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Summary. Four different artificial neural network 
architectures have been tested for their suitability 
to extract and predict sequence features. For opti- 
mization of the network weights an evolutionary 
computing method has been applied. The networks 
have feedforward architecture and provide adaptive 
neural f'dter systems for pattern recognition in pri- 
mary structures and sequence classification. The 
recognition and prediction of signal peptidase cleav- 
age sites of E. coli periplasmic protein precursors 
serves as an example for filter development. The 
primary structures are represented by seven phys- 
icochemical residue properties. This amino acid de- 
scription provides the feature space for network 
optimization. The properties hydrophobicity, hy- 
drophilicity, side-chain volume, and polarity al- 
lowed an accurate classification of the data. A 
three-layer network architecture reached a learning 
success of 100%; the highest prediction accuracy in 
an independent test set of sequences was 97%. This 
network architecture appears to be most suited for 
the analysis of E. coli signal peptidase cleavage 
sites. Further suggestions about the design and fu- 
ture applications of artificial neural networks for 
protein sequence analysis are made. 
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A reliable prediction of a protein's structure and 
function from its amino acid sequence with high 
accuracy is still not possible in many cases (Fasman 
1989). Most successful is the prediction of trans- 
membrane regions of membrane proteins which is 
based on the recognition of hydrophobic amino acid 
stretches in the protein primary structure (Kyte and 
Doolittle 1982; J~ihnig 1990). The prediction of sec- 
ondary structure reaches an overall accuracy of up 
to 64% with the application of artificial neural net- 
works (Qian and Sejnowski 1988; Bohr et al. 1988; 
Holley and Karplus 1989) or hybrid statistical and 
neural systems (Stolorz et al. 1992; Zhang et al. 
1992). First attempts to predict tertiary structure of 
protein backbones have been made (Bohr et al. 
1990). Such neural filter systems for structure pre- 
diction are regarded as useful since neural networks 
allow both pattern recognition and sequence classi- 
fication by a single system (Hirst and Sternberg 
1992). We investigated several network architec- 
tures for their suitability as protein sequence filters 
and present a method for the construction of artifi- 
cial neural networks for the prediction of E. coli 
signal peptidase cleavage sites in precursor se- 
quences of periplasmic proteins. 

A neural network must manage two tasks: fea- 
ture extraction from the sequence data and classi- 
fication of the sequence examples according to the 
extracted feature. In most neural network applica- 
tions protein sequences are represented by binary 
numbers coding for the amino acids (Hirst and 
Sternberg 1992). In contrast, our approach is based 
on the extraction of sequence features from a nu- 
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merical description of the primary structures by 
amino acid property values (real numbers). Seven 
properties were used, providing the feature space: 
hydrophobicity, hydrophilicity, polarity, surface 
area, volume, bulkiness, and refractivity of the res- 
idues. Compared to binary scales, the main advan- 
tage of the sequence description by real coded 
amino acid property scales is the generation of a 
feature space which is based on the physicochemi- 
cal similarity of amino acids. This allows the devel- 
opment of a prediction system which is not based 
on the analogy of character strings but on the sim- 
ilarity of primary structures with regard to their 
physicochemical properties. Therefore, features 
basing on chemical theory can be extracted. These 
features are used for the classification of sequences. 
In our approach, the classification of the sequence 
examples by the neural f'tlters was restricted to a 
binary decision: A given example obtains a cleav- 
age site, or it does not. This imitates the biological 
signal recognition: A precursor sequence is pro- 
cessed by signal peptidase at a particular cleavage 
site, or it is not. For prediction of the cleavage sites 
the sequences are scanned by the neural filters, an- 
alyzing a sequence window of 13 residues at a time. 

The development of neural filters is separated 
into a training phase and a test phase. During the 
filter training optimal values for the network's con- 
nection weights are determined. Since these values 
cannot be numerically calculated, their determina- 
tion is an optimization problem. An evolution strat- 
egy has been used for this purpose (Rechenberg 
1973). In the test phase the obtained optimized fil- 
ters are evaluated with regard to their prediction 
accuracy by application to a test set of sequences 
which is distinct from the training set. 

We chose the prediction of signal peptidase 
cleavage sits as example for several reasons: 

1. The cleavage-site regions of the different signal 
peptides show no conserved stretches of amino 
acids (Perlman and Halvorson 1983; von Heijne 
1983). This fact demonstrates that a sequence 
description based on the similarity of the amino 
acid residues may be useful for a successful fea- 
ture extraction. 

2. The signal for cleavage-site recognition by signal 
peptidase appears to be locally encoded (Laforet 
and Kendall 1991; Schneider and Wrede 1993). 
Since long-range interactions between residues 
cannot be taken into consideration by the chosen 
network architectures, the accurate prediction of 
a locally encoded signal is likely. 

