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Summary. A constant plasma drug concentration can be achieved and maintained by the 
intravenous administration of an initial bolus loading dose in conjunction with a 
constant rate and an exponential intravenous drug infusion. The drug input required 
to achieve a constant plasma drug concentration is derived without making any as- 
sumptions about the nature of drug distribution within the body or elimination from 
the body. 
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Drug distribution within the body is of- 
ten represented by a linear mammillary 
compartmental model with first-order 
drug transfer between compartments. Drug 
elimination is described by a first or- 
der elimination process from the central 
compartment. Utilising these concepts, 
KrHger-Thiemer (1968) derived the intra- 
venous drug input necessary to achieve 
and maintain a constant plasma drug con- 
centration. This input was expressed in 
terms of intercompartment drug transfer 
rate constants and the elimination con- 
stant. However, a linear mammilary model 
with elimination from the central com- 
partment is not the only compartmental 
model applicable for describing plasma 
drug concentration - time curves. For 
example, drug elimination may be con- 
sidered to occur from a peripheral com- 
partment in addition to the central com- 
partment (Vaughan and Beckett, 1974; 
Vaughan et al, 1975; Vaughan, 1975). 
Furthermore, drug disposition is in- 
creasingly being represented by so-called 
'physiological' or 'perfusion' models 
(Price, 1960; Price et al, 1960; Bischoff 
et al, 1971). In view of the above and 
the realisation that drug disposition 

models are gross simplifications of the 
real system, it may be assumed that a 
drug input derived by defining a specific 
model is not generally applicable. 

In this communication a general ex- 
pression for an intravenous drug input 
which will result in a constant plasma 
drug concentration is derived without 
any recourse to hypothetical concepts of 
drug disposition. 

THEORY AND DISCUSSION 

Input and Response in Linear Systems 

The relationship between an input func- 
tion, Fin(t), and the response, Fout(t), 
for a linear system is defined by the 
convolution integral as: 

Fou t(t) = Fin(t)* Fdi s(t) 

t 

= I Fin(Z)"Fdis(t-~)d~" 
o ...(I) 

where Fdis(t) is the response of the sys- 
tem to a unit impulse input. The latter 
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function is a characteristic of the sys- 
tem. 

Provided the response of a linear sys- 
tem to either an impulse or step input 
can be determined, the responses to an 
arbitrary input can also be found. Con- 
versely, the input required to achieve 
a particular response or output can be 
established. 

When applying these latter principles 
to pharmacokinetics the body is regarded 
as the system and the time function de- 
scribing plasma drug concentrations 
achieved with some arbitrary drug input 
is regarded as the system's response. In 
practice an impulse drug input is ap- 
proximated by a rapidly administered 
intravenous drug bolus. 

Often the time function describing 
plasma drug concentrations (Cp) obtained 
after a single intravenous bolus dose (D) 
can be represented by a summation of ex- 
ponential functions, viz 

N 

Cp(t) = D6(t) ~ > [ A i e-Sit 

i=I 

N 

--D ~. A i. e-St t 

i=I ... (2) 

where A i and ~ are real positive coef- 
ficients. By definition, ~i is greater 
than ~+I" If the body behaves as a lin- 
ear system the coefficients are constants 
independent of the dose (D), and the plas- 
ma drug concentrations are directly pro- 
portional to the intravenously admin- 
istered drug dose. 

The responses to a unit impulse is 
obtained directly from equation (2) as: 

N 
Plasma drug concentra- V -sit 
tions obtained with a = z_~ Ai'e 
unit impulse drug dose i= I 

= Fdi s(t) . .. (3) 

When intravenous drug administration 
is a constant rate infusion, beginning 
at time t = O, the plasma drug concentra- 
tion - time function, Cpa(t) is given by: 

N 

Cpa(t) = koH(t ) ~ ~, Ai "e-~it 

i=I ... (4) 

where H(t) is the unit step function and 
kA is the infusion rate (units of mass 
t~me-1). H(t) is usually taken as under- 
stood and omitted. For an intravenous 
drug dose of D which is administered at 
an exponential rate, defined by the rate 
constant k_; the plasma concentration - 
time functlon, Cpb(t) , is given by: 

N 

~, .'e -sit Cpb(t) =kaDe-ka t ~ A l 

i=I ... (5) 

The time function De-ka t (see equation 
(5)) describes the amount of drug remain- 

ing to be infused and kaDe -kat is the 
appropriate input time function (i.e. 
Fin(t)). 

