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Abstract. A unified dynamic modelling approach of closed and/or open kinematic chain mech- 
anisms is established. It is based on the use of the Newton-Euler formalism and the explicit 
formulation of kinematic holonomic constraints for the closed loop mechanisms. The approach is 
then applied to derive the dynamic modelling of a four-legged robot adopting a walking gait. The 
different movement sequences of the gait are analysed in order to calculate the all necessary terms 
in the dynamic equations of the quadruped robot. 
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1. Nomenclature 

9 acceleration vector due to the gravity 

mi  mass of body Si 

Gi mass centre of  body Si 

Ii inertia tensor of the body Si about its mass centre 

f coefficient of viscous friction 

V~  3-dim absolute velocity vector 

f~i 3-dim absolute angular velocity vector 

V T ti 6-dim twist vector of the body S{ defined as ti = [ a~' QT]T 

n, I number of bodies, joints 

di number of degree of freedom of the joint i 

Id 3 • 3 identity matrix 

T[  6-dim wrench vector acting on the body Si in which r stands for: l 
(constraint wrench), 9 (gravity wrench), f (friction wrench), e (external 
wrench), m (driving wrench) 

Oi joint angle of the body Si 

0(3) 3-dim zero vector 
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2. Introduction 

Recently, legged robot have generated considerable interest, because of their high 
performances in various robotic tasks [1] (nuclear power stations maintenance, 
underwater works, space, etc.). They are also distinguishable from the wheeled 
robots by their great mobility and adaptability on the rough terrain (ditch, slope, 
stairs, etc.). 

Few works are addressed to the dynamic modelling of the legged robots. 
This is due to the complexity of both the mechanical structure which generally 
contains an important number of bodies and joints and the locomotion planning on 
various terrains called the gaits. The lack of thorough understanding of the legged 
robots gaits often leads to adopt the inverse dynamic approach [2, 3]. It is based 
on the use of the force sensors and the integration of the dynamic equations to 
derive the motion of the legged robot. So it is limited by the material cost and the 
difficulties of dealing with the high coupled and non-linear dynamic equations [4]. 
We propose in the second part of this paper a direct dynamic approach of a four- 
legged robot in a walking gait. The analysis of the cinematographic recording [5], 
of the horse walking allows to represent the walking gait of the quadrupled robot 
by a set of the legs movement sequences. The legs Cartesian trajectories can then 
be proposed and transformed by a kinematic modelling to the joint trajectories [6]. 
The different sequences in the walking gait deal with closed and/or kinematic 
chain mechanisms, enhancing therefore the unified dynamic modelling approach 
developed in the first part of the paper. Although the common points with the 
formulation of dynamic equations of holonomic mechanical systems presented 
by Jerkovsky [7] and Angeles [8], the said method differs from the latter in the 
explicit formulation of the kinematic holonomic constraints in the case of the 
closed loop mechanisms as described next. 

3. Dynamic Modelling 

Considering a mechanical system composed of n bodies and l joints and struc- 
tured in closed and/or open kinematic chains. Different forces and moments are 
acting on each body of the system due to the friction, the gravity, the actuators, 
the external environment and the constraint efforts. The Newton-Euler equations 
of one body Si can then be written as follows: 

T~ -4- Ti e + T f  + Ti m -4- T g : M i i i  -4- RiMi t i .  (1) 

Let T( be the resultant wrench defined as the sum of T~e,Tf,Ti m and Ti g wrenches. 
Thus, expression (1) becomes: 

T] -4- T r = M i i i  -4- R iMi t i .  (2) 
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With M i  and Ri  are the 6 • 6 matrices denoting respectively the extended mass 
and the extended angular velocity and defined as: 

and 
0(3) Ii 0(3) 0(3) ' 

and zbi is the 3 x 3 antisymmetric matrix associated to the angular velocity and 
defined as: 

= Wz 0 - -wz  

--Wy wz  0 

(4) 

The dynamic equation of the whole system is obtained by combining the equa- 
tions for all bodies: 

T z + T ~ = M t  + R M t .  (5) 

With T z is the 6/-dim vector of generalised constraint wrench, T r and t are the 
6n-dim vectors denoting respectively the generalised resultant wrench and the 
generalised twist: 

= " ' " ~ l  .t 

Tr = T U )  T. 
(6) 

The 6n x 6n matrices of generalised mass M, and generalised angular velocity 
R are defined as: 

M = diag(Ml . . .  Mn) ,  

R -= diag(R1 . . .  Rn). 
(7) 

3.1. KINEMATIC E Q U A T I O N  OF H O L O N O M I C  C O N S T R A I N T S  

The writing of the kinematic equations which concern the system joints leads 
to a set of 61 equations and 6n unknown variables (absolute linear and angular 
velocities of the body Si). Among the 61 equations, there are 61 - ~ l = l  di null 
terms. One thus has the following kinematic constraints relation: 

At = 0. (8) 

With A is the 6n x 6n matrix. 
The rank of Equation (8) is defined for the isostatic mechanism as follows: 

l 

r = 61 - ~ d~. (9) 
i=1 
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From the Equation (8), the vector of generalised constrained wrenches is derived 
in function of the vector of Lagrange Multipliers: 

T 1 ---- AtA. (10) 

With/~ is a d-dim vector and d is the number of the motorised joints. 

