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A numerical technique for obtaining interface reflection coefficients for imperfect bonds between 
similar materials for a wide range of distributed defects is developed. A numerical boundary 
element method is utilized to find the far-field scattering amplitudes of a single defect for a normally 
incident plane wave. Then, the normal incidence reflection coefficient for a planar distribution of 
such defects is obtained from the independent scattering model. As a validation, the reflection 
coefficients are compared to the quasi-static model results where the latter are available. This 
establishes the basis for one application of the new model, the determination of spring constants 
which are not available. Other applications of the model, including studies of the response at 
frequencies beyond the quasi-static limit, the ratio of longitudinal to transverse wave reflectivities, 
and the effects of selected multiple scattering are discussed. 

KEY WORDS: Ultrasonics; imperfect interfaces; quasi-static; reflection coefficients; spring constants; inde- 
pendent scattering; boundary element. 

1. INTRODUCTION 

In one category of weak solid-state bonds between 
similar materials, the bond plane contains a distribution 
of microscopic defects (e.g., cracks, voids, or contam- 
inants). Several models, e.g., the quasi-static model 
(QSM) of Baik and Thompson (1) and the independent 
scattering model (ISM) developed by Rose, (z) have shown 
that reflection coefficients from these imperfect inter- 
faces are sensitive to different characteristics of the de- 
fects. The QSM predicts bond reflectivity at low 
frequencies for certain defect geometries in terms of a 
distributed spring constant, which is defined by the de- 
formation of the interface under static load. The reflec- 
tion coefficients predicted by this model have been used 
to assess the detectability of imperfect bonds and to op- 
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timize bond inspections, including the selection of the 
angle of incidence giving maximum reflectivity. (3) How- 
ever, the QSM can not be conveniently utilized for many 
defect distributions of interest, since the appropriate static 
deformation solutions are not available. An example is 
the prediction of the shear wave reflection from an in- 
terface containing a distribution of oblate spheroidal in- 
clusions. Even when the static defect solutions are 
available, the QSM predictions are limited to the regime 
in which the wavelength is large with respect to the 
dimensional scale of the interface. 

The ISM, on the other hand, computes the reflec- 
tion coefficients using the scattering amplitudes for var- 
ious defects at the bond-plane. Resonance information 
from reflectivity-vs.-frequency curves, for instance, has 
been used to determine the average defect size from this 
model. (4) In principle, the model is limited to sparse 
distributions of defects by its interactions between de- 
fects. In practice, it is restricted to defect geometries for 
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which scattering amplitudes are available. Moreover, it 
appears to lose accuracy as one approaches grazing in- 
cidence.(5) 

This paper demonstrates the use of the boundary 
element method (BEM) to calculate the scattering am- 
plitude required by the ISM. Since the BEM can com- 
pute the far-field scattering for an arbitrarily shaped flaw 
illuminated by longitudinal or transverse plane waves, 
its combination with the ISM produces a very powerful 
tool to study ultrasonic reflections from imperfect bonds 
for a wide variety of distributed interracial defects. In 
the present work, the QSM and ISM are first reviewed. 
Then, the BEM is briefly described and its predictions 
are compared to a known exact solution. Its combination 
with the ISM is verified against the QSM for a specific 
case. Finally, several applications of this new approach 
are presented. These include the ability: to treat complex 
defect shapes, to incorporate a degree of multiple scat- 
tering, and to make reflectivity predictions at frequencies 
above the validity of the QSM. 

