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Effect of the Knudsen  N u m b e r  on Heat  Transfer to 
a Particle Immersed  into a Thermal  Plasma 
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The Knudsen effect on heat transfer to a particle exposed to a thermal plasma is 
important for many practical situations experienced in plasma chemistry and 
plasma processing. This paper provides theoretical results of this effect based on 
the "heat conduction potential jump" approach. It is shown that a correction 
factor which depends on the Knudsen number must be introduced into the 
expressions for heat fluxes obtained previously based on the continuum approach. 
The Knudsen effect is stronger for smaller particles and it is also more pronounced 
for an Ar-H2 plasma (compared to Ar  and nitrogen plasmas at the same 
temperature). Since the Knudsen effect depends on the surface temperature of a 
particle, calculation of particle heating becomes more complicated. 

KEY WORDS: Knudsen effect; heat transfer; small particles; thermal plasmas; 
analytical studies. 

1. I N T R O D U C T I O N  

T h e  K n u d s e n  effect on hea t  t r ans fe r  to  a b o d y  i m m e r s e d  into  a ra re f ied  
gas is a w e l l - k n o w n  p r o b l e m .  T h e r e  have  been  n u m e r o u s  theo re t i ca l  and  
e x p e r i m e n t a l  inves t iga t ions  d e v o t e d  to  this  subject .  Exce l l en t  s u m m a r i e s  
a re  given in Refs.  1 -3 .  T h e  gove rn ing  p a r a m e t e r  which  specif ies the  r a n g e  
in  which the  K n u d s e n  effect p lays  an i m p o r t a n t  ro le  is the  K n u d s e n  n u m b e r  
de f ined  as 

K n  = A / L  

w h e r e  A is the  m e a n  f ree  pa th  of the  molecules ,  and  L is a charac te r i s t i c  
l ength  of the  b o d y  in ques t ion .  
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Only when the Knudsen number is very small does the usual continuum 
approach used in fluid mechanics and heat transfer apply, i.e., the Navier- 
Stokes equations and Fourier's heat conduction law with continuous boun- 
dary conditions may be used. The Knudsen effect can be entirely neglected 
for this limiting case. 

For cases in which the Knudsen number is still small but not negligible, 
"slip flow" and "temperature jump" boundary conditions have to be 
employed in conjunction with the continuum equations and Fourier's law. 
In this situation the Knudsen number will appear in the expressions for 
the heat flux or the drag force as a parameter. 

At high Knudsen numbers, the flow situation is known as "free 
molecular flow." For this limiting case, continuum concepts or Fourier's 
law are no longer applicable; another approach is necessary based on the 
kinetic theory of gases where the Knudsen number becomes the most 
important parameter. 

Between the "temperature jump" regime and the "free molecular" 
regime, there is a transition region which does not lend itself to a theoretical 
treatment, although some useful approaches have been suggested) 4) 

Approximate Knudsen number ranges corresponding to these different 
regimes may be specified as follows: (2) 

Kn < 0.001 

0.001 < K n < 0 . 1  

0.1 < Kn < 10 

10<Kn 

continuum regime 

temperature jump (slip flow) regime 

transition regime 

free molecular flow regime 

It should be emphasized that it is the Knudsen number itself, not the 
absolute values of A or L, which determines the degree of importance of 
the Knudsen effect or the "rarefaction" effect. 

For heat transfer in a rarefied gas, higher Knudsen numbers are caused 
by the reduced gas pressure which is equivalent to a larger mean free path 
of the molecules (A is approximately inversely proportional to the gas 
pressure), while the characteristic length L of the body under consideration 
is usually large. On the other hand, for many problems in plasma chemistry 
and plasma processing, higher Knudsen numbers are primarily caused by 
the extremely small particle sizes, although atmospheric pressure may 
prevail in the plasma reactor. For example, particles utilized for thermal 
plasma synthesis or plasma spraying are typically on the order of microns 
or tens of microns. The mean free paths of molecules in an atmospheric- 
pressure, thermal plasma, on the other hand, are also on the order of 1 to 
10 txm, resulting in Knudsen numbers approaching one. Therefore, the 
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Knudsen effect will have a stronger influence on heat transfer in such 
situations. 