3.2. KINEMATIC TRANSFORMATIONS IN THE JOINT SPACE 

The dynamic model (5) has to be determined explicitly in the joint space. Fur- 
thermore, it must contain only the motorised joint variables 0 x. So it is necessary 
to perform a kinematic transformation in the joint space as follows: 

t = TO I. (11) 

With 0x is the d-dim vector of the active joint velocities. 
The relation (11) can be easily found for the open kinematic chain mechanisms 

by applying some kinematic modelling methods [6]. Otherwise there is some 
problems with the closed kinematic chain mechanisms because of the presence 
of the ( l -  - d )  passive joint variables 0 D in the relation (11). To determine these 
variable, we use the following constraint equation: 

f(O) = 0. (12) 

Where 0 is the / -d im vector regrouping the active and passive joint variables: 

0 = (0 I, oD) T. 

By derivation of relation (12) with respect the time, we obtain: 

(0,) 
(J Jd) 0v =0. 

The expression of 0 D is derived from (14) as follows: 

0 D = - J d l j i o  I = HO I. 

(13) 

(14) 

(15) 

By combining the relation t -- Q01 and (15), we obtain the desired equation: 

t = T0 I, (16) 

With 

T =  (Qi + QaH)O I and Q = ( Q i Q d )  T. (17) 

At second hand, the derivation of (11) gives: 

i = ~PO I + T0/ .  (18) 
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q hoof 

Figure 1. Description of the four-legged robot. 

The transformation of the dynamic model in the joint space is realised by con- 
sidering relation (11) and (18). Moreover, the multiplication of the two terms 
of (5) by T T allows to eliminate the constraint actions ( ( T A ) T A  = 0), we thus 
obtain: 

r m = I(OI)O I + C ( O  I ,  0 I ) 0 1  -- T f -- r g, (19) 

with 

I 
c(oI, O x) 

d x d matrix of generalised inertia I = T T M T  (20) 

d x d matrix of centrifugal and coriolis terms 

C ( O  I,  0 I )  = T T M T  + T T R M T  (21) 

7 TM d-dim vector of generalised driving action "r m = T T T  m (22) 

T f d-dim vector of generalised friction action T f = T T T  f (23) 

7-g d-dim vector of generalised action due to the gravity 

T g : T T T  g (24) 

4. Application 

4.1. MECHANICAL DESCRIPTION 

The mechanism shown in Figure 1 comprises a rectangular platform connected 
to four legs, each leg being composed of two links and one foot (called a hoof 
by analogy with the horse foot). The joints used are: a spherical joint between a 
hoof and the lower link in which the y axis is motorised, a motorised revolute 
joint (g axis) between the two links and two motorised revolute joints (y and z 
axes) between the platform and the upper link. 

4.2. ROBOT LOCOMOTION 

The adopted strategy of locomotion of the four-legged robot is the walking. This 
gait is almost used by all the quadrupled animals when moving with moderate 
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L2 hoof orientation L1 propelling and L4 adjustment 

Figure 2. Movement sequences of the first step. 

speeds. The walking movements are periodic and composed of four steps. In the 
first and the third step, one leg advances in the walking direction and orientates its 
hoof to be parallel to the ground. A second leg is lifting to prepare its advance 
movement. The support of the whole mechanism is realised by the two other 
legs. One support leg propels all the robot links in order to put the raising leg in 
the ground while the other support leg submits the propelling action. The same 
movements are observable in the second and the fourth step only that the support 
is realised by the lateral legs and the propelling leg adjusts its motion to place the 
centre mass projection within the support surface of the legs putting in the ground. 
We then distinguish, in the different steps, the following movement sequences: 

advancing, propelling, preparing, hoof orientation, adjustment and balancing 
sequences. 

4.3. DYNAMIC MODELLING OF THE FOUR-LEGGED ROBOT 

For each step j (j = 1 . . .  4), the different movement sequences can be dynami- 
cally modelled by the following equations: 

�9 . j "j  j J T~ = h~i(Oi)Oi + Hi(Oi,OJi) ( i =  1.. .qj) ,  (25) 

with 

qj number of generalised variables in the sequence j ,  
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h { qj x qj inertial matrix of the robot, 

/4{ qj-dim vector of coriolis, centrifugal and gravity terms, 

"r/~ qj-dim vector of generalised joint actions. 

~:~1 The dynamic model of the four-legged robot, at each step is expressed as: 

"r j = hJ(OJ)O j q- HJ(o j, OJ), (26) 

with h j, 0 j and H j are defined as: 

hJ - diag(h{.., hqj ), 
oJ = (0~ . . . Oq~)T, (27) 
HJ = ( H ~ . . .  Hq,)T. 