Integration of F~_(t) as used in 
equations (2), (4) ~d (5) with respect 
to time between the limits of t = 0 and 
t gives the amount of drug which has 
entered the body at time t. 

Intravenous Drug Input Required to Achieve and 

Maintain a Constant Plasma Drug Concentration 

(Cpss) 
Immediately after a unit intravenous bo- 
lus drug dose (i.e. at t = O) the plasma 
drug concentration is given by equation 
(3) as: 

N 
plasma concentration ~, 
at t = 0 after a unit = A i 
intravenous dose 

i=I ... (6) 

Similarly, the intravenous dose D I re- 
quired to achieve an initial plasma drug 
concentration of Cps s is given by: 

C 
DI = pss 

N 

i=I ... (7) 

Since after an intravenous dose of D I 
plasma drug concentrations are only 
equivalent to C_$s at time t = O, some 
additional drugPinput is required if the 
plasma drug concentration is to be main- 
tained at Cps s for all time (i.e. t = 0 
to t = oo).-Achievement of a constant 
plasma drug concentration (Cps s) re- 
quires that: 

Cpl (t) + Cp2(t) = I D16(t) ~ i=I~ A i'e-si t 

] + Fin I (t) ~ ~ Ai'e -~it 

i=I 

= constant = C 
pss 

... (8) 
where CDI (t) and CD2 (t) are the time 
functiohs describihg plasma drug concen- 
tration obtained with an intravenous bo- 
lus dose of D I and an intravenous drug 
input of Fin I (t) , respectively. Conse- 
quently, an explicit expression for 
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F~_~ (t) is required to completely define 
an zntravenous drug input that will re- 
sult in a constant plasma drug concen- 
tration of Cps s. 

To derive a general but explicit ex- 
pression for Fin1(t) it is convenient 
to Laplace transform equation (8) since 
this yields an algebraic expression: 

N N 
A. 2 A Cpss = D ~, z i 

s I s+~i + fin s+~ i 
i=I i=I 

...(9) 

where s is the Laplace variable and fin 
is the Laplace transform of Fin1(t). 

An expression for fin/S can be obtained 
by division of equation (9) by s and re- 
arrangement thus, 

1 

S2 2 (S+~ i ) 
i=I ... (10) 

Equation (10) can be further rearranged 
to : 

N 

Cpss ~ (s+~ i) 

s2 ~. i ( s+c~j 

i=I j=1 
jmi ... (11) 

The denominator of the first right hand 
term in equation (11) can be expressed 
as a continuous function, viz 

N 

C ~ (s+~ i pss [ ] 
fin i=1 DI 
s = N-I N-I - -s-- 

 I-I I-I s b i (s+ci) 

i=I i=I 
... (12)  

where the b's and c's are defined by N 
simultaneous equations in terms of the 
A's and ~'s. These N simultaneous equa- 
tions are obtained by equating the de- 
nominators of the first terms in equa- 
tions (11) and (12) , whence: 

i=1 j = l  i=1 i=1 
j * i  

... (13) 

Expansion of both sides of equation (13) 
and subsequently equating the coeffi- 
cients of like powers of s on both sides 
yields these N simultaneous equations. 
One of these N equations is always given 
by: 

N-I N 

1-I --F, b i A i 

i=l i=I ... (I 4) 

Since the integration of a function, 
F(T), which possesses an image function, 
f(s), from 0 to a variable point t cor- 
responds to the division of the image 
function by s (Doetsch, 1961) then fin/S 
in equations (10) , (11) and (12) is 
the Laplace transform of the integral 
Fin I (t). Defining fin/S as q than in- 
verse transformation of equation (12) 
will yield a time function Q(t) which 
upon differentiation with respect to time 
gives the desired function Fin(t). 

