ + g - - -  J -~m (_LEj)(m)), ~ ('±E,)(m), 

/'sin t x /~s  , J sin__tx/~ ~tx/~mm E.(m)),_ a,.o,) = - g[. ~ (±E,)(,~), 

/'sin t x /~s  J sin t x /~s  
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/s in t x / ~  Ju), ~'~(P)=-gk-~. ('±e,)(m), 

/'sin tx/r~ Ju). 

From this we have 

C~,o(,pdp) ) = -f~,o(p), 

f~(~pB(p)) = - f ~ ( p ) ,  

Hence, the remaining condition is 

f~iJ(CPB(P)) = ~ u ( P )  

and this is equivalent to 

t2ob(~%(p)) = oob(p), 

oo.(~B(p)) = o~(p) -  

(5.10) g((costx/~)Ei(m),jsin-tx~ (TEs)(m)~ 
x/Rm / 

) + O~ - ~  (TEi)(m), J(cos tx/~)Ej(m ) = O, 

for all sufficiently small t. 
The first condition derived from (5.10) is TJ + JT =0. This is always 

satisfied since (M, #, J)  is K/ihlerian and B holomorphic. The next condition 
turns out to be 

3R~sr~y - 3R~xujry + Rusx~ry -- R~r~jy = 0 
for all tangent vectors x, y. Now replace x by Jx: 

(5.11) 3Ruffly + 3RuJxuTdy -- R~,ry - RuTJxuJy ---- O. 

Next, we replace x by Jx and y by Jy in (5.11): 

(5.12) 3RuTaxuay + 3R~xurr -- RuJxuTJy -- Rurxuy = O. 

So, from (5.11) and (5.12) we get 

RuTJxuJy -F Rux~Ty = 0 

or equivalently, 

(5.13) R T J  + J R T  = 0 

on tangent vectors. 
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Using this, an easy calculation shows that the next condition becomes 

(5.14) R T R J  + J R T R  = 0 

on tangent vectors. 
Finally, (5.13) and (5.14) imply 

(5.15) RkTRIJ + JRITR k = 0 

for aU k, l, • ~. An easy calculation then shows from (5.15) that (5.10) is 
satisfied completely. This completes the proof. 

Now, we derive some corollaries from Theorem 13. First we have 

COROLLARY 14. Let (M, g, J) be a locally Hermitian symmetric space and 
B a totally geodesic submanifold. Then the reflection tpB is symplectic if and only 

if 
(i) B is holomorphic; 

(ii) Ruvu is normal to B for all u, v e TIB. 

Using Corollary 2 we get 

COROLLARY 15. Let (M, g, J) be a locally Hermitian symmetric space and 
B a totally geodesic holomorphic submanifold. Then the reflection tpn is 
symplectic if and only if it is an isometry. 

Moreover, we have 

COROLLARY 16. Let (M, g, J) be a locally Hermitian symmetric space and 
B a holomorphic submanifold. I f  the reflection q~a is an isometry, then it is 
symplectic. 

It is easy to see that the converse does not hold since we have 

THEOREM 17. Let (M, g, J) be a Kahler manifold of constant holomorphic 
sectional curvature. Then a reflection with respect to an arbitrary holomorphic 
submanifold is always symplectic. 

Proof From the expression for R (see Section 3) we get 

C 
Ru.xu ~ ~ x 

for all tangent vectors x. The result follows now at once from Theorem 13. 
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To finish this section we derive a criterion for holomorphic reflections tp B on 
a locally Herrnitian symmetric space. Recall that B must necessarily be 
a totally geodesic holomorphic submanifold. We have 

THEOREM 18. Let (M, O, J) be a locally Hermitian symmetric space. Then the 
reflection tp B with respect to the submanifold B is holomorphic if and only if  B is 
a totally oeodesic holomorphic submanifold such that Rovu is normal for all 
u, v ~ T±B. 

Proof We express that 

j,~(qTB(p) ) = __ja(p), 

Here 

i = 1 , . . . , p ,  

- j ~ ( p )  = ( ~ o  ko + ta,~o~")(p). 

a = p + l , . . . , n - 1 .  