The dynamic model (26) requires the determination of all the matrices in the 
relation (19). The computation is then performed for each walking movement. 

4.4. DETERMINATION OF T MATRICES 

4.4.1. Advance and Preparation Sequences 

The vectors of generalised twist t and generalised joint variables 0, as shown in 
Figure 3, are defined as: 

t = ( t l  t2t3) T and 0=(020304)  T, 

with (0) 
t l = ~)2 ' t;2 = ~02_Jr_ 03 , /;3 = {)3 Jr- 04 + 02 " 

(28) 

Let di and iij be respectively the distances d(OiGi)  and d(OiOj) ,  then the 
kinematic modelling yields: 

xcz  = d2S3 xa3 = 112S3 + $34d3 
YGz = - d 2 S 2 C 3  and YG3 = - I12S2C3 - $2C34d3 
za2 = d2C2C3 zG3 = I12C2C3 + C2C34d3 

(29) 

<4 
Figure 3. Scheme of one robot's leg. 
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Deriving the relations (29), the expression of the matrix T(18 x3) is therewith: 

T = (  0 0 0 ,  0 0 0 ,  0 0 0 ,  0 0 0 ,  1 0 0 ,  0 0 0 ,  0 0 0 ,  0 bl2 0, 
a22 b22 0, 1 0 0, 0 1 0, 0 b13 r a23 b23 c23, a33 b33 c33, 
1 0 0 ,  I 1 1, 0 1  1, 0 0 0 )  T. 

(30) 

With 

b12 = d2C3 
a22 = -d2C'3C2 
b22 = d2S3S2 
b13 =/12C3 4- d3C34 
c13 = d3C34 
a23 = -112C3C2 - d3C34C2 
b23 = 112S3S2 + d3S34~q2 
c23 = d3S34S2 
a33 = - /12C3S2 - d3C34S2 
b33 = - /12S3C2 - d3S34C2 
r ~ -d3S34C2 

(31) 

4.4.2. Orientation Hoof Sequence 

This is a simple case where the twist vector t4, the joint variable 0, and the T 
matrix are defined as follows: 

t4 = (VG4 /94) T, 0 -~- 04, T = (-d4z 0 d4x 0 1 O) T. (32) 

4.4.3. Balancing Sequence 

We notice three principle elements in this sequence: a balanced support leg (bod- 
ies Si,Si+l,Si+2), a passive support leg (Sj,Sj+I,Sj+2) and the system composed 
of the upper link Sp,Si-t-l,~i+2, Sk,Sk+l,Sk+2, S / , S / + I  and Sl-t-2 (Figure 4). The 

Sp 
o, ~ O j  

O~1 

O.-_ 

t OJtl 

Figure 4. Scheme of the mechanism in the balanced sequence. 
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two support legs are on the diagonal or on the lateral. The indices j and k denote 
the two other legs. 

The kinematic analysis gives the relation between the twist vector ts of the 
system S and the balanced angle 0: 

5:Gs = 0 
YGs = O ( - a S O  - bCO) (33) 
z <  = O ( a c o  - bSO) 

From relation (33), we can derive the matrix T as follows: 

T = (0 - aSO - bCO aCO - bSO 1 0 0) T, (34) 

with a = YGs - Yo~+z and b = zas  - Zoi+z. 

4.4.4. Prope l l i ng  S e q u e n c e  

The same analysis as in the balanced sequence, with respect to Figure 5, allows 
to establish the T matrix as follows: 

T = ( di+lC(Oi+ 1 + Os) di+lC(Oi+l + Os), 0 0, 

di+lS(Oi+l + Os) di+lS(Oi+l + Os), 0 0, (35) 
1 O, 0 0 ,  0 - l I C O s ,  0 0 ,  O l l S C O s O 0 ,  0 1, 0 0 )  T, 

with 

II = V/(Xi+2 - xi) 2 + (z i+  2 - zi) 2. (36) 

4.5. GENERAL EXPRESSIONS OF T f ,  T g AND T m 

The general expressions of the wrench vectors of friction, driving actions and 
forces due to the gravity are defined, for each robot's link, as follows: 

- f O i  ' T i n =  c m  ' - - m i 9  " 

OIT ] 

0 ~  

\ 

OJ~! 

Figure 5. Scheme of the mechanism in the propelling sequence. 
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5. Conclusion 

The movement  sequences of  a quadrupled robot in a walking gait can be repre- 
sented by the closed and/or loop mechanisms. This is justified to the use of  the 
unified dynamic modelling approach proposed in this paper. It is characterized 
by the explicit  formulation of  the kinematic holonomic constraints for the closed 
loop mechanism. Moreover,  it avoids to compute the constraint efforts increas- 
ing thus the efficiency in the control process. The approach can be either applied 
to the dynamic modelling of  other quadrupled gaits such as the amble, the trot 
and all the well planning gaits. The principle is always to determine the gait's 

movement  sequences, the legs Cartesian and joint trajectories and the dynamic 
equations. 
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