Inverse Transformation of Equation (12) 

The degree of s in the denominator of 
equation (12) is greater than the degree 
of s in the numerator. Consequently, 
equation (12) can be expanded into a 
finite series of partial fractions which 
can be inversely transformed term by 
term. The partial expansion of equation 
(12) is given by: 

q = Cpss T i 
N-I ~ +-- + s (s+c i) 

i= I 
b i 

i=I ... (15) 

The terms R, T and U in equation (15) are 
defined by the following general equa- 
tions : 

N 

I-I i 
2--1 

R - 
N - 1  

1--I ci 
i =1  ... (16)  

T = 

N N 

i=I = 
#i 

N- 

1 ci 
i=1 

I c 2=I i=I j =I 
j%i 

N-I 

I-Ic  
i=1 

. . .  (17)  

U, 
1 

(i=I to N-I 

N 

I IIoj 
j=1 
N-I 

2 
ci ~ (cj-ci) 

j=1 
j+i . . . ( 1 8 )  
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Inverse transformation of equation (15) 
gives Q(t) as: 

Cpss [ 
Q(t) = N-I 

I-I bl 
i = 1  

Rt + T + 

N I ] 
~. Ui'e -cit -D I 

i=I 

... (19) 
Differentiation of equation (19) with 
respect to time yields: 

Cpss I Fin I (t) - N-~ R - 

I-Ibi 
i = 1  

= D 1 l R - 

N I 1 ciU i " e cl 

i=I 

N-I ] 

~, • . • e-Cit 
ClU 1 

i=I 

/ii The equivalence D I = Cpss/ i= I b i 

... (2o) 

is 

obtained by combining equations (7) and 
(14) . 

It should be emphasised that the gen- 
eral function, Fin1(t), represented by 
equation (20) is that function which 
when integrated with respect to time be- 
tween limits of t = O and t gives the 
total amount of drug infused into the 
body at time t. By reference to equations 
(4) and (5), the input function given by 
equation (20) is described as a constant 
rate intravenous infusion of rate DIR 
and N-I exponential intravenous in- 
fusions. The exponential infusion can be 
physically represented as N-I drug re- 
servoirs, each with an initial drug 
amount of -D I U i (i = I toN-l) from which 
drug is delivered into a vein in such 
a manner that the drug in each reservoir 
decreases exponentially from its initial 
value at a rate of c i. When the intra- 
venous drug input defined by equation 
(20) is administered in conjunction with 
an intravenous bolus dose of D I (see 
equation (8)) a constant plasma drug con- 
centration of Cps s will result provided 
the drug infusion (equation (20)) is con- 
tinued. 

To achieve a constant plasma drug con- 
centration of CDs s from t = O to t = oo 
using a specifi~ drug whose disposition 
function is known (i.e. the number of 
exponentials N and the coefficients A i 
and ~i have been established) requires 
the evaluation of the initial loading 
dose (DI) which is evaluated by the ap- 
plication of equation (7) and the evalua- 
tion of the infusion defined by equation 

(20). The calculations involved in eval- 
uating the appropriate form of equation 
(20) when N=2 and N=3 are given below. 

Evaluation of R, U. and c. for N=2 and N=3 
1 1 

I) for N=2 

Applying equation (13) when N=2, then: 

A1(s+~ 2) + A2(s+~ I) : b1(s+c I) ...(21) 

Expanding both sides of equation (21) 
and equating the coefficients of like 
powers in s gives: 

A I + A 2 = b I 

AI~2 + A2~I = blCl ... (22) 

c I is obtained by solving the above si- 
multaneous equations and is given by: 

AI a2 + A2 ~I 

ci = AI + A2 ... (23) 

Substitution of c I (equation (23)) into 
equation (16) gives R as: 

~I~2 ~I~2 (At+A2) 
R ~ - - -  = 

ci AI~2 + A2~I ... (24) 

The value of -U I is obtained by applying 
equation (18) and can be expressed in 
terms of the constant coefficients by 
substitution of c I, whence: 

2 2 
-(~i-ci) (c~2-c I) AIA2(~2+~1 -2~i~ 2) 

-UI = 2 - 2 
c I (AI~ 2 + A2~ I ) 

... (25) 

Since A I, A2/ and ~2 are real positive 

numbers, -U I is positive provided ~ + 2 

is greater than 2~i~ 2. The latter is true 

for all real nonequivalent positive val- 
ues of ~I and ~2" 

