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E X A C T  R E G U L A R  M O D E L S  F O R  S T A T I C  R E L A T I V I S T I C  

S T A R S *  

N . N .  Paldin UDC 530.12:531.51 

We solve the Einstein equations for  the case of  a static, spherically symmetric distribution o f  a perfect fluid. 

We propose a method yielding a broad class of  exact solutions. We investigate the question o f  how to obtain 

afortiori regular and equilibrium solutions. We f ind a new exact solution in a rather simple form and show 

that it describes a neutron star with mass limit o f  O. 33 solar masses. 

In order to construct an analytical model for a relativistic star, the model must be based on an exact solution of the 

gravitational equations which is a regular equilibrium solution. As a rule, the regular equilibrium solution is stable if the 

parameters of this solution do not reach the critical values. Despite the fact that the number of exact solutions is rather high, 

only a few of them are suitable for describing relativistic stars. Therefore methods for obtaining exact solutions of the Einstein 

equations with prespecified properties are of great interest. 

The idea of the method of constructing exact solutions with specified properties was briefly outlined in [1]; in this 

paper, we consider this method in detail. 

By the term "relativistic star" we will mean a static, spherically symmetric distribution of matter with finite mass M, 

confined within a sphere of radius R with vacuum outside the sphere. The ratio of the gravitational radius Rg = 2MG/c 2 to 

the radius of the body R is less than unity but markedly different from zero; therefore we will consider the effects of general 

relativity theory. We need to find the interior solution of the Einstein equation 

R = ~ - - g ~ R / 2  = - - 8 a  G c-4 Tez~, (1) 

joined on the surface of the sphere with the exterior Schwarzschild solution. The minus sign on the right-hand side of (1) is 

connected with the definition of the Ricci tensor as the contraction of the curvature tensor on the first and last indices; R is 

the trace of the Ricci tensor; Ta~ is the energy-momentum tensor; the quantity 87rGc -4 ,  called the Einstein gravitational 

constant, is designated by the letter × in the following. 

Let us describe the matter by the energy-momentum tensor of a perfect fluid 

T~,~= (I* + P) u ~ u ~ - - p g ~ ,  (2) 

where/~ is the energy density; p is the pressure; the 4-velocity u ̀~ = dx~/ds; ga~ is the metric tensor corresponding to the 
metric 

ds 2 = Fdu 2 + 2 L d ~ d r - - r  2 (dO 2 + sin20dq~e), (3) 
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here F = g00(r), L = g01(r), r = x 1, 0 = x 2, ~ = x 3 are the spherical coordinates; instead of the conventional time t we use 

the time delay u = t - -  r. In this paper, we use a geometric (relativistic) system of units in which the speed of  light and the 

Newtonian gravitational constant are equal to unity (c = G = 1), therefore the Einstein constant is × = 87r. 

1. METHOD FOR OBTAINING THE EXACT SOLUTIONS 

If  we use the convenient symbols e = F/L 2, y = F ' /F,  then the Einstein equation is reduced to three expressions: 

×g (r) = - -s ' / r  + ( l - - s )  Ir~; 

xp (r) : s y / r - - (  l - - s )  tr2; 

r (2+ry)  s '+s[r2 , (2y '+y 2) - -2  (2 + r~ )  ] = - -4 ,  

the prime (') indicates the derivative with respect to r. 

(4) 

(5) 

(6) 

The important relation T~g;~ = 0 is a consequence of  Eq. (1); if we rewrite it in explicit form, then we obtain the 

equation 

p '+ (~+p)y/2=0,  (7) 

called the hydrostatic equilibrium equation, which we find useful in the next section. 

Equation (6) is a linear nonhomogeneous equation which is first- order relative to the function e, and consequently if 

the function y is assumed to be known then e can be expressed in general form in terms of the quadrature 

(2 + ry) 2s = r2ef [ C - - 4 f  (2 +ry)  r-2e-~dr], 

where fir) = ~ (2 - -  ry)(2 + ry ) - l yd r ;  C is a constant. 

A broad class of  exact solutions is obtained if we require that 

(8) 

F=a (1 +br2~) ~, (9) 

where ao b, n and m are constants. Using the symbol x = r 2 and substituting (9) into (8), we arrive at the expression 

e = x ( 1 + bx n) z-~hV [ C - - f  ( 1 + bx ~) ~-lh-~-f~x-2dx], (10) 

where h = 1 + (1 + mn)bxn; ~ = 2 ( m - -  m n - -  1)/(1 + mn). 