2. THE QUASI-STATIC AND THE 
INDEPENDENT SCATTERING MODELS 

2.1. The Quasi-Static Model (QSM) 

Figure la illustrates the scattering of normally in- 
cident ultrasound from an interface between two half- 
spaces which is assumed to exist in the vicinity of the 
x3 = 0 plane. In the QSM, the imperfect interface is rep- 
resented by a distributed spring and mass system as shown 
in Fig. lb. For a perfect interface, the boundary condi- 
tions are continuity of displacement and stress. In the 

QSM, the boundary conditions are modified to account 
for compliance and inertia changes associated with the 
imperfect interface. (1) 

[or(0 +) + cr(0-)]/2 = K[u(0+) - u(0-)] (1) 

-mto2[u(0 +) + u(0-)]/2 = or(0 +) - or(0-) (2) 

where cr,K,u, and m are the stress, the distributed spring 
constant per unit area, the material displacement, and 
the interface mass per unit area, respectively, and the 
coordinates 0 + and 0- denote the two sides of the in- 
terface. The limit that m ~ 0 and K ~ z recovers the 
response of a perfect interface. 

The QSM uses the modified boundary conditions 
to predict the displacement-field reflection coefficient, 
R, when the ultrasonic wavelength is long compared to 
the interface thickness and/or lateral structure. For nor- 
mally incident waves, the result, for an assumed time 
dependence of the form e -J't, is: 

Rz, r = 
-jo~(ZL. r/2v.kL., - m/2ZL, r) (3) 

(1 - mco2/4KL, r) -- joa(Zz,,r/2C, z,r + m/2Zz, r) 

where the acoustic impedance Zt.,r equals pci.,7, with p 
being the density and c being the ultrasonic wave speed 
of the host, and where subscripts L and T indicate lon- 
gitudinal and transverse waves, respectively. Note that 
this model implicitly includes defect interactions, which 
contribute to the static elasticity solution which deter- 
mines K. Note also that we have changed from the ~o,t 
time dependence originally used by the authors (1~ to co- 
incide with the e -j''t usually used in the discussion of 
the boundary element method. 

xa 

(a) (b) (c) 

Fig. 1. Ultrasonic models for an imperfect interface: (a) geometry of ultrasonic reflection and transmission, (b) quasi-static spring model, and (c) 
independent scattering model. 
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2.2. The Independent Scattering Model (ISM) 

The independent scattering model of Fig. lc  pre- 
dicts the frequency dependence of the reflection coeffi- 
cient for normally incident waves in terms of the scattering 
amplitude of single defects, with the defects assumed 
sufficiently far apart that their interactions can be ne- 
glected. (z) The result for normal incidence is 

RL, r(kL, r) -- - 2"rrJ NAL r(kL 7") (4) 
k L ,  T " " 

where N is the average number of defects per unit area, 
7f is the average backscattering amplitude of one defect, 
and k is the wave number. This single-scattering model 
is expected to perform best when the area fraction of the 
defects is small. Note that this model, in its simplest 
form, does not allow for multiple scattering as shown. 
However, it can be extended to incorporate flaw-flaw 
interactions by including additional terms on the right 
hand side of Eq. (4) which represent selected multiple 
scattering effects. (4) 

2.3. QSM and ISM Comparison to Experimental 
Measurements 

To illustrate the behavior of the two models, the 
special case of an interface containing a distribution of 
identical ellipsoidal inclusions will be considered, as 
shown in Fig. 2. In the QSM, the interface is charac- 
terized by both a distributed mass parameter,> m, and a 
distributed longitudinal stiffness, KL, whose values are 
given by the expressions(1): 

4'rr 
m = - - ~ - a l a 2 a z / V ( p  I - -  Po) (5) 

3(1 - v) I- erl e3r3] -1 
KL -- - - ~ a ~ [ 2 v - ~ 3 3 3 3  + (1 -- v)~--~33j (6) 

where v, Pl, Po, and N are the Poisson's ratio, the density 
of the inclusion material, the density of the host material, 
and the number of the defects per unit area, respectively. 
The ai are the semiaxes of the inclusions in the coordi- 
nate system of Fig. 2, 0~33 is the applied static stress, 
and er3 are the equivalent inclusion strains which can be 
evaluated using formulae in Ref. 1. In the derivation of 
Eq. (6), the inclusions have been considered to be non- 
interacting. 