2) For N=3 

Applying equation (13) when N=3 then: 

A I (s+~ 2) (s+~ 3) + A2(s+~ I) (s+~ 3) + 

A 3 (s+a I) (s+~ 2) = blb 2(s+c I) (s+c 2) 

... (26) 

Expanding both sides of equation (26) 
and equating the coefficients of the 
powers in s gives: 

A I + A 2 + A 3 = blb 2 ... (27a) 

AI (~I+~2) + A2 (~I+~3) + A3 (~I+~2) 

= blb2 (ci+c2) ... (27b) 
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AI~2~ 3 + A2~I~ 2 + A3~I~ 2 

= blb2ClC 2 ... (27c) 

Solving equations (27a) and (27c) for 
ClC 2 and substitution into the appropri- 
ate form of equation (16) gives R as: 

~i~2~ 3 ~i~2~ 3 (AI+A2+A 3) 
ClC 2 AI~2~3+A2~1~3+A3~1~ 2 

... (28) 

c I and c 2 can be evaluated by rearranging 
equations (27a) and (27c) to give a qua- 
dratic equation and subsequent solution. 
Using this procedure, c I and c 2 are eval- 
uated as: 

I Vg2 c I = ~ (g + - 4h ) 

I (g V = _ g2 _ 4h ) c 2 

where: 

g = 

... (29) 

... (30) 

A I (~2+~3) + A 2 (~i+~3) + A 3 (~i+~2) 

A I + A 2 + A 3 

AI~2~ 3 + A2~I~ 3 + A3~I~ 2 
h = 

A I + A 2 + A 3 

Both c I and c 2 are real positive numbers 
and c I is greater than c 2. By applying 
equation (18), -U I and -U 2 are given as: 

-(~i-ci) (~2-c1 (~3-cI) 
-UI = 2 

ci (c2-ci ... (31a) 

-(~i-c2) (~2-c2 (~3-c2) 
-U2 = 2 

c2 (ci-c2) ... (31b) 

For a drug with a disposition function 
described by a four exponential equation 
requires the evaluation of ci, c 2 and c 3. 
These values can be obtained by applying 
a cubic solution to the N (N=4) simul- 

centration-time curve, after a bolus 
intravenous dose, is described by a sum- 
mation of exponential functions. A neces- 
sary restriction to the validity of the 
above derivation is that the principle 
of superposition applies. Concepts con- 
cerning the nature of drug disposition 
within the body are not required for the 
derivation. Consequently, the derived 
input is generally applicable. 

The dosage flow, D(t), derived by 
Kr~ger-Thiemer (1968) for a linear mam- 
millary pharmacokinetic model with elim- 
ination of drug from the central com- 
partment is analogous to Fin1(t), see 
equation (20), derived in this text. 

Intravenous drug inputs that differ 
from the simultaneous administration of 
an intravenous drug bolus, a constant 
rate infusion and N-I exponential infu- 
sions cannot produce an exact plasma drug 
concentration. However, since the coef- 

ficients A i and ~i (1=I to N) are ob- 
tained from experimental observations, 
the calculated drug input is subject to 
statistical error and plasma drug con- 
centrations obtained with this input can 
deviate from the predicted constant val- 
ue of C~ss. Nevertheless, this latter 

. 

consideration also applies to all other 
types of intravenous drug administration. 

Potential Application of the Derived Drug Input 

Lignocaine is frequently administered as 
a bolus intravenous dose of I - 2 mg/kg 
accompanied by a constant intravenous in- 
fusion of I - 4 mg/min to control ven- 
tricular dysrhythmias associated with 
myocardial infarction. However, its value 
as an effective drug remains controvers- 
ial (Bennett et al, 1971; Adgey et al, 
1971; Darby et al, 1972). 