So far almost all studies of heat transfer and flight trajectories of single 
particles immersed in a thermal plasma have been based on the common 
continuum approach, except for a few investigations. Honda e t  al .  ~5~ repor-  
ted experimental results of heat transfer to a fine wire exposed to a 
low-pressure plasma (500 Pa and 9000 K). Since Kn > 10 in this situation, 
the continuum approach is no longer valid for this case. Rykalin and 
co-workers (6~ studied heating of submicron metallic particles in a hot gas, 
using a free molecular flow approach. 

The Knudsen effect for heat transfer to a particle immersed in a thermal 
plasma within a Knudsen number range 0.001 < Kn < 10 remains virtually 
unknown, although this effect is certainly of importance for many practical 
situations. 

In order  to fill this gap, a theoretical t reatment similar to the " tem- 
pera ture  jump approach" used in rarefied gas heat transfer will be 
developed in this paper, modified for thermal plasma conditions. The 
Knudsen number range within which this t reatment is applicable is approxi- 
mately 0.001 < K n < 0 . 1 .  However,  it is expected that this " temperature  
jump"  prediction can be extended into the transition regime of Knudsen 
numbers up to 0.8 because of the good agreement between theoretical 
predictions and experimental data for small temperature  differences, (7) as 
will be demonstrated in a later part of this paper. 

2.  A S S U M P T I O N S  A N D  E Q U A T I O N S  

The assumptions used for this analysis are similar to those employed 
in a previous paper: (8) 

1. The particle is exposed to a uniform-atmospheric-pressure plasma 
without relative motion between the particle and the plasma. 

2. The heat transfer process is steady. 
3. The particle is assumed to be spherical. 
4. Free convection effects are neglected. 
5. Radiation from and to the particle is neglected. 

The effects of unsteady heating and radiation from and to a particle 
have been treated in a previous paper. (9) Evaporat ion or sublimation of a 
particle in a high-temperature plasma may have a strong effect on heat 
transfer, ~8~ but this effect will not be included in this paper in order  to 
simplify the analysis. 
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With the foregoing assumptions, the governing equation for heat 
transfer to a particle can be written as 

o r  

47rr2 ( k  ~rh) = O0 (1) 
\ ¢ p  

4err 2 d S  = Oo  
dr  (2) 

where k is the thermal conductivity, c o the specific heat at constant pressure, 
and h the specific enthalpy of the plasma. The quantity Oo is the total heat 
flux transferred to the spherical particle, and r is the radial coordinate from 
the center of the particle; S is the heat-conduction potential defined as 

T h 

+> 

which can be treated as one of the plasma properties which is only a 
function of the plasma temperature for a given plasma in local thermody- 
namic equilibrium (LTE). Such data have been presented in graphical forms 
for three different types of plasmas in a previous paper. <8) In Eq. (3), Tr 
and hr represent reference temperature and reference enthalpy, respec- 
tively. 

For the cases to be treated in this paper (0.001 <Kn<0 .1 ) ,  Eqs. (1) 
and (2) are applicable for the whole region except for a small zone near 
the particle surface (within the temperature jump distance). Equations (1) 
and (2) can be used for the entire region up to the particle surface by 
taking temperature jump boundary conditions into account. 

The boundary conditions for Eq. (1) are 

r ~ 0o, T = To (4a) 

r = rs, T = Tg (4b) 

Condition (4a) corresponds to the limiting case for which the continuum 
approach is still valid, but condition (4b) contains the temperature jump 
effect at the particle surface. The quantity Tg in Eq. (4b) is the plasma 
temperature, which is different from the true wall temperature Ts due to 
the presence of the Knudsen effect. The difference T g - T ~  represents the 
temperature jump at the particle surface. 

Following a procedure proposed by Maxwell for velocity slip condi- 
tions, Kennard <1> suggested the following expression for the temperature 
jump: 

d T  
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where (dT/dr)s represents the temperature gradient at the particle surface 
obtained from Eq. (2) for r = rs. The temperature jump distance, z, has 
been derived by Kennard (1~ as 

= ( 2 - a ~ (  23, ~ h (6) 
z \ a ] \ l + y Y P - r  

where a represents the thermal accommodation coefficient measuring the 
extent to which interchange of energy takes place when a plasma particle 
strikes the surface; Pr and y denote  the Prandtl number and the specific 
heat ratio, respectively. 

Equations (5) and (6) are valid for cases of small temperature differen- 
ces (Too - T~ < 50°C, for example). 