In one experimental embodiment, a thermoplastic 
specimen was fabricated which contained a near planar 
distribution of spherical nickel inclusions. The wave speeds 
and densities of these materials are given in Table I. The 
mean diameter of nickel particles was measured to be 

l l l l l l  

/ 
/ 

" - - # - -  . . . . .  

al--a2Ra3 

Fig. 2. Geometry of an interface containing an array of ellipsoidal 
inclusions in an unbounded matrix. 

Table I. Material Properties Used in Calculations 

Material cL (cm/ixs) cr (cm/iss) p (gm/cm 3) 

Typical 0.600 0.300 8.00 
Nickel 0.604 0.300 8.90 
Thermoplastic 0.266 0.134 1.18 
Ti-64 0.621 0.321 4.49 
Salt 0.445 0.256 2.17 

79 microns, and the area fraction of the defects was 
calculated to be 13%. The reflection coefficients for this 
uniform specimen were measured (4) and are displayed in 
Fig. 3. The predictions of the QSM from the above for- 
mulation and of the ISM incorporating the known exact 
solution for backscattering from spheres are also shown 
in Fig. 3. Both models are in good agreement with the 
measurements at low frequencies, and the ISM predicts 
the resonance peak as well. 

2.4. Conditions for Consistency of QSM and ISM 

In the regime where the QSM and ISM simulta- 
neously apply, i.e., at low frequencies and low defect 
area fractions, the QSM spring constant can be deduced 
from knowledge of the average defect scattering ampli- 
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Fig. 3. Normally incident longitudinal reflection coefficients from an 
interface containing a planar distribution of spherical nickel particles 
in a thermoplastic specimen; a~ = 40 ~m and area fraction = 0.13. 

tude. This deduction process can be carried out in the 
general case when the mass parameter of the defect dis- 
tribution is non-zero. However, the mathematics is con- 
siderably simplified when m = 0. In the following, we 
explicitly demonstrate the deduction procedure for a case 
in which the mass parameter is negligible. 

At low frequencies and negligible mass, the nor- 
mal-incidence reflection coefficients predicted by the QSM 
are reduced to the following expression: 

-jo,z ,T (7) 
R L ,  T = 2 K L T  

Now, in the low frequency region, the average back- 
scattering amplitude is proportional to the square of the 
wave number multiplied by a constant % r which can be 
calculated from the shape, size, and the elastic properties 
of the scatterer(6): 

AL, r = k~, raL, r (8) 

Then, the reflection coefficients from the ISM are given 
by: 

RL, T ~--- - -  2~jNkL, 7aL, T (9) 

Therefore, the QSM and the ISM are consistent at low 
frequencies if, 

(lo) 
K L ' T  ~ 4"rrNaL, r 

Note that the interracial stiffnesses are inversely propor- 

tional to aL, r. Equation (10) provides a way to infer the 
spring constant, K, from the ISM solution. One moti- 
vation for such an approach is the treatment of oblique 
incidence problems, which requires knowledge of both 
the KL and K r for QSM calculations. (3) 

One can proceed in a similar manner if m is non- 
negligible, although the final expression for KL, r is more 
complicated. We note that there is no difficulty in cal- 
culating the QSM mass parameter when the defect mor- 
phology is known, m is essentially the total volume of 
the defects multiplied by the density difference between 
the defect and the host material. 