Clinical response to lignocaine ther- 
apy has been correlated with blood levels 
(Gianelly et al, 1967; Jewitt et al, 
1968) and the drug has a narrow thera- 
peutic index. Blood concentrations of 
1.2 to 5.5 ug/ml are considered to be the 

taneous equations which relate the Ai's limits of the therapeutic range (Gianelly 
! ! l 

and ~i s to the c. s and b s However, et al 1967; Foldes et al 1960; Bellet 
1 1 " ' ' 

with the magnitudes of ~I, ~2' ~ ands4 et al, 1971). Since most deaths occur 
likely to be encountered, in~ccugate est~ during the first few hours following on- 
mates of c I, c 2 and c 3 can be obtained 
because of the insensitivity of the 
cosine tablets. In such cases a digital 
computer should be used for the cubic 
solution, which also avoids the general- 
ly turgid algebra associated with the 
general cubic solution. 

Administration of an intravenous in- 
fusion defined by equation (20) in con- 
junction with a bolus intravenous in- 
jection (defined by equation (7)) will 
achieve a constant plasma drug concen- 
tration for all time (i.e. t = 0 to t = 
co) for any drug whose plasma drug con- 

set of myocardial infarction (McNeilly 
and Pemberton, 1968; Bondurant, 1969) it 
would seem essential to achieve and main- 
tain a therapeutic blood concentration 
of lignocaine as early as possible during 
treatment. A possible explanation of the 
reported inefficacy of lignocaine is that 
the various rates of drug administration 
do not maintain therapeutic blood con- 
centration in the critical first few hours. 

Pharmacokinetic analysis of lignocaine 
blood concentrations demonstrate conclus- 
ively that a single bolus and a constant 
rate intravenous infusion cannot maintain 
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Fig. I. Intravenous drug inputs required to 
achieve and maintain a constant plasma ligno- 
caine concentration of 1.47 Hg ml -I 
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Fig. 2. Plasma lignocaine concentrations ob- 
tained with the individual drug inputs defined 
in figure i. Intravenous bolus (--,--) ; constant 
rate infusion ( .... ) and exponential infusion 
(---) 

blood levels in the therapeutic range 
during the first few hours of drug admin- 
istration (Shen and Gibaldi, 1974; Row- 
land et al, 1971; Vaughan, Tucker and 
Lord, unpublished observations). Recent 
clinical data (Aps et al, 1976) corrob- 
orate the latter deductions. 

To illustrate the potential applica- 
tion of the derived equations an ideal 
input is now calculated using lignocaine 
as the example. Rowland and associates 
(1971) describe the disposition kinetics 
of lignocaine in normal subjects as a 
biexponential function. The average pa- 
rameters established by the latter au- 
thors are used to calculate the ideal 
drug input to achieve and maintain a con- 
stant plasma concentration of lignocaine. 

A mean disposition function for ligno- 
caine is given by equation (32), calcu- 
lated from Rowland et al, 1971: 
mean disposition for lignocaine 
(i.e. plasma concentration for a 
unit impulse drug input of I mg 
of lignocaine) 

= O.0276.e -0-123t 

whence 

-I 
A I = 0.0276 ug ml 

and 

-I 
a I = O.123 min , 

+ O.OO84.e -0"OO673t 

...(32) 

-I 
, A 2 = 0.084 ug ml 

-I 
a 2 = 0.00673 min 

... (33) 

Defining the desired plasma concentra- 
tion of lignocaine as 1.47 ~g ml -I the 
ideal drug input to achieve and maintain 

this concentration for all time can be 
calculated as follows. To achieve an 
initial concentration of 1.47 ug ml at 
t = 0 requires a bolus injection of 40.9 
mg (i.e. D I = 40.9 mg, see equations (7) 
and (32)). The magnitude of a constant 
rate intravenous infusion which if admin- 
istered alone would eventually achieve a 
concentration of 1.47 ug ml -I is given 
by D I R (see equation (20)) where R is 
defined by equation (24) (units of R = 
min-1). Substitution of the values of 
A I , A2, a I, and a 2 into equation (24), 
and multiplication by D I gives the con- 
stant intravenous infusion rate as I mg 
min -I. The exponential infusion rate is 
obtained from equations (23) and (33) as 
0.03386 min-1 and the initial dose in 
the exponential drug reservoir is given 
by -UID I . Substitution of the values 
given by equation (33) into equation (25) 
and multiplication by D I gives the latter 
value, whence -UID I = 86.3 mg. 

The totaly of the latter inputs will 
achieve and maintain a constant plasma 
concentration of 1.47 ug ml-1; these in- 
puts are depicted in Figure I and the 
plasma concentrations achieved with each 
individual drug input is given in Fig- 
ure 2. 

