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It is well known in powder metallurgy practice that the inhomogeneous distribution of a property such as density over 

the volume of a molding or pressing can have a substantial effect on the kinetics of sin tering. This inhomogeneity, and also 

nonuniformity in the physicochemical composition of a bar lead to inhomogeneous shrinkage and warping during the sintering 

process, and in some cases to rupture of the working material. Inhomogeneous densification is also produced by pressing 

conditions which create a different number of degrees of freedom in different parts of the body undergoing sintering. 

In order to describe real sintering processes, therefore, it is necessary to take the above factors into account, which 

requires formulation and solution of the pertinent extremum problems. 

Free Isothermal Sintering of an Initially Inhomogeneous Porous Sphere. In studying the influence of an inhomogeneous 

density distribution on the kinetics of sintering in a general form, it is necessary to simplify the geometry of the object under 

consideration. With this in mind, we have solved a series of model one-dimensional problems concerning the sintering of a 

sphere with an initial radially inhomogeneous density distribution. 

The density distribution at each moment of sintering is determined by the method of permeable elements - MPE [1]. 

The volume of the sphere is broken up into N parts, representing concentric spherical layers (Fig. 1). Following the results of 

[2], the distribution of the radial rate of displacement of material within each element is considered to be linear. Let V i _ l i  (i = 

1, ..., N + 1 )  be the rate of flow of the material from the (i - 1)-th element to the i-th. Due to symmetry the flow rate at the 

center o f  the sphere is 

V01 = O. (1) 

For the i-th element the radial rate is 

Wr i ~x: r - -  R i - 1  Vii..}-i -~ r - -  R i  V i - l i ,  i --- 1, N .  
Ri - -  Ri-1 R~-I - -  Ri (2) 

Here R i is the external radius of the i-th element (R 0 = 0); r is the flowing radial coordinate. 

The rate of deformation of the i-th element is 

O V ,  i V~i i = l,-'--N, 
er i  - -  Or ' e~i  - -  r ' (3) 

and the rates of change of its volume and shape 

ei  = er~ + 2e ,~;  
2 

~ ----- y I e~i -~- er~l, i = "1, N. (4) 

In order to calculate the unknown flow rates according to the MPE scheme we use a variation principle. Assuming that the base 

material is linearly viscous, this principle is transformed to an extremum condition of the function 

t = ~ In0 (rv 2 + Ce ~) + Pre] dO (5) 
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Fig. 1. Division of the porous material into permeable elements. 

(,9 = volume of the sphere). Differentiating (5) with respect to the flow rates and setting the derivatives equal to zero: 

Ol - - - - 0 ,  k =  I , N .  (6) 
OVt~k+~ 

To complete the system of linear equations (6) it is necessary to add condition (1). 

We find the density field by using the law of mass conservation, which in the given case is written in a discrete form: 

d M ~  Pi-,  -[- Pi S t - I  (Vt-li ~ Ri-l)  + 9~-t-1 + Pi Si (V..+I ~ Ri) = 0, (7) 
d t  2 2 

where M i and Pi are the mass and density of the i-th element; S i and R i are the surface area and rate of displacement of the i-th 

sphere. In this case 

Si = 4z~R~, (8) 

4 
M i = y n (R? - -  -='RT-,). (9 )  

Substituting (8) and (9) in (7) we obtain 

3 R 2 " 2 V 
P~ = "2 (R~ - -  Ri-1)3 {9~-1 [ ~-1 (Vt-li - -  R~'-I)] + Pi [RT-~V~-I~ - -  R~ u+x - -  

2 - -  R~R~ q- R~-.,~R~-~] + p,+~ [R~ (R~ ~ Vu+~)]}, i - -  l, N 
(lO) 

(we assumep0 = 0,  P N +  1 = 0) .  