3. COMBINATION OF BOUNDARY ELEMENT 
METHOD AND ISM 

3.1. The Boundary Element Method (BEM) 

The field scattered from a single inhomogeneity, 
E% is characterized by a scattering amplitude, A, which 
defines the spherically spreading wave that is generated 
in the far-field by the plane wave illumination of the 
flaw as shown in Fig. 4. For elastic waves: 

~'Yd = Ate i" a,. os= . s =  a,o, 
- -  ---> ,, , "v  , , , "t" , j e J k L ,  T r 

r 
(11) 

with r large, where A is a function of the incident and 

scattered directions (0,qb), polarizations (d), and wave 

X3 -Osc(~ [ ~ / /  

-b in % 

Fig. 4. General scattering problem. 
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numbers, r is the distance from the apparent source of 
the spherical wave, Igi~[ is the amplitude of the incident 
plane w a v e .  (7) 

The numerical BEM for calculating the scattering 
amplitude begins with the generation of a mesh of sur- 
face area elements which cover the flaw. The shape of 
the flaw can in principle be arbitrary. Each area element 
has node points at selected locations on its perimeter. 
The BEM for solving elastodynamics scattering problem 
makes use of a boundary integral equation (BIE). The 
BIE is written for the host medium and the flaw material 
at the same node points. Interface displacements and 
tractions are matched-up resulting in a set of simulta- 
neous, linear algebraic equations which are then solved 
by matrix inversion techniques.( 7~ 

To illustrate the BEM, we have used it to calculate 
the scattering amplitude for L-wave backscatter from a 
30-1xm radius spherical void in a "typical" host metal 
(see Table I). The BEM results at selected frequencies 
are compared to known exact solutions (8~ in Fig. 5. The 
BEM predictions using a 40-elements mesh and a 140- 
elements mesh are found to be in good agreement with 
the exact solution at low frequencies. As the frequency 
increases, the 140-elements model does a better job than 
the 40-elements model. In general, finer meshes are re- 
quired as the frequency increases since the surface so- 
lution has a correspondingly shorter length scale. (7~ 

3.2. Comparison of BEM+ISM and QSM 
Predictions at Long Wavelength 

We now demonstrate how the BEM and ISM may 
be combined to predict reflection coefficients for defect 
distributions. We consider a planar distribution of sphe- 

roidal cavities (al=a2<-a3) in a "typical" metal. The 
cavities have a fixed in-plane dimension (al) and number 
density, and are illuminated by longitudinal waves at a 
fixed frequency (kLa ='rr/20). The fraction of the inter- 
facial plane covered by the cavities is 0.025. The BEM 
was used to calculate single-cavity L-wave scattering 
amplitude for different aspect ratios (ratio of out-of-plane 
and in-plane dimensions), and the ISM was subsequently 
used to calculate the corresponding interface reflection 
coefficients. The BEM + ISM predictions are compared 
to those of the QSM, as a function of aspect ratio, in 
Fig. 6. For this low-frequency calculation, the two models 
match up very well for moderate aspect ratios. But as 
the aspect ratio decreases below 0.05, i.e., the spheroids 
become very thin, the numerical BEM breaks down. 
This is due to the singular nature of the surface integra- 
tion when the opposing faces of the spheroid are in close 
proximity. (9) Krishnasamy et aL (1°~ have presented a 
combined conventional and hypersingular boundary in- 
tegral formulation for scattering of waves from slender 
voids which is free of these problems. 

4. APPLICATIONS OF BEM + ISM 

4.1. Determination of Spring Constants 
for the QSM 

An attractive property of the QSM is its ability to 
predict interface transmission and reflection coefficients 
at arbitrary angles of incidence, given the mass param- 
eter and spring constants. O) However, use of that model 
is restricted by the fact that the relationship of the spring 
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Fig. 5. Far-field backscattering amplitude of a spherical void 
illuminated by a normally incident longitudinal wave, at = 30 ~m. 
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Fig. 6. Normally incident longitudinal reflection coefficients from an 
interface containing a distribution of spheroidal voids; kLal = rr/20 
and area fraction = 0.025. 
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constant to the defect morphology is limited to a few 
geometries for which appropriate static elasticity solu- 
tions are readily available. This range of cases can be 
greatly extended through use of Eq. (10), where aL, r is 
evaluated from the BEM. 

