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Summary. Recently, in answer to a question of Kolmogorov ,  G.D. Maka rov  
obtained best-possible bounds for the distribution function of the sum X + Y 
of two random variables, X and Y, whose individual distribution functions, 
F x and Fy, are fixed. We show that these bounds follow directly from an 
inequality which has been known for some time. The techniques we employ, 
which are based on copulas and their properties, yield an insightful p roof  
of the fact that these bounds are best-possible, settle the question of equality, 
and are computat ional ly  manageable.  Furthermore,  they extend to binary 
operations other than addition and to higher dimensions. 

1. Introduction 

In a recent paper  [3], G.D. Makarov,  in response to a question and conjecture 
of A.N. Kolmogorov ,  solved the following problem: Let X and Y be random 
variables with respective distribution functions F and G. Find functions _F and 
F such that, for all z in IR, 

and 
_F (z) = inf P (X + Y < z) (1.1) 

F(z) = sup P(X+ Y<z), (1.2) 

where the infimum and supremum are taken over all possible joint distribution 
functions H having the margins F and G. 

In this paper  we will show that the bounds _F and F -  which Makarov  
obtains via a cumbersome, ad hoc argument  - are just a special case of a 
basic inequality which has been known for some years [4, 6]. The techniques 
used to establish this inequality yield an insightful p roof  of the fact that these 
bounds are best-possible and a necessary and sufficient condition for equality 
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as well. They also allow us to determine _F(z) and F(z) explicitly in a number 
of special cases. Furthermore, the basic inequality holds, not only for addition, 
but also for a large class of functions L: IR2--*•. Thus we can immediately 
answer Kolmogorov's question for many other binary operations on random 
variables. Lastly, we indicate how these results extend to finite collections of 
random variables. 

2. Preliminaries 

In the sequel, we let A denote the set of all one-dimensional probability distribu- 
tion functions (d.f.'s) that are non-defective at - c ~  and left-continuous on the 
real line ]R. Specifically, 

A = {F I Dora F = [ -  0% oo], Ran F ___ [0, 1], F is left-continuous and 
non-decreasing on IR, F ( +  oo)= 1, and F ( -  oo)=0 = lira F(x)}. (2.1) 

X - - *  - -  o O  

The elements of A are partially ordered via 

F<G iff F(x)NG(x) for all x in IR. 

For any a in ( -  0% oo] the unit step at a is the d.f. e, defined by 

ea(X.)~_{O, x < a, - - ~ < a < o o  
1, x>a, 

and 

(2.2) 

(2.3) 

0, -- oO < X <  o0, 
e~(x)= 1, x = o o .  

We denote the d.f. of a real random variable (r.v.) X either by F x or by 
df(X). 

The key to our development is the notion of a copula, first introduced by 
A. Sklar in 1959 [7] (see also [6], Chap. 6). 

Definition 2.1. A (two-dimensional) copula is a mapping C from the unit square 
[0, 1] x [0, 1] onto the unit interval [0, 1] satisfying the conditions: 

(a) C(a, 0)=C(0, a )=0  and C(a, 1)=C(1, a)=a, for all a in [0, 1]. 

(b) C(a2, b2)-C(al,  b2)-C(a2, bl)+C(at, bl)>O, for all a l ,  a2, ba, b2 in [0, 1] 
such that al <a2 ,  bl -<b2. 

It is readily verified that any copula C is non-decreasing in each place, 
is continuous, and satisfies 

W(a, b) < C(a, b) < M (a, b), (2.4) 

for all (a, b) in [0, 1] x [0, 1], where W and M are the copulas given by 

W(a, b) = Max (a + b -  1, 0), (2.5) 

M(a, b) = Min (a, b). (2.6) 

Henceforth we denote the set of all copulas by cg. 



Bounds for The Distribution of a Sum 201 

Copulas were so-named because they link multidimensional d.f.'s to their 
one-dimensional margins. They therefore provide a natural setting for the study 
of questions dealing with properties of d.f.'s with fixed margins (the present 
paper being a case in point). The exact connection is given by the following 
basic result, due to A. Sklar [7] (see also [-5]). 

Theorem 2.1. Let H be a two-dimensional d f  with margins F and G. Then there 
is a copula C such that 

H(u, v)= C(F(u), G(v)), (2.7) 

for all u, v in ~ .  In the other direction, for any F, G in A and any copula C, 
the function H defined by (2.7) is a two-dimensional d f  with margins F and G. 