3. Another prediction method for signal peptidase 
cleavage sites which is based on a statistical 
approach is available (von Heijne 1986). The 

Table 1. The names of the E. coli periplasmic proteins used for 
the filter induction and the prediction experiments 

Training-set sequences Test-set sequences 

Glucose- 1-phosphatase precursor 
L-arabinose-binding protein 

precursor 
Lysine-arginine-ornithine-binding 

protein precursor 
L-asparaginase II precursor 
Peptidyl-prolyl cis-trans 

isomerase precursor 
D-galactose-binding protein 

precursor 
Gamma-glutamyltranspeptidase 

precursor 
Glutamine-binding protein 

precursor 
Leu/Ile/Val-binding protein 

precursor 
Leucine-specific binding 

protein precursor 
Maltose-binding protein 

precursor 
Pennicillin-insensitive murein 

endopeptidase precursor 
Pennicillin acylase precursor 
Periplasmic phosphate-binding 

protein precursor 
pH 2.5 acid phosphatase 

precursor 
Alkaline phosphatase precursor 
Periplasmic glycine betaine- 

binding protein precursor 

Sulfate-binding protein 
precursor 

Periplasmic trehalase 
precursor 

Glycerol-3-phosphate- 
binding protein 
precursor 

UDP-sugar hydrolase 
precursor 

Protease III precursor 
D-ribose-binding 

periplasmic protein 
precursor 

Ribonuclease I precursor 

neural filters can be compared to this statistical 
method. 

Methods 

Data. All protein sequences were collected from the SwissProt 
Database, release 18 (IntelliGenetics, Inc.). Twenty-four precur- 
sor sequences ofE. coli periplasmic proteins with experimentally 
confirmed signal peptidase cleavage sites were found. These data 
were split into a training set of 17 sequences and a test set of 7 
sequences (Table 1) to give a random 7:3 distribution between 
training and test examples. The neural-network filters were ap- 
plied to these precursor sequences for cleavage-site prediction. 

For training of the neural networks the sequences were re- 
stricted to strings of 13 residues in length. Both training and test 
set consist of positive and negative examples. The positive ex- 
amples cover the positions - 1 0  to +3 (Fig. 1). Two different 
training sets for the feature extraction were used. They have in 
common the positive examples. The negative examples are ran- 
domly chosen strings (13 residues each) from the precursor se- 
quences in set 1 and 13 residue strings from the cleavage site 
region ( - 1 2  to +5) in training set 2 (Fig. 1). The idea is that 
different f'dters can be obtained by the use of different training 
sets: set 1 allows the extraction of general cleavage-site features, 
and the corresponding neural filters are thought to discriminate 
between cleavage sites and noncleavage sites. In contrast, set 2 
is thought to allow the construction of filters which are special- 
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Signal peptldase 
cleavage site 

N-terminal l C-terminal 
end of the oncl of the 

Positive examples 
I I PROFI cleavage site region 

Fig. 1. The data preparation. The targeting sequence positions 
have negative numbers from the cleavage site to the N-terminal 
end of the protein. The positions in the mature part of the protein 
are indicated by positive numbers. The positive examples of the 
training and test sets cover the positions - 10 to + 3. The nega- 
tive examples are randomly selected sequence strings (length 13) 
from the targeting sequence region - 12 to + 5 (training-set 2) or 
from the whole precursors (training-set 1). 

ized on the detection of the exact cleavage-site position. The 
training sets consist of 17 positive examples and 68 negative 
examples; the test sets consist of seven positive and 28 negative 
examples for the filter induction experiments. Thus, the fraction 
of positive examples is 20% in all sequence sets. 

We are aware that the small number of test-set cleavage-site 
examples is not sufficient for a reliable statistical evaluation of 
the prediction results. The training set, too, is small compared to 
other training sets for neural networks (Qian and Sejnowski 
1988; Bohr et al. 1988; HoUey and Karplus 1989). The idea was 
to show that our training technique is successful even with few 
training data, since for many biochemical prediction problems 
only few data are available. 

The Network Architectures. Four different networks archi- 
tectures have been used for the development of cleavage-site 
f'dters (Fig. 2). They were named "PROFI 1--4" (PROtein Filter 
Induction), since the training technique is based on a top--down 
induction strategy. (See below.) All PROFI networks have feed- 
forward architecture: The flow of information is unidirectional 
from the input layer toward the output-layer unit. The four net- 
works differ in the number of hidden layers and hidden-layer 
units (Fig. 2). Further, the number of parallel amino acid repre- 
sentations is increased from PROFI 2 (a single physicochemical 
property) to PROFI 3 (four physicochemical properties). Thus, 
the size of the input layer is 13 units for PROFI 1 and PROFI 2; 
it is 52 (13 x 4) in the PROFI 2 and PROFI 4 systems, respec- 
tively. The neural fdters calculate the boolean values TRUE or 
FALSE as prediction result with regard to the peptide bond be- 
tween the relative window positions 10 and 11 (Fig. 1). 