Considering the spheroidal void case of the pre- 
vious example, a simple expression (i.e., Eq. (6) is 
available for the longitudinal wave spring constant, KL, 
but not for the transverse wave constant, KT. The lon- 
gitudinal spring constants for distributions of such voids, 
as predicted by the QSM and the BEM + ISM, are listed 
in Table II for several choices of the aspect ratio. This 
data, which is essentially the same as that plotted in Fig. 
6, establishes in greater detail the accuracy of the 
BEM + ISM approach.  Moreover ,  the combined 
BEM +ISM model predicts the transverse wave spring 
constants (also listed in Table II) which are not otherwise 
known to the authors. It is interesting to note that the 
shear stiffness is much more strongly influenced by the 
aspect ratio of the voids than the longitudinal stiffness. 
The BEM can readily treat voids and inclusions of more 
complex shape as well. 

4.2. Response at Higher Frequencies 

The QSM is restricted to lower frequencies, where 
the wavelength is large with respect to the size and sep- 
aration of the elementary defects.  The combined 
BEM + ISM, on the other hand, can be used to predict 
reflection coefficients at higher frequencies. Figure 3 
presented the related example of the scattering from a 
distribution of spherical inclusions. This demonstrated 
the ability of the ISM to predict high-frequency response 
where the QSM failed. In that case, however, the BEM 
was not needed, since a solution for scattering amplitude 
based on separation of variables was available. In studies 
of the scattering of ultrasound from bond lines in dif- 

fusion-bonded titanium alloys, similar reflectivity pre- 
dictions are often desired for inclusions of more complex 
shape for which the scattering amplitude is not readily 
available. For example, in one recent study, (4~ an aircraft 
engine manufacturer identified four substances as pos- 
sible bond-plane contaminants in the factory environ- 
ment. Diffusion bonded titanium specimens incorporating 
each of these contaminants (feldspar, human sweat, iron 
rust, scouring pad particles) were manufactured for bond- 
plane reflectivity testing. As an example of an associated 
model calculation, we specifically consider the case of 
contamination by human sweat deposits. In a first ap- 
proximation, the embedded contaminants can be mod- 
eled as thin salt particles distributed across the bond 
plane. For the purpose of illustration, we assume a dis- 
tribution of oblate spheroidal (aspect ratio of 0.1) salt 
inclusions covering 10% of a bond plane in a Ti-6%A1- 
4%V alloy. The wave speeds and densities of Ti-64 and 
salt are given in Table I. Figure 7 presents the frequency 
dependence of the bond-plane reflection coefficients for 
normally incident longitudinal and transverse sound waves. 
Predictions are made for both the BEM + ISM and the 
QSM treatments. For the QSM longitudinal wave case, 
KL was determined independently using Eq. (6) to be 
5095 gm/(cm-txs) 2. In Fig. 7a, the two models are seen 
to be in agreement at low frequencies as expected if the 
m 4:0 counterpart of Eq. (10) is to hold. The two models 
diverge at higher frequencies illustrating the advantage 
of the BEM + ISM in this regime. The shear wave so- 
lution is particularly interesting since the quasi-static so- 
lution for shear interfacial stiffness is not known in this 
case. From the low-frequency region, a fit of the QSM 
to the BEM + ISM implies that the transverse interfacial 
stiffness constant is KT = 2067 gm/(cm. ~S) 2. Based on 
this value, the QSM shear-wave reflection coefficient at 
higher frequencies has been predicted as shown in Fig. 
7b. 