If F and G are continuous on [ - o %  oo], then C is unique; otherwise, C 
is uniquely determined on (Ran F) x (Ran G). 

If X and Y are real r.v.'s with df (X)=F,  d f (Y )=G and joint d.f. H, then 
we call any copula C that satisfies (2.7) an XY-copula. Thus, for example, X 
and Y are independent if and only if/7 is an XY-copula, where 

H(a, b) = ab. (2.8) 

Note also that combining (2.4) and (2.7) yields the familiar Fr6chet bounds 
for H. 

Now, for any C in ~ and any F, G in A, let ac(F, G) be the function in 
A defined by 

ac(F, G)(-  oo)= O, ~rc(F , G)(oo)=- 1. 
and 

ac(V,G)(x)= ~ dC(F(u),G(v)), f o r - o o < x < o o .  (2.9) 
l t +  U'<X 

It is well-known that if X and Yare r.v.'s with df (X)=F,  d f (Y)=G,  and if 
C is an X Y-copula, then 

d f ( X  + Y)= ~rc(F, G). (2.10) 

Thus, for fixed F, G in A, the sets 

{ac(r, G) IC in cg} 
and 

{df (X + Y) ldf(X) = V, dr(Y)= G} 

are coextensive; and, clearly, for any fixed C in cg, ac is a binary operation 
on A. 

In order to obtain bounds on ac, we need to introduce two additional 
families of binary operations on A. These are the families z c and Pc which, 
for any C in ~g, are defined for all F, G in A and x in [ -  0% oo] via 

zc(f,  G)(x)= sup C(F(u), G(v)) (2.11) 
u - b v ~ x  

and 
pc(F, G) (x)= inf c(r(u), G(v)), (2.12) 

U + v = x  
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respectively, where 
C(a, b)=a + b - C ( a ,  b). (2.13) 

The operations ~c, Zc, Pc have been studied extensively (see [6] for details 
and references to the literature). For our immediate purposes we need the fact 
that for any copula C, 

Zw <= Zc <=ac < Pc <=Pw, (2.14) 

where each inequality holds for all F, G in A and all x in [ - o %  oo]. These 
inequalities were established in [4] (see also [6], Theorem 7.55) for d.f.'s having 
the value 0 at x = 0 .  The elementary arguments given there extend without 
difficulty to all of A, since (2.4) and Fig. 1 make it clear that, for any given 
copula C and any pair of points (ul, vl), (u2, v2) on the line u + v = x ,  we have 

W(F(uI), G(v,))<= C(F(u,), G(v,))= [.~ dC(F(u), G(v)) 
A 

< ~c (F, G)(x) < ~S '~ C (F(u), O (v)) 
B 

= F(u2) + G(vz)-  C(F(u2), G(vz)) 

= C(F(uz) ,  G(vz)) < W(F(u=), G(vz)). 

/ \ [omplemenf  
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3. Bounds for d f  (X+ Y) 

From (2.10) and (2.14), we immediately obtain 

Theorem 3.1. Let X and Y be r.v.'s with df's  F x and Fy, respectively. Then 

~w(Fx, f~)__< df(X + r )< t )wGx ,  fr). (3.1) 
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by 
In other words, the functions _F and/v  in (1.1) and (1.2) are given, respectively, 

F_=zw(Fx, Fr) and F=pw(Fx,  Fy). 

In [-3] Makarov obtains (3.1), not directly in terms of the d.f.'s involved, 
but rather in terms of their quasi-inverses. The left-continuous quasi-inverse 
of any d.f. F in A is the function F* defined on [-0, 1] by 

F* (a) = inf {x IF(x) > a}. 

The transition from our formulation to Makarov's,  and vice versa, is an immedi- 
ate consequence of a basic duality theorem which was established in [2] (see 
also [6], Sect. 7.7]). In the special case of the operations rw and Pw this theorem 
states that 

and 

zw(F, G)*(a)= inf [F*(s)+G*(t)] 
W ( s ,  t) = a 

Pw (F, G)* (a) = sup [F*(s)+G*(t)]. 
fig(s, t) = a 

sup IF* (s) + F; ~(t)], 

Thus (3.1) is equivalent to 

inf IF* (s) + Fi* (t)] < [d f (X  + Y)]* (a) < 
W ( s ,  t) = a  fig(s, t) = a 

which, apart from a slight difference in notation, is Makarov's result. 
Next, a straightforward extension of the argument used to establish Corollary 