We use again power series expansions to obtain 

(5.16) #,j(p) = g(E,, Ej)(m) + O(t2), 

g,,( p) = - tg(t_I_Ei, E~)(m) - z3 t2 0( RE,, Eo)(m) + O(tS), 

goo(p) = g(Eo, E~)(m) - ½  t2g(REo, Eb)(m ) + O(tS); 

(5.17) g°(p) = g(E,, Ej)(m) + O(t2), 

gt~(p) = tg('-I_E,, Eo)(m) + za t2g(RE,, Eo)(m) + o(ta), 

o~b(p) = O(Eo, Eb)(m) + O(t2). 

Further, we have 

(5.18) f~o(P) = g(Ei, JEj)(m) + O(t2), 

fl~(p) = - tff(t_l_Ei, JEo)(m) + x6 t2g((RJ + 3JR)E,, Eo)(m) + O(ta). 

Hence, (5.17) and (5.18) yield 

--JT(p)= t (~= 1 g(E,,JEk)(m)g( ' lEk,Ea)(m)--g(t lEi ,  Eo)(m)} 

+ ½t2g((JR - RJ)E i, Ea)(m) + O(ta). 

So, when tp a is holomorphic, we must have 

g((Jg - RJ)E,, Eo) = 0 

and hence 

R~uox = 0 

along B. As before this implies Ru~,x = 0 for all u, v ~ T-LB, x ~ TB. 
The converse follows easily from the fact that the conditions imply that ~0 B is 

isometric and symplectie (Theorem 13 and Corollary 2). 
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From this and Corollary 2 we get 

T H E O R E M  19. Let (M, g, J) be a locally Hermitian symmetric space and 
B a holomorphic submanifold. Then the reflection is holomorphic if and only if it is 
an isometry. 

From this and Corollary 15 we derive 

COROLLARY 20. Let (M, #, J) be a locally Hermitian symmetric space and 
B a totally geodesic holomorphic submanifold. Then the following statements are 
equivalent: 

(i) q)n is an isometry; 
(ii) tpn is holomorphic; 

(iii) tpB is symplectic. 

REMARK. Corollary 20 implies that the reflections with respect to an M+ 
and M_ submanifold in a compact Hermitian symmetric space are holo- 
morphic and symplectic. This may also be proved easily using the theory 
developed in [3], [4], [5]. 

6. S Y M P L E C T I C  R E F L E C T I O N S  AND K,h/HLER M A N I F O L D S  OF 

CONSTANT H O L O M O R P H I C  S E C T I O N A L  CURVATURE 

The main purpose of this final section is to give a characterization of K/ihler 
manifolds of constant holomorphic sectional curvature by using symplectic 
reflections. 

First we derive from Theorem 13: 

T H E O R E M  21. Let (M, g, J) be a locally Hermitian symmetric space and 
B a submanifold such that ¢PB is symplectic. Then there exists for each m ~ B 
a totally geodesic submanifold B,~ through m such that TmB m = T'~B. 

Proof. From Theorem 13 we get 

R . . . .  = 0 

for all u, v ~ T ±B and x e TB. Hence 

R . . . .  + Rwv.x = 0. 

Using the first Bianchi identity, this yields 

(6.1) 2Ruvwx - R . . . .  = 0. 

Hence we also have 

(6.2) 2R . . . .  - R . . . .  = 0. 
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So, (6.1) and (6.2) imply 

(6.3) R . . . .  = 0. 

N o w  the theorem follows easily from (6.3) by using Lie triple systems [10]. 
We use this result to prove 

THEOREM 22. Let (M, g, J) be a locally Hermitian symmetric space. Then 
(M, g, J) is a space of constant holomorphic sectional curvature if and only if the 
reflection with respect to any holomorphic surface is Symplectic. 

Proof. First, let (M, g, J) be a space of constant holomorphic sectional 
curvature. Then the result follows from Theorem 17. 

Conversely, let m ~ M and let u ~ TraM. ' There always exists a holomorphic 
surface B tangent to the subspace spanned by {u, Ju}. Since tps is symplectic, 
Theorem 21 implies that there exists through m a totally geodesic holomorphic 
hypersurface tangent to T~B. Since u is arbitrary, this implies that for all m and 
any holomorphic ( n -  2)-plane through m, there exists a totally geodesic 
holomorphic submanifold tangent to the (n - 2)-plane. Hence the axiom of 
holomorphic (n - 2)-planes is satisfied and so (M, g, J) is a space of constant 
holomorphic sectional curvature [17]. 
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