For studying heat transfer to a particle under plasma conditions, it is 
more expedient to use heat-conduction potentials instead of temperatures. 
By using the heat-conduction potential, exact solutions for heat transfer 
to a particle without and with evaporation have been obtained for the 
limiting cases for which the continuum approach is valid. ~8~ 

By introducing the heat-conduction potential, we can transform Eq. 
(5) into 

, (ds  
S ~ - S ~ = z  \-drr]s (7) 

where Sg is the heat-conduction potential corresponding to Tg, (dS/dr)~ is 
the heat-conduction-potential  gradient corresponding to (dT/dr)~. In Eq. 
(7) z * denotes the distance over which the heat-conduction potential jump 
occurs. An expression for z* will be derived in the next section. 

Corresponding to the boundary conditions (4a) and (4b), the boundary 
conditions for Eq. (2) may be written as 

r ~ oo, S = &o (8a) 

r = &, S = Sg (8b) 

The solution of Eq. (2) with the boundary conditions (8a) and (8b) is 

Oo = 4rrrdSoo - Sg) (9) 

By combining Eq. (7), (9), and (2), the latter for r -- r .  one finds 

4 ~rrdSoo - Ss) 
O ° =  l+(z*/rs)  (10) 

The total heat flux to a particle using the continuum approach is given 
by Ooo = 4~rs(Soo -&).(8) Therefore,  the ratio of the heat flux with Knudsen 
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effect to that for Kn < 0.001 becomes 

Q0 1 
Oo~ l +(z*/rs) (11) 

Equation (11) shows that the Knudsen effect will always reduce the heat 
flux to a particle. Since Oo~ is known, Q0 can be calculated if z* is known. 
In the following, the dependence of z*/r~ on the Knudsen number and on 
other parameters will be determined. 

3. JUMP D I S T A N C E  OF THE H E A T - C O N D U C T I O N  
P O T E N T I A L  

An expression for z* as a function of various parameters including 
the mean free path length can be derived by using a procedure similar to 
that given by Kennard) 1~ 

If Ei denotes the energy transferred per unit area and unit time to the 
particle surface by the incident stream of particles from the plasma, Er the 
energy retained by these particles after impact, and Es the energy that this 
latter stream of plasma particles would carry away if they were in equili- 
brium with the surface at the temperature Ts, then the accommodation 
coefficient can be defined by 

E i - E r  
a -- (12) 

Ei - E s  

By using a procedure similar to that given by Kennard, ~1~ the difference 
between the energies Ei and Es can be expressed as 

/-7-1 +~p~o~ e , -  R (Tg-T~) (13) E i - E s = 2  \ar/s  ,+ 

where ~p represents the average value of the specific heat within the 
temperature range from T~ to Tg. But the gas constant R and the Specific 
heat ratio 3' = cp/c, will be treated as independent of the gas temperature. 
The gas density at the surface temperature is p~, and ~s is the average 
molecular speed at Ts. 

Since R =cp-c~, cp/c~ =% and (Tg-Ts)= (Sg-Ss)/k, Eq. (13) trans- 
forms into 

- , - - ,  IdS~ 1 (1 (~./E)(s~-&) Ei-E~=2kdrJ~+4P~v~\ 2y ] (14) 

The net energy transferred to the surface of a particle by the impinging 
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gaseous particles is given by 

<) E i - E r =  drr s (15) 

Substituting Eqs. (12) and (15) into (14), one finds 

( 4k ~(d$] (16) 
S " -  Ss = (1- , ,, s 

Comparing Eqs. (16) and (7), we see that the distance over which the 
heat-conduction potential jump occurs is 

2 - a  3' 4/~ 

This equation will be modified for the particular case of small tem- 
perature differences between the particle surface and the gas far away from 
the particle. By introducing an expression for the gas viscosity at room 
temperature (tz = 0.5psvsh), and the definition of the Prandtl number (Pr = 
tzcp/k), Eq. (17) reduces to 

2 - a  3" 2 

which is identical to that given by Kennard (1) for the temperature-jump 
distance. From Eq. (18) it follows that 

z* ( 2 - a )  ( l_~y)  ( 4 ) 
r-~ = T Prr Kn (19) 

where the Knudsen number is defined as 

A h 
Kn . . . .  (20) 

ds 2r~ 

The temperature-jump distance usually comprises several mean free path 
lengths. 