2 of Theorem 9 in [4] yields the fact that 

ac(F, G) = zw(F, G) 

if and only if F = ea for some a > - ~ or G = eb for some b > - ~ ; and similarly 

ac(F, G)=pw(F, G) 

under the same conditions. From this it follows that, viewed as an inequality 
among all functions in A, (3.1) cannot be improved. But more is true: (3.1) 
cannot be improved for any pair of functions in A, i.e., the bounds are pointwise 
best-possible. More precisely, we have 

Theorem 3.2. Let F and G be any d f ' s  in A and x any point in ( -oo ,  oo). Then: 

(i) There exists a copula Ct, dependent only on the value t of zw(F, G) at 
x, such that 

act(F, G)(x) = ~w(F, G)(x) = t. (3.2) 

(ii) There exists a copula Cr, dependent only on the value r of pw(F, G)(x + ), 
such that 

act (F, G) (x + ) = p w (F, G) (x + ) = r. (3.3) 

Proof For  the given x, let Ax and Bx be the regions of the extended plane 
above and below the line u + v = x, i.e., let 
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Ax={(u, v)lu+v>x} 
and 

B~= {(u, v)lu+v<x}. 

To establish (i), we will show that if C t is the copula defined by 

�9 ( M a x  (a + b -  1, t), (a, b) in It, 1] x It, 1], (3.4) 
C t (a, b) = ~M (a, b), otherwise, 

then ac~(F, G)(x)---t. To this end, first note that if "cw(F, G)(x)= 1 then, in view 
of (2.14), ac(F, G)(x)-=l for any copula C. Thus it suffices to show that for 
0 < t < l ,  

ac,(F, G) (x) = ~ d Ct (F (u), G (v)) < t. (3.5) 
Bx 

For  any (u, v) in/~x, the closure of Bx, we have 

W(F(u), G(v)) <= zw(F, G)(u + v) < zw(F, G) (x) = t, 

so that F(u) + G(v) -  1 < t. Consequently, 

Ct(F(u),G(v))=Min(F(u),G(v),t), for (u,v) in Bx. (3.6) 

In particular, Co(F(u), G(v))=0 for all (u, v) in /~x, whence aco(F , G)(x)=0,  so 
that (3.2) holds for t = 0. 

Now suppose 0 < t < 1, and let 

Uo = s u p  (u[(F(u) < t}. 

Since lira F(u)=O, we have u o > - - o v .  If Uo=OO, then F(u)<t  for all finite 
l t ~  - -  o o  

u. But since lim G(u)= 0, there is a finite u' such that G ( x - u ' ) <  1. Thus, for 
u ' - - ~  - -  o 9  

u = u,  we have 
f (u)+ C(x-u)- 1 <F(u)<=f(u')< t, 

and for u >= u', we have 

F(u)+ G ( x - u ) -  1 < t+ G ( x - u ' ) -  1 < t. 

Thus zw(F, G)(x)NMax(F(u'),  t+G( x - - u ' ) - - l )< t ,  which is a contradiction. 
Consequently, Uo is finite. 

Next, we show that G(v)>_t whenever v > X - U o .  Suppose, to the contrary, 
that there exists a v ' > x - u o  such that G(v')<t. Since x - v ' < u o ,  we have 
F(x--v ' )<t .  Thus, for u<=x--v', 

f ( u )+  G(x--u)--  1 < F(u)<=f(x--v')< t, 

and for u > x - v ' ,  

F (u) + a (x - u) - 1 < G(x - u) < G (v') < t, 

and again, "cw(F, G)(x)< t, which is a contradiction. 
It  follows that F (u )<  t for u <  uo, whence by left-continuity F(uo)<= t; that 

F(u)>=t for U>Uo; and that G(v)>t for v>X--Uo. Combining these facts with 
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(3.4) yields (see Fig. 2) that for (u, v) in/~x, 

IF(u), 
C,(F(u), G(v))=/Min (F(u), G(v)), 

[Min (G(v), t), 

U ~ U O ,  V ~ X - - b l O ,  

u<=uo, v<=X--Uo, 
u 2~ bt o . 