The input-layer units convert an amino-acid character (single- 
letter code) to a numerical property value (Table 2). For the 
experiments, these values were normalized to obtain comparable 
property scales between - 1.0 and 1.0. No further calculations 
are performed by an input-layer unit ("fan-out" unit). In con- 
trast, the output of a hidden-layer unit is determined by its trans- 
fer function F(unit~,): 

1 
F(unitin) = 1 + e -unitin 

This is the common sigmoid function (Fermi function) which 
limits the output of a unit to values 0.0 < F(unitJ < 1.0. The 
term uniti, is the total input of a unit i (the weighted input sum), 

w U stands for the connection weights, ~u is the output of a unit of 
the previous layer: 

unitin = ~-a WU~O 
j=l 

All hidden layer units use the same sigmoid transfer function. 
The single output-layer unit uses the step function O(x): 

O(x) = O[F(uniti,)] = ~TRUE if F(unitin) >~ threshold 
tFALSE otherwise 

The threshold was 0.5 in all experiments. With the help of this 
unit step function, a binary sequence classification is achieved: 
A sequence example will be regarded as a cleavage-site example 
if the output " T R U E "  is calculated. It will be regarded as a 
"noncleavage-site" example otherwise. 

The four PROFI systems are now described in more detail. 
Since neural networks can be regarded as "function estimators" 
(Kosko 1992), the transformation functions which are calculated 
by the different PROFI networks are given. The used variable 
names are explained in Fig. 2. 

PROFI 1: This network is a Perceptron system (Minsky and 
Papert 1988). It consists of two layers, an input layer and an 
output layer with the single classifying unit. PROFI 1 is limited 
to linear separation between positive and negative training-set 
examples because of the use of the transfer function F(uniti,). 
In contrast to the classical Perceptron (Rosenblatt 1962), the 
output unit has a fixed threshold value of 0.5 instead of a 
calculated value. The transformation of an input pattern {Xk} is 
given by: 

output= O[F(unitin)] = O[F(~j wOxk) ] 

With PROFI 1 no feature extraction employing higher-order 
correlations between the different sequence positions and res- 
idue properties is performed, since no hidden layer is present. 
Only first-order correlations between the different window po- 
sitions, expressed as connection weights {wu}, are taken into 
consideration for classification. 
PROFI2: It has been proved that one hidden layer is sufficient 
to approximate any continuous function (Cybenko 1989; 
Hornik et al. 1989). The PROFI 2 architecture can therefore be 
regarded as a "minimal architecture" for the development of 
protein sequence filters. The hidden layer allows the extrac- 
tion of features such as "contrast" for sequence classification. 
As with PROFI 1, the PROFI 2 networks use a single amino 
acid property in the input layer. Thus, the sequence classifi- 
cation is based only on the features which can be extracted 
from a single property description of the protein sequences. 
The output of the three-layer network PROFI 2 is given by: 

ou put } 

To determine the optimal number of hidden-layer units the 
prediction qualities of optimized PROFI 2 filters with one to 13 
hidden units were measured. 
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Table 2. The values of the amino-acid properties used for the description of the protein sequences 

Amino 
acid Hydrophobicity a Volume b Surface area c Hydrophilicity d Bulkiness e Refractivity f Polarity g 

A 1.6 88.6 115 - 0.5 11.50 4.34 0.00 
R - 12.3 173.4 225 3.0 14.28 26.66 52.00 
N - 4.8 117.7 160 0.2 11.68 12.00 49.70 
D - 9,2 111.1 150 3.0 12.82 13.28 3.38 
C 2.0 108.5 135 - 1.0 13.46 35.77 1.48 
Q - 4.1 143.9 180 0.2 13.57 17.26 49.90 
E - 8.2 138.4 190 3.0 14.45 17.56 3.53 
G 1.0 60.1 75 0.0 3.40 0.00 0.00 
H - 3.0 153.2 195 - 0.5 13.69 21.81 51.60 
I 3.1 166.7 175 - 1.8 21.40 19.06 0.13 
L 2.8 166.7 170 - 1.8 21.40 18.78 0.13 
K - 8.8 168.6 200 3.0 15.71 21.29 49.50 
M 3.4 162.9 185 - 1.3 16.25 21.64 1.43 
F 3.7 189.9 210 - 2.5 19.80 29.40 0.35 
P - 0.2 122.7 145 0.0 17.43 10.93 1.58 
S 0.6 89,0 115 0.3 9.47 6.35 1.67 
T 1.2 116.1 140 - 0.4 15.77 11.01 1.66 
W 1.9 227,8 255 - 3.4 21.67 42.53 2.10 
Y - 0.7 193,6 230 - 2.3 18.03 31.53 1.61 
V 2.6 140.0 155 - 1.5 21.57 13.92 0.13 

a From (Engelman et al. 1986) 
b From (Zamyatnin 1972) 
c From (Chothia 1975) 

d From (Hopp and Woods 1981) 
e From (Jones 1975) 