Table II. Spring Constants for a Sparse Distribution of Spheroidal 
Voids in "Typical" Material from the QSM and BEM + ISM" 

i 

Aspect ratio (KL)QSM 0%)BEM + ISM (Kr)BEM + ISM 
a3/al (gm/[cm.lxs] 2) (gm/[cm.r~s] 2) (gm/[cm.~s] 2) 

0.05 16,835 16,660 12,680 
0.10 16,670 16,350 11,526 
0.20 16,236 15,930 9,725 
0.40 15,048 14,834 7,294 
0.60 13,652 13,555 5,776 
0.80 12,255 12,269 4,766 
1.00 10,946 11,081 4,063 

4.3. Ratio of Longitudinal to Transverse 
Wave Reflectivities 

For a distribution of microscopic defects, Nagy and 
Adler (6) have defined characteristic frequencies, I1, at 
which the magnitude of the reflection and transmission 
coefficients are equal. When the QSM applies and the 
mass parameter is negligible, the ratio of transverse to 
Iongitudinal characteristic frequencies is found to be: 

P Z r _  KTCL _ limo,_,oR_~L (12) 
~"~L KL C T RT 

"The area fraction was taken to be 2.5% in all cases, when  rn 4= 0, the ratio of characteristic frequencies is a 
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Fig. 7. Normally incident longitudinal reflection coefficients from an 
interface containing a distribution of spheroidal salt particles in a Ti- 
64 specimen; a:t = 100 ixm, aspect ratio = 0.1, and area fraction = 
0.1: (a) longitudinal, and (b) transverse, 

to 2 in titanium) and less than 1.4 for compressed sur- 
faces (ranging from 0.6 to 0.9 in measurements in alu- 
minum and steel). The later were taken as models of 
"kissing bonds," in which the mating surfaces are in 
close contact but in which little mechanical bonding had 
occurred. 

Motivated by a preliminary calculation of the effect 
of aspect ratio on limito, __, oRL/Rr, as reported by Nagy 
and Adler based on evaluation of KL from static elasticity 
solutions, (6) we have computed the same ratio using the 
BEM + ISM formalism. We assumed spheroidal voids in 
Ti-64 having a fixed in-plane dimension (al =a2 = 100 
~xm) and a fixed area fraction (0.1). For each assumed 
aspect ratio (a3/al) and incident wave type, the BEM 
was used to determine the single-void scattering ampli- 
tudes at frequencies in the range 1 MHz_< to _<10 MHz. 
The ISM was then used to determine the reflection coef- 
ficients at these frequencies, and the ratio of RL/Rr was 
calculated. This ratio was found to rapidly converge as 
o~ decreased. The results, shown in Fig. 8, range from 
1.4 at an aspect ratio of 0.05 (crack-like defects) to 0.6 
at unity aspect ratio (spheres). They differ somewhat 
from the previous calculation (6) in that our results show 
a greater range in the reflection coefficient ratio. Our 
predictions are in good agreement with the experimental 
observations if one assumes that the microdefects in 
compressive or "kissing" bonds have high aspect ratios, 
consistent with the original hypothesis of Nagy and Ad- 
ler. 

4.4.  Mult iple  Scattering Effects 

The ISM, as stated by Eq. (4), neglects multiple 
scattering effects. However, Rose has provided a for- 

more complicated function of m, KL, Kr. In the QSM 
model, the reflection coefficient rises and approaches 
unity as the frequency increases. There is consequently 
no difficulty in locating the characteristic frequency at 
which the reflection and transmission coefficients are 
equal. In practice, however, the reflection coefficient 
initially rises with frequency, but may then undergo un- 
dulating behavior associated with resonances in the sin- 
gle defect scattering amplitude. There may be no frequency 
for which reflection and transmission coefficients are 
equal. This is demonstrated in Fig. 3 for example. It has 
been suggested that this ratio is closely related to the 
physical nature of the interface imperfections. (6) Nagy 
and Adler observed experimentally that this ratio was 
greater than 1.4 for diffusion bonds (ranging from 1.5 
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Fig. 8. Ratio of longitudinal to transverse reflection coefficients from 
an interface containing a distribution of spheroidal voids in a Ti-64 
specimen; a~ = 100 Ixm and area fraction = 0.1. 
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malism (2) and Margetan et al. have provided a specific 
example (4) for inclusion of nearest neighbor interactions. 
Consider here the case in which the defects are arranged 
in square arrays. The second order effect associated with 
scattering from one inhomogeneity to its nearest neigh- 
bors is shown in the diagram of Fig. 9a. The total av- 
erage backscatter amplitude from the central defect for 
normally incident waves, including the second order 
contributions from its nearest neighbors, B, is approxi- 
mately given by: 