(3.7) 

U 

\ 
~ U+V=X  

F(ul 

Hin[F(ul,G(vlJ 

Hin'[ fi(v), t ] ~  

Fig. 2 

To evaluate act(F, G)(x), choose 6 >0;  let R1, R2, Ra be the rectangles given 
by 

R1 =[--0% Uo-6] x [vo, Vo+ 6], 

R2 = [ -  o0, Uo] x [ - o0, Vo], 

Ra = [Uo, Uo + 6]  • [ - -  0% Vo --  6]  ; 

let R,~, R5 be the sectors given by 

R4=Bxc~ {(u, v)] V>Vo +b}, 

R5 = B x n  {(u, v) lU>Uo+~}; 

and, for k=  1, 2, ..., 5, let I(Rk) denote the contribution of the region Rk to 
the integral in (3.5). Then, using (3.7) (again see Fig. 2), we obtain 

I (R 1) = F (Uo - 8 ) -  Min (F (Uo - g), G (Vo)), 

I (R2) = Min (r(uo), G(vo)), 
I (Ra) = Min (G (vo - 6), t)-- Min (V(uo), G (Vo -- 6)), 

I (R4) = I (R s) = 0. 

Hence, since F and G are left-continuous and F(uo)< t, we have 
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act(F, G) (x) = lira [I(Rt)  + I(R2) + I(R3)] 

= F(uo) + Min (G(vo), t ) -  Min (F(uo), G(vo)) 
=J't, if G(vo)>t, 

Max(F(uo) ,  G(vo))<=t, if G(vo)<t, 

and (3.5) holds. This proves (i). 

Note. When F is continuous, the above argument simplifies and, in particular, 
in this case I(R1)=I(R3)=O. 

To establish (ii), we will show that if Cr is the copula defined by 

b" ~ (Max (a + b-r ,  O), (a,b) in [-0, r ] x [ 0 ,  r], (3.8) Cr(a, 
) = ( M ( a ,  b), otherwise, 

then act(F, G ) ( x + ) = r .  Again, first note that if pw(F, G ) ( x + ) = 0  then, since 
O<__ac(F, G)(x+8)<pw(F, G)(x+6) for any C in ~ and any 6>0 ,  we have 
ac~(F, G)(x + ) =  0. Thus, in view of (2.14), it suffices to show that for 0 < r =< 1, 

ac~(F, G ) ( x + 2 b ) > r ,  for all 3>0 .  

For  any (u, v) in Ax, we have 

W(F(u), G(v))>=pw(F, G)(u+v)>=pw(F, G)(x + )=r>O, (3.9) 

so that, since W(a, b) = Min (a + b, 1), we have F(u) + G(v)- r >= O. Consequently, 
for (u, v) in Ax, 

Cr(F(u), G(v)) -= Min (f(u), G(v), F(u) + G(v)- r). (3.10) 

If r=l,  then CI(F(u), G(v))=F(u)+G(v)-l>O, for all (u,v) in Ax. Since 
both F and G are non-defective at - 0 %  it follows that they, and consequently 
ac~ (F, G), are also non-defective at oe. Thus, for any 6 > 0, 

acl(F, G)(x+6)= 1-- ~ dCl(F(u), G(v)). (3.11) 
ftx+6 

But the contribution to the integral in (3.11) from any rectangle whose vertices 
are in Ax is identically 0. Hence acl (F, G) (x +)  = 1 = Pc, (F, G) (x +). 

Now suppose 0 < r < 1, and let, 

Uo = inf {u IF(u) > r}. 

Then arguments entirely similar to those used to establish (i) yield that uo is 
finite, that G(v)<r whenever v<X-Uo, that F(u)>r for U>Uo, and that F(u)<r 
for U<Uo. Thus, using (3.10), for (u, v) in A~ we have 

[G(v), U > Uo, v < X-Uo, 
Cr (F (u), G (v)) = ~ Min (F (u), G (v)), u > Uo, v > x -  uo, (3.12) 

tMin(f(u),F(u)+G(v)--r), U<Uo. 

To evaluate acr(F, G)(x +), choose b > 0; let S1, $2, Sa be the rectangles given 
by 
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Sl = [Uo, Uo + a] x [Vo + a, oo], 

S2 = [Uo + a, 0o] x [Vo + a, oo], 

$3 = [Uo+a, oo] x [Vo, Vo +6] ;  

let $4 and Ss be the sectors given by 

& = Ax+za c~ ((u, v) lv>vo +~}, 

& = & +  2~c~ {(u,v) 1U>Uo +a} ; 
and let 

I (S)= 55 dCr(F(u), G(v)). 
s 

Then it follows from (3.12) that 

t ($1) = F (uo + &)- F (Uo) + Min (F (Uo), F (Uo) + G (vo + &)- r) 

- Min (F(uo + 5), G(vo + &)), 

f($2) = 1 - F(uo + ~)-- G(vo + 5) + Min (F(uo + g;), G(vo + &)), 

I($3) = G(vo + ~)-  Min (F(uo + &), G(vo + 6)), 

s(&)=i(ss)=o.  