We select the rate of  movement of the grid construct in such a way that in the solution of the homogeneous case flow 

between elements did not occur: 

VNNq-I i,  i : O, N . (11) R~ = i; Ri = N 

(the grid is structured uniformly along the radius of the sphere). In order to complete the system (10), it is necessary to supple- 

ment it with an equation defining the unknown function RN, which describes the change in the radius of the sphere with time: 

R N  = VNN+I.  (12) 

The system of ordinary differential equations (10), (12) was solved numerically for the unknown functions Pi (i = 1, ..., 

N) and R N using the fourth-order Runge-Kut t a  method installed in the calculation scheme with a "floating" step algorithm. The 

dimensionless parameter of  a cycle 0 __< T < 1 defining a fraction of the total process time we chosen as the independent variable. 

The following physicomeChanical properties of iron were used in carrying out the calculations: theoretical density RK = 7800 

kg/m 3, local Laplacian pressure PL0 = 2.3 MPa [3], coefficient of viscosity r/0 = 2.5.105 MPa .sec [4]. The dependence of the 
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Fig. 2. Density distribution along the radius of the sphere (1) at the beginning 

of sintering, PH; (2) at the end of sintering, PK" 

effective Laplacian pressure on porosity ([5], equation (16)) was allowed for in the calculation. The reduced time [5] was taken 

as r 0 = 0.25 (for the physicomechanical properties given above, this value corresponds to the sintering of porous iron for 10 h 

at 900°C). The number of layers selected was N = 10. 

The results of the calculations for various initial conditions are shown in Fig. 2 in the form of curves of density distribu- 

tion along the radius of  the sphere at the beginning and end of sintering. Data for a "self test" of the model are shown in Fig. 2a. 

Here, for the initial condition of homogeneity, the density field remains uniform at all times in the heat treatment cycle, which 

agrees with known data for the structure of  porous materials during sintering. Calculations were also carried out for density 

fields with initially linear (Fig. 2b, c), parabolic (Fig. 2d, e), and sinusoidal (Fig. 2f) distributions along the radius. The results 

show a tendency for the density gradient to decrease during sintering. However, under certain initial conditions the drop in 

porosity between individual segments may increase (Fig. 2c, d, e). Marked increase in the density in a zone near the center of the 

sphere is caused mainly by the existence of a discontinuity in the initial density distribution at the center, and also by the fact 

that the circumferential deformation in a spherical layer increases with decreasing radius [2]. 

Using the given mathematical model it is also possible to  solve the problem of the sintering of a spherical layer with an 

internal constraint (Fig. 3), which is equivalent to sintering in the presence of a rigid inclusion. 

Sintering of a Porous Cylinder with End Constraints under Uniaxial Compression. The porous cylinder is considered to 

be initially homogeneous. The rheological propertie s of the solid phase are linearly viscous. The method of finite elements is 

used to solve the problem [6]. The s t ress-deformation state of the porous cylinder is axially symmetric, and therefore its volume 

is divided into circular elements subdivided by a diagonal section into two elements having a triangular cross section (Fig. 4). 

Because of symmetry it is necessary to consider only half of the bar. We take as boundary conditions that on the lower face 

V~=O, v , = 0  (13) 

and on the upper 

Vz-------Vp, V r = 0  (14) 

(Vp is the velocity of  the upper punch). 
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Fig. 3. Radial density distribution after sintering a spherical layer with an internal constraint. 

Fig. 4. Method of division into elements for the axially symmetric problem. 

In distinction from [5], where the problem was considered assuming uniform distributions of stress and density, we will 

investigate the effect of the boundary conditions and initial properties. An effect was found in [5] consisting of a decrease in the 

radial flow rate, and in certain cases (in [5] this is described by equation (27)) even a change in its direction. In this communica- 

tion the various factors which influence the course of sintering are considered more fully, since the problem is solved by an 

extremum method. Therefore the number of possible outcomes is greater. However, as shown by the calculations, there are 

definite correlations between the results of the corresponding solutions for the homogeneous and extremum arrangements. 

Figure 5 shows, schematically, the shape distortion and volume distribution of density in an article subjected to various 

rates of movement of an external punch. The physicomechanical properties of copper were used in the calculations: theoretical 

density PK = 8940 kg/m 3, initial density of the bar PH = 7000 kg/m 3, initial height of the cylinder h H = 0.l m, initial diameter 

d H = 0.04 m. The reduced sintering time r0 = 0.75 corresponds to sintering porous copper for 45 min at 1050°C [7]. 