~L_L(O'",180 'c) = .dL_L(Oin,180 sc) 

+ m s eJkz'dl n~[AL_L(OI",90~)AL_L(90" ,180 °) dl 

n s c  dkTd11 
+ J.L_r(Oi",90'~).4r_L(90i ,180 1--~-1 J (131 

[Az_L(Oin,9Ose)ZL_L(9Oin,lSOse) eJdLdZ -t- l'l 2 2 

. sc  #k~21 
+ ,1so ) - - 7 - /  

a 2 d  

@T@L  

kt.a 
0 0 . 4  0 . 8  1 .?. 1 . 6  

0 . 8  ' ' ' ' ' ' 
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~ BEM+ISM 0.6 J "  
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Frequency in MHz 
Fig. 9. An interface containing a distribution of spherical voids in a 
Ti-64 diffusion-bonded specimen and illuminated by a normally inci- 
dent longitudinal wave: (a) propagation of second order effects from 
one scatterer to its nearest neighbors in the bond plane, and (b) re- 
flection coefficients, al = 40 Ixm and area fraction = 0.2. 

where nl and n 2 are the numbers of the nearest and next- 
nearest neighbors of the central defect, respectively, and 
dl and d2 are the corresponding separations. The sec- 
ondary backscattering includes the L-L-L and L-T-L 
soundpaths. This analytical formulation is based on the 
far-field approximation, which represents the wave scat- 
tered from one flaw to the other in its far-field form. At 
low frequencies, this approximation does not fully cap- 
ture interactions because the use of far-field scattering 
amplitudes is not appropriate when defect separation is 
on the order of a wavelength. The accuracy of this ap- 
proach, for the case of treating the scattering from two 
defects, has been examined in detail by Schafbuch et 
a/. Or) The ISM is extended to include secondary scat- 
tering (SS) effect by replacing.TI in Eq. (4) B from Eq. 
(13). The normally incident longitudinal wave reflection 
coefficients for a distribution of spherical voids with 20% 
area fraction in a Ti-64 specimen have been calculated 
for four models and are shown in Fig. 9b. The first two 
models are the QSM and the combined BEM + ISM ne- 
glecting multiple scattering. The other two model treat- 
ments include secondary scattering contributions from 
the interactions with first and the first and second set of 
nearest neighbors, respectively. These multiple scatter- 
ing models show secondary resonance peaks due to de- 
fect interactions. 

5. CONCLUSIONS 

The BEM may be used to predict scattering from 
defects of arbitrary shapes (voids or inclusions) for in- 
termediate frequency ranges with a general incident field. 
The ISM relates the scattering from a single defect to 
that of a distribution of defects when the interactions can 
be neglected. The BEM + ISM has been shown to be an 
effective tool in predicting the scattering from imper- 
fectly joined interfaces. The predicted bond refiectivities 
from the combined BEM + ISM match well with the QSM 
predictions at long wavelengths where the QSM is valid. 
The combined BEM+ ISM method is able to directly 
predict reflectivities for wide varieties of defect distri- 
butions, and can be used to obtain the transverse and 
longitudinal inteffacial stiffnesses required as inputs for 
the QSM. The combined model allows extension to fre- 
quencies when the wavelength is on the order of defect 
dimensions, and has been used to show that the longi- 
tudinal to transverse wave reflectivities ratio of an im- 
perfect interface depends on the shape of the scattering 
defects. The BEM + ISM model can be extended to in- 
clude multiple scattering effects, but this extension does 
not capture all interactions at long wavelengths because 
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of the breakdown of the far-field approximation em- 
ployed.  In such cases, a full BEM approach is required. 
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