• PROFI 3: In contrast to PROFI 2, which employs a sequence 
description by a single amino acid property, the PROFI 3 ar- 
chitecture uses four amino acid properties for the numerical 
description of the protein primary structures. The selection of 
these properties is based on the results of the PROFI 2 exper- 
iments: The properties which led to the highest prediction 
qualities of PROFI 2 filters have been chosen. The use of four 
properties allows the extraction of complex features, such as 
"contrast  between two amino acid properties." The number 
of hidden-layer units was changed systematically between one 
and 13 to determine an optimal network architecture. The out- 
put of a PROFI 3 three-layer network is given by: 

o.t0u  ) 

• PROFI 4: Compared to PROFI 3 a second hidden layer is 
introduced into this network. This provides additional vari- 
ables (network weights) for the description of an input-output 
transformation function. The number of hidden-layer units is 
the same for both hidden layers in all experiments. As for 
PROFI 2 and 3, the number of hidden-layer units was system- 
atically altered between one and 13 to determine an optimal 
network architecture. The output of the four-layer network 
PROFI 4 is given by: 

The Training Technique. The goal was to adjust all network 
weights in such a way that the output unit calculated an output 
value above or equal to a threshold in the case a positive example 
(a cleavage-site region) was presented at the filter input. This 
leads to the final binary output " T R U E . "  A value below the 

threshold must be calculated in case of negative examples 
( "FALSE") .  The threshold of the output-layer unit was 0.5 in all 
experiments. To measure the learning success during the training 
phase and to determine the actual quality of a filter, a quality 
index Q was calculated. We defined the prediction accuracy of a 
filter as its quality: Q is the sum of positive (P) and negative 
correct predictions (N) divided by the total number of examples 
(T) in the training set: 

P + N  

Q =  T 

If all examples are classified in such a way that positive examples 
produce a filter output ~> 0.5 and negative examples produce a 
value < 0.5, the value of Q will be 1.0 (100% correct classifica- 
tion). This quality function serves as a simple heuristic to sepa- 
rate the feature space into regions of high and low quality. The 
point of highest quality provides the weight values {w} for the 
filter with the highest prediction accuracy. 

A (~.,k) evolution strategy with adaptive stepsize control has 
been used for training (Rechenberg 1973). This top-down search 
strategy includes repeated generate and test cycles ("genera- 
t ions" or "learning cycles") for a systematic generation and test 
of variable values. The alteration of the values is achieved by a 
mutation procedure which is done by adding Gaussian distrib- 
uted random numbers to the old parameter values. The values 
leading to the highest filter quality are selected for the next learn- 
ing cycle. This stepwise learning of examples can be regarded as 
an inductive process which leads to the "proof"  of the generated 
set of variable values. The number of mutations of a weight per 
generation (k) was 500; the number of parents (p~) (selection of 
the best) was one per generation. Initially, all network weights 
were random numbers between - 1.0 and 1.0. One generate and 
test cycle consists of (1) k mutations of the parental value, (2) 
quality determination of the offspring (calculation of Q), and (3) 
selection of the mutation with the highest quality as the new 
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P R O F I  1 • 

[] 

[] 

X) 0 I 
P R O F I  2 

PROFI 3 x i u k OI 

Wkl, m Wjk 
X U k 0 l 

P R O F I  4 I,m 

Amino acid 

input unit 

Hidden unit 

Output unit 

Wkl, m W]k Wq 
X Lm U k VI OI 

The PROFI network architectures. For clarity only F i g .  2, 
some connections between the units are shown for PROFI 2--4. 
For details, see text. 

parent value (1~). The number of training cycles was limited to 
1,000 for every experiment. 

The offspring of a generation (w,e~) show a Gaussian distri- 
bution (G: Gaussian-distributed random number) around the pa- 
rental value (word), which means that most mutations are not 
significantly different from the parental value: 

W n e  w ---- Wol  d "[- ~ G  

These small changes per generation allow a stepwise hill- 
climbing toward the quality optimum. To avoid getting stuck in 
"local quality maxima" of the quality function the learning rate 
8 (stepsize) was set at its initial value of 0.3 every 100 genera- 
tions. The initial value of 0.3 has been empirically chosen, for it 
leads to a fast initial learning progress (rapid increase of quality 
per generation). Besides these fixed changes, the stepsize 8 itself 
was a free parameter during the whole training phase. It was 
mutated like the weight values, and the stepsize leading to the 
best weights of a learning cycle was selected as the parent value 
for the next cycle. There certainly are local maxima (or minima) 
in some optimization problems (Mclnerny et al. 1989), though it 
is not known whether the quality function used in the PROFI 
approach actually shows such maxima. The filter induction and 
the prediction experiments were performed on a PC running un- 
der DOS (80486 processor). All PROFI systems are implemented 
in Modula 2. 