Choosing the values m and n, we can express the integral in (10) in terms of elementary functions. At least four such 

cases exist when the integrand is reduced to: 1) a rational fraction; 2) a linear fractional irrational expression; 3) a binomial 

differential (the Chebyshev case); 4) a quadratic irrational expression (the Euler case). 

This method yields a large number of  exact solutions but some of them are singular at the center and some do not 

satisfy the equilibrium and smoothness conditions. We note that the hydrostatic equilibrium equation (7) is automatically 

satisfied. 

2. METHOD FOR CONSTRUCTING REGULAR MODELS 

First of all, let us list the requirements which are usually imposed on the exact solutions considered as models for 
relativistic stars. 
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From the physical meaning of  the g0o component of the metric tensor it follows that 0 < F < 1; from this follows 

the restriction on the gradient F '  > 0, where the equals sign holds at the center of the star. 

From the hydrostatic equilibrium equation we obtain the following restriction: p '  = --(/z + p)y/2 _< 0. Here we 

assume the condition tz > 0 and p >__ 0, obvious for ordinary matter. 

The condition/z' _< 0 for the static case is equivalent to the equilibrium condition. In order to understand this, we need 

to draw on a concept such as the adiabatic speed of  sound in matter dp/d/z = v 2, 0 _< v <__ 1: For statics, dp/dtx = p'//x',  from 

which also follows the restriction on the energy density gradient. 

Let us also recall the important energy dominance condition pox < 1, although for ordinary matter we require the 

stricter condition p//x _ i/3, where the equality holds in the so-called ultrarelativistic limit, which makes a perfect fluid similar 

to equilibrium radiation and leads to loss of  stability. 

Now let us use the listed requirements to construct solutions which are a f o r t i o r i  regular and equilibrium solutions. 

To do this, let us expand the functions in Eqs. (4)-(7) in a power series about zero. We find that such properties of  the solutions 

as regularity and equilibrium character are determined by the coefficients for the lowest powers. Thus for a solution to be 

regular at the center and to be an equilibrium solution, its power expansion should have the following form: 

#=go--F2r24-psrS4- ...; ( t l )  

p = p o - - p 2 r  2 + p4r  4 -~- ...; (12) 

= 1 - -  (x~0/3) r 2 + (×~td5) r ~ -  (×vts/s + 3) r,+2 + ...; (13) 

F = a  (1 4 - b 2 r 2 - k  b4r4-} - ...), (14) 

here s > 2, and the highest powers may be nonintegral, i.e., the expansions (11)-(14) generally speaking are not necessarily 

power series. 

Substituting (11)-(14) into (5) and (7), and comparing the coefficients for identical powers, we obtain a relation between 

fne coefficients: 

662 = 3xp0 + xlx0; (15) 

2p2 = b2 (~t0 + [0) ; (16) 

4b4 = b2 ( x p o  -'I- X~Xo ) - -  ( ~P2 -t- Xl.t2/5 ) ; (17) 

4p4-k 204 (~0 + P0) = b2 (,u~ + 3p2), (18) 

where b 2 , P2 and/~2 are positive. We also note the following: if P4 = 0, then b 4 ~ 0; if b 4 = 0, then P4 ~ 0 and in this case 

p2//z2 = v 2 = 1/5, where v 0 is the speed of  sound at the center of  the star. 

Since the parameters m and n from (9) can be selected even before calculation of the quadrature in (10) while the 

coefficients in (15)-(18) depend on these parameters, we can talk about constructing exact solutions with prespecified properties. 

Such a procedure ensures construction of a model suitable for describing a relativistic state. 

By this method we found that exact regular solutions are obtained for F = a(1 + br2) m, where m is an integer; it is 

important that the signs of m and b match. For natural m and m = --3,  all the solutions are equivalent. We note that the cases 

m = 1 and m = 2 are already known as the fourth Tolman solution [2] and the Adler solution [3]. A rather simple model of 

a relativistic star is obtained for m = 3, since here the exact solution seems rather laconic. Let us consider this model in more 
detail. 

Let us introduce new symbols: x = br2; g = (1 + x)-1;  z = (1 + 4x) -1/2. Substituting F = a(1 + x) 3 into (10) 

(taking into account the new symbol for x), we obtain 

= g [ l - - x ~ 2 - -  Cxz] .  (19) 
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At the boundary of  the sphere r = R, the expressions found should match the exterior Schwarzschild solution, which 

in the coordinates of  (3) looks like F = 1 - 2M/R, L = 1. 