For Vp = 10 -5 m/sec (corresponding to a total punch travel Ah of 0.027 m in 45 min) condition (27) in [5] is not 

satisfied (Fig. 5a). The cylinder assumes a barrellike shape. In this case the density is a minimum in the central zones adjacent to 

the faces. The maximum density is attained in the corners formed by the contact and lateral surfaces of  the bar. For Vp = 

3.10 -6  m/sec (total Punch travel Ah = 0.0081 m) condition (27) in [5] is satisfied throughout the entire process. In this case a 

"waist" forms (Fig. 5b). The minimum density occurs in the center of the bar, and the maximum in the central regions adjacent 

to the end faces. In this case sintering dominates over the effect of the external mechanical action. For Vp = 5.10 -6 m/sec 

(total punch travel Ab --- 0.0135 m) there exists a moment at which condition (26) in [5] is satisfied. When the tool moves at this 

rate a corrugation forms (Fig. 5c). The density field in this case is nearly uniform. A small increase in density is found in the 

equatorial region. The appearance of a corrugation may be explained as follows: at the beginning of the process a bulge forms 

whose density is lower than at the end faces. Consequently, the rate of shrinkage in this done becomes higher in the following 

periods of time. It should be noted that the formation of a corrugation depends also on the ratio of  the initial height to the 

diameter of the bar: a t  h N = 0.08 m ,  d N = 0.04 m and similar initial values the formation of a corrugation was not observed 

(Fig. 5d). 

Isothermal Sintering of a Porous Cylinder with a Nonuniform Density Distribution Caused by Previous Compaction. 

Figure 6a shows the density distribution in a porous cylindrical briquette after uniaxial compaction in a rigid die, calculated on 

the MPE [1] for the case of  compaction of a bar of iron powder with an initial height to diameter ratio hN/h N = 2.0. The initial 

density was taken as 4000 kg/m 3, uniform throughout the volume, the coefficient of friction ,1 = 0.1, ratio of final and initial 
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Fig. 5. Shape distortion and density (10 -3 kg/m 3) distribution in a porous copper cylinder 

during sintering and compression with various rates of movement of the punch. 
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Fig. 6. (a) Density distribution (10 -3 kg/m 3) in a porous cylindrical briquette after uniaxial 

compaction in a rigid die; (b) Shape distortion of and density distribution in the briquette after 

sintering. 

heights hK/h N = 0.75• The solid phase was assumed to be elastic-plastic. The solution obtained agrees well with the results of [2, 

4]. It is known that in the given case the density nonuniformity is caused exclusively by external friction. The upper peripheral 

regions of the briquette have the highest density (Fig. 6a). The density in the upper layer in contact with the punch increases 

from the center to the edge• The density in the layer at the base of the briquette is lower at the edge than at the center. This is 

due to the lower axial pressure in the layers adjacent to the die wails• The density decreases as the distance from the punch face 

increases• 

The density field found by solution of the uniaxial compression problem is used as an initial condition in analyzing the 

sintering process. We use the finite element method [6] for this purpose. Neglecting gravitational and frictional forces, we take 

as boundary conditions: 

vzm = o, Vr,-,, = 0, (15) 

where Wzm and Vrm are the axial and radial flow rates at the center of mass of the bar. The base material is considered to be 

linearly viscous; the reduced sintering time T o = 0•25• The distorted shape of the article and the density field after sintering are 

shown in Fig. 6b. The initial dimensions of the article correspond to the final dimensions after compression• The results are in 

good agreement with known experimental data [8, 9]. They confirm the empirically known fact that zones of increased porosity 

coincide with the directions of greatest shrinkage. 

The information presented in Fig. 6, therefore, gives a complete picture of the industrial processing of a porous 

cylindrical bar, starting with compacting in a rigid die and ending with sintering. 
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