The Prediction Method 

To determine the overall prediction quality of the induced filters 
the precursor sequences of the training and the independent test 
set were scanned. Starting with the N-terminal end of the protein 
sequence (position n, n = 1) a window of 13 residues is analyzed 
at a time. In the case in which the filter produces the output 
"TRUE," the corresponding sequence position will be regarded 
as a cleavage site. The filter moves to the next sequence position 
(position n + 1) and the new filter output is calculated. This 
procedure is repeated until the C-terminus of the precursor se- 
quence is reached. 

To determine the prediction power and accuracy of the 
PROFI system single filters and combinations of filters were 
used. In the latter case all combined filters must produce the 
output "TRUE" for the same sequence position to get a positive 
cleavage-site prediction (logical AND connection). This method 
was thought to produce more reliable results. Three quality in- 
dices (Schulz and Schirmer 1979) were calculated to evaluate and 
compare the prediction results of the PROFI method and the 
statistical approach: 

P P Q1 = p + n  Q 2 =  Q3 = p + o  p + u  

p: Number of correctly predicted cleavage sites 
n: Number of correctly predicted "noncleavage sites" 
o: Number of incorrectly predicted "noncleavage sites" 

(overprediction) 
u: Number of incorrectly predicted cleavage sites 

(underprediction) 

QI provides a measure for the ability of a filter to discriminate 
between cleavage sites (p) and noncleavage sites (n), although it 
is dominated by the negative correct prediction. Q2 and Q3 allow 
one to determine the degree of overprediction and underpredic- 
tion, respectively. 

In contrast to the PROFI method, the prediction of cleavage 
sites with the statistical method uses a sequences window of 12 
residues (von Heijne 1986). It is mainly based on the detection of 
the " - 1 , - 3  rule" (yon Heijne 1983; Perlman and Halvorson 
1983) in the cleavage-site region. 

Results 

Filter Induction Without Hidden Layers  
(PROFI  I) 

F o r  t he  s e v e n  p r o p e r t y  sca l e s  s e v e n  P R O F I  1 f i l te rs  

w e r e  o b t a i n e d .  T r a i n i n g  se t  1 w a s  u s e d .  I t  is s t r i k i n g  
t ha t  s o m e  a m i n o  ac id  p r o p e r t i e s  a r e  u s e f u l  for  t he  
a n a l y s i s  o f  s i g n a l  p e p t i d a s e  c l e a v a g e  s i t e s ,  a n d  
s o m e  a re  no t .  H y d r o p h o b i c i t y ,  p o l a r i t y ,  a n d  su r -  
f ace  a r e a  a p p e a r  to  b e  e s s e n t i a l  r e s i d u e  p r o p e r t i e s  
for  a n  a c c u r a t e  d e s c r i p t i o n  o f  t he  s e q u e n c e  da t a .  
T h e s e  f i l ters  s h o w  the  h i g h e s t  t r a i n i n g - s e t  q u a l i t i e s  
( T a b l e  3). T h e  t e s t - s e t  q u a l i t i e s  ( tes t  se t  1) a r e  r a t h e r  
p o o r ;  o n l y  t he  h y d r o p h o b i c i t y  f i l te r  r e a c h e s  a n  c las -  
s i f i ca t ion  a c c u r a c y  o f  91% w i t h  t he  t e s t - s e t  e x a m -  

p les .  



Quality Q1 (%) 

A 10o 

Property Training-set I Test-set 1 

Hydrophobicity 96 91 
Volume 91 83 
Surface area 95 86 
Hydrophilicity 88 74 
Polarity 92 86 
Bulkiness 80 80 
Refractivity 81 80 

Filter Induction with One Hidden Layer (PROFI 2 
and PROFI 3) 

The induction experiments with training set 1 led to 
a total of seven PROFI 2 filters for the E. coil signal 
peptidase cleavage site of periplasmic proteins. The 
number of hidden-layer units was 10 in all PROFI 2 
experiments. (See below and Fig. 3A.) Each of the 
filters makes use of a different chemophysical prop- 
erty of the amino acids for the description of the 
protein sequences (Table 2). The learning success 
(filter quality in training set 1) was high for all prop- 
erties (Table 4), indicating that the sequence de- 
scriptions reveal striking patterns that allow a se- 
quence classification. The prediction quality in the 
independent test set is about the same as the train- 
ing-set quality only for the property hydrophobic- 
ity. All other filters show an overfitting to the train- 
ing data (Table 4), especially the filters employing 
the refractivity-and-bulkiness scale. These filters 
are specialized on the training sequences. The sur- 
face-area filter shows the poorest learning success 
(81%), which corresponds with its test-set quality 
(80%). From the PROFI 2 results the properties hy- 
drophobicity, volume, hydrophilicity, and polarity 
were selected as input-layer properties for the 
PROFI 3 system because of their high learning suc- 
cess. 