In practice constant intravenous in- 
fusions are readily achieved using intra- 
venous infusion pumps. However, exponent- 
ial intravenous infusions require spec- 
ifically-designed pump units. A number 
of authors have described programmable 
intravenous drug administration devices 
(Ake Oberg, 1970; Spoerel et al, 1970) 
and simple intravenous drip dilution 
methods are available for achieving ex- 
ponential inputs (Boyes et al, 1970). 
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Fig. 3. The cumulative amount of lignocaine de- 
livered by the exponential infusion and its 
piecewise description by three linear segments. 
Data points are calculated from equation (36) in 
the text 
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Fig. 4. Plasma concentration ( ) of lignocaine 
obtained with a bolus drug dose and a stepped 
constant intravenous infusion. The dashed line 
represents the ideal lignocaine concentration of 
1.47 ~g ml -I 

Alternatively a step input can be used 
as an approximation to an exponential 
input. The latter method is now described 
within the context of the lignocaine ex- 
ample. 

Approximation of Exponential Inputs by Step Inputs 

imates the curve from t = O to t = 15 
min, the second segment (gradient 1.25 
mg min -I) from t = 15 to t = 39 min and 
the third segment (gradient 0.55 mg min -I) 
approximates the curve from t = 39 to 
t = 87 min. Since the integration of a 
constant rate intravenous input function 
is linear the cumulative input described 

The integral of an input function defines by the three segments represents a step- 
the cumulative drug input profile. Piece- ped intravenous input, i.e. constant rate 
wise describing the cumulative input intravenous infusion of rate 2.40 mg 
profile by linear segments then defines 
a series of constant rate infusions which 
will achieve a similar cumulative drug 
input. In the case of lignocaine the time 
course curve of drug in the exponential 
reservoir is given by: 

-DIUI e-clt = 86.6 e-O'O3386t 
... (34) 

and the appropriate input function is 
given by: 

Exponential in- U l e - C l t  
put function = cIDI ...(35) 

Integration of equation (35) with re- 

min-1 for 15 min which is abruptly de- 
creased to a rate of 1.25 mg min-1 at 
t = 15 min, the latter constant rate 
infusion being maintained for another 
24 minutes at which time the infusion 
rate is abruptly decreased to a rate of 
0.55mgmin-1, and at t= 87min the constant 
intravenous infusion is discontinued. The 
latter step input is an approximation to 
an exponential drug input. Consequently 
the exponential and constant intravenous 
drug input (rate = I mg min -I) which is re- 
quired to maintain the lignocaine plasma 
concentration at 1.47 ug ml-1 can be ap- 
proximated to by the use of constant in- 

spect to time gives the cumulative amount fusion pumps with adjustable drives. The 
of lignocaine absorbed into the body via 
the exponential mode, whence 
t 
f -CIDIUI e-clt dt = -DIU I (1-e -clt) 
o 

= 86.6 (1-e -O'O3386t) 

• .. (36) 

The cumulative exponential input for 
lignocaine (calculated from equation 
(36)) is given in Figure 3. The latter 
curve has been approximated by three 
linear segments (see Fig. 3); the first 
segment (gradient 2.4 mg min -I) approx- 

total plasma lignocaine concentrations 
obtained with the approximated expo- 
nential input, a bolus and a constant 
infusion of I mg are depicted in Figure 
4. The plasma concentrations obtained using 
the step input function exhibit maximal 
deviation from the ideal of -8.6 and 
+5.0% which are close to the analytical 
accuracy for lignocaine determinations 
in plasma (C a ±5%). In conclusion the 
control of plasma drug concentrations 
can be achieved by applying the equation 
derived in the text and acceptable con- 
trol can be achieved by approximating 
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the required exponential inDuts to step- ventricular arrhythmias in patients with cor- 
ped input functions. Recent attempts to onary heart disease. New Engl. J. Med. 277, 
control lignocaine plasma concentration 1215-1219 (1967) 
using stepped input functions (Aps et al, Jewitt, D.W., Kishon, Y., Thomas, M.: Lignocaine 

1976) demonstrate the practical validity 
of this approach. 
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