Equation (17), which contains average values of k and cp, is applicable 
for cases with large values of Too-T~, whereas the validity of Eq. (18) is 
restricted to small temperature differences Too-Ts. Comparing these two 
equations, one can consider the group 

2l? 
A*= __ Pr~ (21) 

PsOsCt, 
as an effective mean free path of the gaseous particles within the tem- 
perature region from T~ to Tg, and the distance over which the heat- 
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conduction-potential jump occurs can be expressed as 

2 - a  ,/ 2 z,:(: 
o r  

where 

- -  = ( - - -a- )  (1--~y) rs 

(22) 

(23) 

Kn* = A*/d~ = A*/2r~ (24) 

can be considered as an effective Knudsen number under plasma conditions. 
The average values of the thermal conductivity and the specific heat can 
be readily calculated as 

I" = k d T / ( T g -  T,) = ( S g - S ~ ) / ( r g -  T,) (25) 
Ts 

and 

i 
t ,  

(p = c. d T / ( T g -  Ts) = (ha-  h s ) / (Tg -  T~) (26) 
Ts 

It is obvious that Eqs. (21)-(26) will reduce to their counterparts if small 
temperature differences (Too - T~) are considered. 

4. RESULTS AND DISCUSSIONS 

By substituting Eq. (23) into relation (11), one obtains the following 
expression for the ratio of the heat flux with and without Knudsen effect: 

O0 1 
= ( 2 7 )  

+ 2 - a  y 4 

Calculated results for a particle immersed into an argon, an argon-  
hydrogen mixture (mole ratio 1:4),  and a nitrogen thermal plasma are 
given in Figs. 1-3, respectively. In this paper, the same plasma properties 
which have been used in previous papers ~8"9) are also employed. The wall 
temperature Ts is assumed to be 1000 K. The corresponding values of Prs 
and y used in the calculation for the three types of plasmas are as follows: 

Argon Ar-H2 Nitrogen 
Prs 0.651 0.3799 2.287 
y 1.667 1.411 1.400 
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From Figs. 1-3 it is obvious that the Knudsen number Kn* has a 
strong effect on the heat flux to a particle exposed to a thermal plasma. 
The smaller the thermal accommodation coefficient, the stronger the Knud- 
sen effect will be. The variations among the three different types of plasmas 
are primarily due to differences between the values of T and Pr~. The 
smaller Pr~, the stronger the Knudsen effect will be. 
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In order to obtain a clear understanding of the Knudsen effect in 
practical situations, calculated results of  Kn* for particles with different 
diameters are plotted in Figs. 4 -6 .  D u e  to space limitations, only  the results 
for a thermal accommodat ion  coefficient of a = 0.8 are given, although the 
results for other values of the accommodat ion  coefficient may  be readily 
obtained. 
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Because the thermophysical properties of the plasma are all functions 
of the plasma temperature,  some iterations are needed in order to calculate 
/~, (p, k*, Kn*, etc. The iteration process starts from values corresponding 
to the surface temperature  of the particle. From Eq. (27), Qo/Qo~ can be 
obtained, and since the heat flux for the case of K n < 0 . 0 0 1  is known (8) 
[Q0c = 47rrs(S~-Ss)], Q0 can be calculated. Next (dS/dr)s can be derived 
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from Eq. (2) by setting r = rs. The heat-conduction-potential jump follows 
from Eq. (7), and the corresponding temperature jump (Tg- Ts) is obtained 
by using the known relation between S and T for a given plasma (8) and a 
given surface temperature T~. From the given T~ and the calculated Tg, 
average values such as/~, 6p, A*, Kn*, etc. can be calculated. By repeating 
the whole iteration process until convergent results are achieved, one finds 
Kn* and Q0 for any given particle diameter and any given plasma. 

For a given plasma, the effective Knudsen number Kn* depends mainly 
on the diameter of a particle, although it also varies with the plasma 
temperature. Since Kn* is larger for smaller particles, the Knudsen effect 
is more pronounced for smaller particles, as expected. The Knudsen number 
Kn* assumes larger values for the Ar-H2 plasma than those found for Ar 
or N2 plasmas although the other conditions are the same. Therefore, the 
Knudsen effect will be stronger for the Ar-H2 plasma among the three 
thermal plasmas considered here. 