The optimization of the hydrophobicity filter 
served as an example for the experimental determi- 
nation of the optimal number of hidden-layer units 
for PROFI 2. Training set 1 and test set 1 were used. 
The filter quality after 100 generations was plotted 
against the number of hidden-layer units (Fig. 3A). 
It turned out that four or 10 units lead to the highest 
test-set quality (97%) and therefore allow the detec- 
tion of general cleavage-site patterns. Different 
numbers of hidden-layer units lead to a specializa- 
tion of the filter on the training-set examples as in- 
dicated by the much higher training-set quality com- 
pared to the tes t -set  quality (Fig. 3A). This 
observation of overfitting (overlearning) is striking 
with six or seven hidden-layer units. As a result of 
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Q l / %  90- 

80 I 1 I I 
3 4 5 d 7 8 9 10 lq 12 13 

Number of hidden units 

Table 3. The prediction quality Q1 of the different PROFI 1 
filters which were applied to training-set 1 and test-set 1 

B lOO 

95.- 

Q l / %  9O- 

85-  

8O 

Number of hidden units 

Fig. 3. The selection of the optimal number of hidden-layer 
units for the PROFI 2 network which employs the amino acid 
property "hydrophobicity" in the input layer (A) and for the 
PROFI 3 network (B). The training-set qualities (reclassification) 
are drawn in thick lines; the thin lines show the filter qualities for 
the test set (classification). Training-set 1 and test-set 1 were 
used in both experiments. 

Table 4. The prediction quality QI of the different PROFI 2 
filters which were applied to training-set 1 and test-set 1 

Quality Q1 (%) 

Property Training-set 1 Test-set 1 

Hydrophobicity 98 97 
Volume 95 83 
Surface area 81 80 
Hydrophilicity 93 86 
Polarity 95 89 
Bulkiness 89 80 
Refractivity 91 80 

these investigations, we used a hidden layer with 10 
units for the development of neural filters with 
PROFI 2. 

On the other hand, PROFI 3 filters show the 
highest test-set qualities with 4, 6, 12, or 13 hidden- 
layer units. The correct classification reaches 97% 
with 13 units (Fig. 3B). These four filters were used 
in the prediction experiments. Additional PROFI 3 
filters for prediction were obtained by performing 
an filter induction with training set 2. The four se- 
lected filter architectures were used. They all led to 
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Table 5. The prediction quality Q1 of the four selected PROFI 
3 filters which were applied to training-set 2 and test-set 2 

Table 6. The prediction quality QI of the different PROFI 4 
filters which were applied to training-set 1 and test-set 1 

Quality QI(%)  

Filter Training-set 2 Test-set 2 

Quali~ Ql (%)  
No. 
hidden units Training-set 1 Test-set 1 

4 hidden units 99 83 
6 hidden units 99 91 

12 hidden units 99 91 
13 hidden units 99 86 

a learning success of 99% (Table 5). Here, the filters 
with 6 and 12 hidden units allowed the most accu- 
rate classification of the test set 2 examples (91%). 

Filter Induction with Two Hidden Layers 
(PROFI 4) 

1 80 80 
2 80 43 
3 95 26 
4 93 60 
5 94 14 
6 96 71 
7 94 51 
8 99 29 
9 92 25 

10 93 37 
11 99 57 
12 99 57 
13 98 49 

Two hidden layers led to high learning success in 
most cases, but the neural filters could not accu- 
rately classify the test-set examples (Table 6). The 
high training-set qualities up to 99% clearly show 
that the feature extraction was successful. The low 
test-set qualities indicate that only special training- 
set features were found. Thus, PROFI 4 filters were 
not used for the predict ion experiments.  The 
PROFI 4 architecture leads to filters which learn the 
training-set examples "by heart." The development 
of generalizing sequence filters for the prediction of 
signal peptidase cleavage sites is not possible with 
these systems. We think that the PROFI 4 architec- 
ture offered too many variables for the description 
of cleavage sites. This may be further support for 
the idea that signal peptidase cleavage sites are 
characterized by locally encoded signals since only 
a limited number of variable network parameters 
(PROFI 3 systems) allow the extraction of general 
cleavage-site features. 