The three constants a, b, C can be expressed in terms of the two independent variables M and R using three conditions: 

continuity of the function F at the boundary; continui~ of  the derivative of F,  which is equivalent to the requirement p(R) = 

0; continuity of the function L, which is equivalent to the requirement e(R) = F(R). We note that the derivative of  the function 

L at the boundary loses continuity; this is connected with the condition/x(R) ~ 0. As a result of  matching the solutions, we 

obtain the following expressions: 

a =  (1--7o~/6) a (1--co)--~; (20) 

bR 2 = ~/ (6- -7c0)  ; (21) 

C =  (6--3(0)~/2 (6--7co)-~/z [9/2--6co],  (22) 

here co = 2M/R. 

Substituting F and e into (4) and (5) allows us to write the density and pressure as 

~t/bt0 = (9/2 + 3C) - l [g2  (2--x--2Cxz)  +g  (5/2 + 3Cz--4Cxz 3) ], (23) 

P/Po = ( 9 / 2 - - C )  - j  [6g 2 ( l - - x / 2 - - C x z )  - -g  (3/2 + Cz) ], (24) 

where ×/*o = 3b(3/2 + C), Kp0 = b(9/2 - -  C) are the density and the pressure at the center of the star. 

Let po//Xo = K; then C = (9/2)(1 - -  K)(1 + 3K) and from the restriction 0 < K < 1/3 it follows that 3/2 < C < 9/2. 

At the same time, we found an expression for the physically important quantities/x o and Po in terms of  M and R. We should 

note that when constructing relativistic models of stars, often the quantities/x o and K are used as the independent variables since 

they can be determined from physical considerations, in contrast to the mass and the radius which are astronomically observable 

(measurable) quantities. 

C O N C L U S I O N  

In conclusion, let us discuss the stability of  the models. The method used here allows us to estimate the adiabatic index 

at the center of  the star 

"c 0= ~,~ (1 + I /z ) ,  (25) 

where the square of the speed of  sound at the center of  the star (for any m) is equal to 

v~ = (3m/5)(I +~)[m+2+3~(2--m) ]-~. (26) 

For m = 3, 3'0 decreases with an increase in K, but the minimum for 3'o is found in the region K > 1/3. For  K = 1/3, we have 

3'o -= 2.4; i .e. ,  the stability margin is rather large. In the Adler  solution (m = 2) for K = 1/3, we have 3`o -- 5/3. The 

solution for m = 1 seems to be the least stable because even for K = 0.18, we have 3`o < 4/3. With an increase in m, the 

minimum for 3`o is shifted toward the region of  lower K, but 3'o itself increases. For  example,  for m = 9, the minimum is 

realized for K = 0.21 but 3"o = 5.7. The given estimates show the qualitative behavior of the models as the parameters  change. 

In fact, the models lose stability before ~ reaches the value 1/3. 

If  we connect Po and ~0 with the equation of  state of a degenerate Fermi  gas for neutrons, then the calculations show 

that the total mass of  the star with an increase in tx o reaches the maximum value Mma x, and then decreases.  This means a loss 

in stability for/*o > /Zmax, i .e . ,  a neutron star does not have a mass M > Mrnax. With an increase in M, the radius of  the star 

decreases down to Rmi n. 
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For m = 3 M r ~ a x = 0 , 3 3 M s  Rrn~n---5 kin, lg(~tmax)=15,6; 

For m- -2  Mm~x=0,34 Ms, Rmi~'=3,6 km, lg(~m~x)=15,75; 

For m = l  M~,x=0,42 Ms, R~i~=3,4 krn, lg(Ixm,×)=15,9, 

here M s is the mass of the sun, /Zma x is expressed in g/cm 3. The result for m = 1 (the Tolman solution) was first obtained in 

[4]; in that paper, the method for investigation of the stability of the exact solutions is described, using the equation of state 

for a Fermi gas at the center of the star. We should note that the solution for m = 3 proved to be the least stable, although 

the critical value is K 3 = 0.09, ~2 = 0.11 and K 1 = 0.12. 

The use of large or fractional values of m requires numerical modeling; in this case, the relations (15)-(18) are very 

useful. Since r = 0, a singular point exists for the difference scheme; it is convenient to expand the functions in a power series 

at such points, if of course there are no singularities there from the analytical standpoint. 
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