Based on the calculated results of the effective Knudsen numbers in 
Figs. 4-6 and the relation (27) (Figs. 1-3), we obtain the ratio of the heat 
flux with and without Knudsen effect as a function of the plasma tem- 
perature for three types of plasmas and with r~ as a parameter (Figs. 7-9). 

From Figs. 7-9 it is obvious that the Knudsen effect on heat transfer 
to a particle may be appreciable for many situations of practical importance, 
especially for smaller particles and for the argon-hydrogen plasma. For 
example, a particle of 20/xm diameter immersed into a plasma at 10,000 K 
experiences a reduction of heat transfer due to the Knudsen effect of 
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approximate ly  15% in an argon plasma,  approximate ly  56% in an A r - H 2  
plasma,  and approximate ly  21% in a ni trogen plasma.  T h e  corresponding 
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T h e r e  is ,  h o w e v e r ,  s e r i o u s  d o u b t  t h a t  t h i s  a p p r o x i m a t i o n  h o l d s  f o r  e v a p o r a t -  

i n g  p a r t i c l e s .  
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Fig. 11. Effect of the surface temperature of a particle on the ratio of the heat fluxes in an 
argon-hydrogen plasma (mole ratio 1:4; ds = 20/xm, a = 0.8). 
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Fig. 12. Effect of the surface temperature of a particle on the ratio of the heat fluxes m a 
nitrogen plasma (ds = 20/xm, a = 0.8). 

Because the mean free path length of particles increases rapidly with 
temperature  at lower temperature levels, it is expected that the Knudsen 
effect should depend on the surface temperature of the particle. Some 
calculated results for this effect are given in Figs. 10-12. As expected, the 
Knudsen effect is more severe at higher surface temperatures. 

Inclusion of the Knudsen effect complicates the calculation of heat 
transfer to a particle immersed into a thermal plasma. In a previous paper (9) 
reduced times for heating, melting, and evaporation of a particle have been 
calculated for estimating the time periods required for executing the various 
processes. These reduced times are independent  of the particle diameter 
for cases in which the Knudsen effect can be neglected. If the Knudsen 
effect on heat transfer has to be included, these reduced times can no 
longer be used, because the Knudsen effect depends on the particle diameter 
as well as on the surface temperature of the particle. 

No experimental data on heat transfer to particles exposed to thermal 
plasmas are available for a direct check of the theoretical results given 
above. However,  the experimental results reported by Takao (7) can be used 
to compare theoretical predictions for the limiting case of small temperature 
differences. Such a comparison is shown in Fig. 13. For  a brass sphere in 
air, (7) taking a specific heat ratio 3' = 1.4, a Prandtl number  Pr = 0.7, and 
an accommodation coefficient a = 0.8, expression (19) may be used for 
calculating the heat transfer ratio with and without the Knudsen effect. 
Surprisingly, the agreement between experimental data and theoretical 
predictions is excellent, even for Knudsen numbers up to 0.84, suggesting 
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Fig. 13. Comparison of theoretical predictions with experimental data of Takao (Ref. 7) for 
small temperature differences (a = 0.85, Pr = 0.7, T = 1.4). 

that a =0 .8  is a reasonable value for the thermal accommodation 
coefficient. In addition, it seems that the approach based on temperature 
(or heat-conduction-potential) jump conditions may be extended to 
Knudsen numbers larger than 0.1 (~0.8) without appreciable loss of 
accuracy. 

5. CONCLUSIONS 

The main conclusions of this study follow. 
1. The Knudsen effect on heat transfer to a particle immersed into a 

thermal plasma may be important for many practical situations experienced 
in plasma chemistry and plasma processing. 

2. Analytical expressions including the Knudsen effect are derived 
based on a "heat-conduction-potential  jump" approach. The approximate 
region of the Knudsen numbers for which this analysis is applicable is in 
the range 0.001 < Kn < 0.1. 

3. The Knudsen effect is more severe for small particles and for 
particles with higher surface temperatures. Among three different types of 
plasmas under study (At, At-H2,  and N2), the Knudsen effect is stronger 
for the plasma with the higher enthalpy. 

4. Agreement  of theoretical predictions with experimental data for 
the case of small temperature differences is excellent even for Knudsen 
numbers up to 0.84. This finding suggests that the " temperature  jump" or 
"heat-conduction-potential  jump" approach may be extended to Knudsen 
numbers exceeding 0.1 with reasonable accuracy. 
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