The Prediction Experiments 

The 17 training-set and the seven test-set precursor 
sequences were scanned for cleavage-site predic- 
tion to determine the reclassification and classifica- 
tion power of the neural filters. Only PROFI 3 fil- 
ters were used because the PROFI 3 architecture 
led to the highest filter qualities when applied to the 
corresponding 28 examples of the test sets 1 and 2 
(Fig. 3B, Table 5). Three different prediction runs 
were performed with the different sets of neural fil- 
ters: 

1. Prediction with the best filters which were opti- 
mized with training-set 1 (Table 7) 

2. Prediction with the best filters which were opti- 
mized with training-set 2 (Table 8) 

3. Prediction with combinations of the best single 
filters from experiments 1 and 2 (Table 9) 

A general observation is that all filters show a 
higher reclassification quality (training-set predic- 
tion) than the corresponding classification quality 
(test-set prediction) for all three quality functions 
Q1, Q2, and Q3. Further, the qualities QI and Q2 
are higher for the filter combinations than for the 
single filters, whereas Q3 is decreased. The reason 
is that single filters lead to many more " T R U E "  
predictions for a precursor sequence than combina- 
tions of filters do. As a consequence, the number of 
incorrectly predicted positions is high (low Q1 val- 
ues) and a lot of overprediction occurs (low Q2 val- 
ues). But in most cases a cleavage site is correctly 
predicted and only some cleavage sites are missed. 
This is indicated by high Q3 values, which can be 
regarded as a measure for underprediction. In one 
case a Q3 value of 100% is reached by a single filter 
(Table 7). 

In general, no great differences in the prediction 
accuracy between the filters from training-set 1 and 
training-set 2 can be observed. This is remarkable 
since the different filter types are thought to employ 
different features for sequence classification. The 
best prediction can be achieved with the combina- 
tions of all four single filters which allow a highly 
accurate discrimination between cleavage sites and 
noncleavage sites (QI) although not all cleavage 
sites are recognized (Q3) (Tables 7, 8). 

The best single filters from training-set 1 have 12 
and 13 hidden-layer units; the best filter from train- 
ing-set 2 has 12 hidden-layer units. These three neu- 
ral filters were selected because of their high clas- 
sification qualities. Combinations of them were 
used in the third prediction experiment (Table 9). 
Again, a striking increase of prediction accuracy 
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The prediction results of the PROFI 3 filters which were optimized with training-set 1: AND is the logical AND of the output 

Training data Test data 

Filter QI Q2 Q3 QI Q2 Q3 

4 hidden units 0.891 0.022 0.882 0.897 0.014 0.714 
6 hidden units 0.944 0.042 0.941 0.984 0.026 0.714 

12 hidden units 0.877 0.021 0.941 0.901 0.017 0.857 
13 hidden units 0.846 0.018 1.000 0.851 0.012 0.857 
4 AND 6 0.972 0.070 0.882 0.972 0.037 0.571 
4 AND 12 0.960 0.050 0.824 0.968 0.033 0.571 
4 AND 13 0.936 0.037 0.882 0.943 0.024 0.714 
6 AND 12 0.974 0.090 0.882 0.985 0.061 0.571 
6 AND 13 0.977 0.088 0.941 0.974 0.039 0.571 

12 AND 13 0.948 0.045 0.941 0.953 0.029 0.714 
4 AND 6 AND 12 0.988 0.121 0.824 0.990 0.067 0.429 
6 AND 12 AND 13 0.991 0.150 0.824 0.990 0.065 0.429 
4 AND 6 AND 12 AND 13 0.994 0.170 0.824 0.994 0.091 0.429 

Table 8. The prediction results of the PROFI 3 filters which were optimized with training-set 2: AND is the logical AND of the output 
values 

Training data Test data 

Filter Q1 Q2 Q3 Q1 Q2 Q3 

4 hidden units 0.895 0.017 0.882 0.865 0.009 0.571 
6 hidden units 0.701 0.008 0.882 0.700 0.005 0.714 

12 hidden units 0.916 0.028 0.882 0.918 0.021 0.857 
13 hidden units 0.903 0.024 0.882 0.910 0.016 0.714 
4 AND 6 0.895 0.023 0.882 0.901 0.012 0.571 
4 AND 12 0.966 0.060 0.882 0.966 0.031 0.571 
4 AND 13 0.964 0.058 0.882 0.963 0.029 0.571 
6 AND 12 0.955 0.048 0.882 0.958 0.032 0.714 
6 AND 13 0.949 0.044 0.882 0.953 0.024 0.571 

12 AND 13 0.977 0.083 0.882 0.979 0.048 0.571 
4 AND 6 AND 12 0.973 0.073 0.882 0.974 0.040 0.571 
6 AND 12 AND 13 0.985 0.109 0.882 0.985 0.063 0.571 
4 AND 6 AND 12 AND 13 0.991 0.150 0.882 0.990 0.083 0.571 

Table 9. The prediction results of the selected best neural filters a 

Training data Test data Small test data 

Filter Q1 Q2 Q3 Ql Q2 Q3 Q1 Q2 Q3 

12" AND 12 0.982 0.099 0.882 0.984 0.071 0.714 0.999 0.294 0.714 
12" AND 13 0.976 0.081 0.882 0.977 0.063 0.857 0.999 0.333 0.857 
12" AND 13 AND 12 0.992 0.165 0.882 0.993 0.125 0.714 0.999 0.417 0.714 

a The column "Filter" gives the numbers of hidden-layer units. The asterisk indicates the filter which was optimized with training-set 
2; the other two filters were optimized with training-set 1. AND is the logical AND of the output values. 