Adding yields 

I (A~ + 2a) =< 1 -- F (Uo) + M i n  (F (Uo), F (Uo) + G (Vo + 6) - r) 

- Min (F(uo + 6), G(vo + 5)). 

Since F(uo + 5)=> r, we have that 

_ f l - - r ,  if G(vo+b)<r, 
I(A'~+2a)<ll-Min(F(uo+fi),G(vo+fi)) < l - r -  if G(vo+&)>r. 

Consequently, 
act (F, G) (x + 2 b) = I (B~ + 2a) = 1 -- I (,'1, + 2a) > r, 

which, on letting d decrease to 0, yields (3.3) and completes the proof  of Theorem 
3.2. 

We conclude this section with several remarks. 

(1) The statement (ii) of Theorem 3.2 cannot be strengthened to ac,(F, G)(x) 
=pw(F, G)(x), not even when pw(F, G) is continuous at x. To see this, let F 
be the uniform d.f. on [0, i ] .  Then pw(F, F ) = F ;  but from (3.8) it follows that 
for any x in (0, 1), C~(F(u), F(x-u))=O for all u, whence ac~(F, F)(x)=O<x 
= Pw (V, F) (x) = Pw (F, F) (x + ). 

(2) The crucial property of the copula Ct which is used in the proof  of (i) is 
the fact that when a + b - l = t ,  then Ct, considered as a joint d.f., assigns the 
mass t to any rectangle of the form [0, a ] x  [0, b]. It follows that Ct is not 
unique. For  example, the copula C', defined by 

, J Ca b/t, (a, b) in [0, t] x [0, t], 
C,(a, b)='( C,(a, b), otherwise, 
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would do just as well; indeed, with C't the calculations that yield (3.2) remain 
unchanged. Similar remarks apply to the copula Cr used in the proof of (ii). 

(3) The fact that the results of Theorem 3.2 are best-possible is closely related 
to the fact that the binary operations Zw and Pw are not derivable from any 
binary operation on random variables, in the following sense: There are no 
Borel-measurable functions fl and 7 such that, for all pairs of random variables 
X, Y defined on a common probability space, zw(df(X), df(Y))=df(fl(X, Y)) 
or pw(df(X), df(Y))= df(7(X, Y)) (see [5] and [6], Sect. 7.6). 

4. Examples 

In a number of cases of special interest, the bounds for df(X+ Y) given in 
(3.1) can be determined explicitly. 

(1) For  - o e  < r < s <  o% let U,s denote the uniform distribution on It, s], i.e., 
let 

I 
O, t<r, 

U~(t) = (t-r)/(s-r), rNtNs, 
[1, s<t. 

Then, as shown by C. Alsina in [1], 

and 
pw(Uab' Ucd)(X)= Ua+c, Max(a+d,b+c). 

(2) For  any 0 > 0, let E o denote the exponential d.f. with parameter 0, i.e., let 

0, 
Eo(x)={1 --e -x/~ , x<=O,x>O. 

Then, using the method of Lagrange multipliers to determine the extrema of 
E~(u)+ Ea(v) under the constraint u +  v =x ,  we find that 

~w(E~, E~) (x) = E~ + ~ ( x -  k), 

where k = (ct + fl) log (a + f l ) -  c~ log a -  fi log fi, and that 

P w (E~, Et~ ) (x) = EMa x(a,/?) (X).  

(3) Let N~ denote the normal d.f. with mean #i and variance 0 -2, i.e., let 

where 
1 t 
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Then,  after some calculat ions similar to but  more  involved than those in (2), 
we find: 

(i) If a~ = 0.2 = 0"2 then 

and 

O, 

rw(N1, G )  (x) = 

[ \ 20" / 

pw(N,, Ng)(x)= 240\ 20. ] 
1, 

(ii) If 0 .2 4 = 0.22, then 

x < # t  + # 2 ,  

x ~" ],11 -q-- #2, 

x <:/.t i + # 2 ,  

x_-->#i+#2. 

[ - - G  1 S - -0 -  2 /O" 2 S - - G  1 t \  

and 

where s = x - / ' 1  - if2 and t = Is 2 + 2(0-22 - 0-2) log (0-2/a0]*/2. 

(4) Let  Ai denote  the Cauchy  dis tr ibut ion with locat ion paramete r  a t and scale 
parameter  fl~, i.e., let 

1 1 /x--~x~\ Ai(x)=-2 +~arctant~-~i " ). 

Then  calculations similar to those in (3) yield: 

(i) If ill = f l 2= f l ,  then 

=[0 i x<~1+~2, 
/x-cq -c~z\ zw(AI'A2)(x) arctan[-  ~ ) ,  X ~ g l  -]- 0{2, 

and 

[1, 
X =<0r q-0r 

X > g l  q-o~ 2 . 

(ii) If fll 4 = fi2, then 

1 - s + f l 2  t\ t s - f l~  t\l "cw(A,, A2)(x)= ~[arctan (- ~2 -)+ 
and 
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1 F [ - - s - - f l 2  t~ ~ [ s + f i l  t~] 
pw(A1, A2)(x)= 1 + - [ a r c t a n /  ~ - _ ~ - ) +  arctan ~ Z _ ~ l ) j  

where s = x -  el - e2 and t -- {[s 2 -(fi2 - fil)(fi 2 - fl2)]/fil f12} 1/2. 

5. Extensions 

Let A ~ be the class of all functions L from [-- o% oe] x [-- o% oe] onto [-- ~ ,  oe] 
that are non-decreasing in each place and continuous, except possibly at the 
points (~ ,  - oe) and ( -  o% oe). 

The basic operations Zc, Pc and ac may be extended in the sense that the 
operation of addition which appears in (2.9), (2.11) and (2.12) may be replaced 
by any L in 5~. (See [4] and [6], Chap. 7.) This yields new families of binary 
operations "~C,L, PC, L and tTc, L on A, which are defined via 

ZC, L(F, G)(x)= sup C(F(u), G(v)), 
L(u, v) = x 

Pc, L(F, G)(x)-- inf C(F(u), G(v)), 
L(u, v) = x 

and 
aC,L(F, G)(x)-- ~ dC(F(u), G(v)). 

L(u, v) < x 

Again, if X 
an XY-copula, then L(X, Y) is also a r.v. and 

df (L(X,  Y)) = ac, L(Fx, Fy). 

Furthermore, the basic inequality (2.14) immediately extends to 

ZW, L ~ C C ,  L ~ t Y C ,  L ~_~Pc, L ~ _ p W ,  L, 

and thus we have 

and Y are r.v.'s with d.f.'s F x and Fy, respectively, and if C is 

(5.1) 

Theorem 5.1. Let X and Y be r.v.'s with d.f.' s F x and Fy, respectively. Then, for 
any L in ~ ,  

rw, L(Fx, Fr) < df (L(X,  Y)) <= Pw, L(Fx, Fr). (5.2) 

The bounds in (5.2) are best-possible in the sense that equality holds through- 
out (5.2) whenever one of Fx, Fy is a unit step function. Whether or not they 
are pointwise best-possible remains to be determined. 

When [0, oo] is closed under L, then (5.2) is an inequality for non-negative 
r.v.'s (more precisely, for d.f.'s whose support is [0, oe-1). In particular, if 
P (x, y )=  x y we have that 

�9 w,~,(Fx, F~) < d d ( X Y )  < pw, i,(e~, ey). 

for any pair of non-negative r.v.'s X and Y 
The basic inequality (3.1) admits a simple extension to sums of any finite 

number of r.v.'s. From (3.1) and the fact that Zw and Pw preserve the ordering 
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(2.2) of A, we have 

Zw(zw(Fx  , Fr), Fz) < zw(Fx  + y, Fz) < F(x + y) + z < pw (Fx  + y , Fz) < p w ( P w ( F x  , Fy), Fz), 

for any r.v.'s X, Y,, Z; and similarly, 

rw(Fx ,  zw(Fy,  Fz)) <=Fx +(y + z) <=pw(Fx, pw(Fy,  Fz)). 

In view of the fact that the operations Zw and Pw are associative ([6], Chap. 
7], we may write 

zw(Fx ,  by,  Fz )<=df (X  + Y +  Z)<=pw(F x ,  f y ,  Fz) 

and, more generally, 

Z w ( Fx , , . . . ,  Fx.) < < P w ( Fx , , . . , ,  Fx,), 

for any r.v.'s X1 . . . . .  X, .  
Finally, upon replacing addition by any associative L in Y,  the above argu- 

ment yields 

Zw, r (rxl  , . . . ,  Fx,) < d f [ L ( X 1  . . . .  , X,)] < pw, L (IX . . . . .  , Fx,). 
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