cou ld  be  a c h i e v e d  a n d  u n d e r p r e d i c t i o n  was  re- 

duced:  Q3 r eached  85.7%, which  m e a n s  that  mos t  
o f  the  c l e a v a g e  s i tes  w e r e  c o r r e c t l y  p r e d i c t e d .  
Ove rp red i c t i on  was  r educed ,  too (Q2). If  on ly  the 
first 50 res idues  of  the p r e c u r s o r  s equences  were  
s c a n n e d  ( " s m a l l  tes t  da t a " ) ,  a Q1 qual i ty  of  99.9% 
could  be  ob t a ined  (Table  9). These  filters a l lowed a 
d i s c r i m i n a t i o n  b e t w e e n  a c l eavage  site a nd  a n y  

o ther  n o n c l e a v a g e  site wi th  nea r ly  abso lu t e  cer-  

ta in ty .  

Discussion 

It could  be show n  that  a s imple neura l  fi l ter sys t em 
can  predic t  signal pep t idase  c leavage  sites wi th  high 
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accuracy. We are well aware that the small data set 
does not allow a general evaluation. Rather, the de- 
velopment of the special filter architecture used for 
this prediction task was our intention. The "opti- 
mal" filter consists of an input layer which employs 
at least four physicochemical amino acid properties 
for the sequence description (hydrophobicity, hy- 
drophilicity, polarity, and volume), one hidden 
layer for the feature extraction, and a single output 
layer for classification. Here, we trained the sys- 
tems to p roduce  a binary output  (TRUE or 
FALSE). The use of linear output values leads to 
similar results (data not shown). We conclude that 
the use of two hidden layers of the same size was 
inadequate for the filter development. These filters 
could not extract general features from the data. 
They were rather specialized on the training-set ex- 
amples. Whether this architecture may be useful for 
application to different prediction problems is un- 
clear. This could be the case when large sequence 
windows (more than 20 residues) are employed as 
input patterns or the number of parallel amino acid 
properties in the input layer is drastically increased. 

From the prediction experiments it is clear that 
the selection of the training examples is another im- 
portant step for the whole filter development: Dif- 
ferent training sets allow the extraction of different 
sequence features which can be equally valid for the 
protein structure or function under investigation. 
The combination of only two different filters al- 
ready leads to a striking increase of prediction ac- 
curacy compared to filters which utilize only a sin- 
gle feature for sequence classification. Thus, we 
recommend the use of at least two different training 
sets for further filter induction experiments. 

A statistical method for the prediction of eubac- 
terial signal peptidase cleavage sites is known from 
literature (von Heijne 1986). It is reported to have 
an accuracy of 70-80%. Our neural filter approach 
leads to higher-quality values around 90%. We are 
aware that this result is not representative, since 
only seven test-set sequences were investigated. In 
contrast to von Heijne (1986), we have restricted 
the networks to focus on E. coli sequences to obtain 
species-specific filters. Thus, we obtained less se- 
quences with known cleavage sites. Nevertheless, 
the neural filters for signal peptidase cleavage sites 
provide at least a second method for the prediction 
of cleavage sites which is independent from the sta- 
tistical approach. Since the neural networks store 
the extracted sequence features in a distributed, 
nonsymbolic way it is impossible to give explicite 
cleavage site features such as the " - 1 , - 3  rule" 
(von Heijne 1983, 1986; Perlman and Halvorson 
1983) or sequence "descriptors" which can be ob- 
tained by the use of symbolic methods (Gascuel and 
Danchin 1986; Schneider and Wrede 1993). Thus, 

the obtained filters must be regarded as a "black 
box" prediction system. 

We conclude that the PROFI method provides a 
first simple system for the development of neural 
sequence filters employing physicochemical amino 
acid properties, although its general applicability re- 
mains to be tested. The use of residue properties 
was helpful for the analysis and prediction of cleav- 
age sites. It is not guaranteed that this holds for any 
prediction task---e.g., secondary structure predic- 
tion. It should be interesting to apply the PROFI 
system to this problem since the neural network 
methods which were first published (Quian and 
Sejnowski 1988; Holley and Karplus 1989) did not 
use any additional sequence information besides the 
sequence character code. These systems are infe- 
rior to classical prediction methods like SIMPA 
(Levin et al. 1988) and PROMIS (King and Stern- 
berg 1990). It is not proven that a neural network 
can perform prediction tasks which, in principle, 
cannot be solved otherwise. Nevertheless, the use 
of additional information such as physicochemical 
amino acid properties in the cleavage-site predic- 
tion task might play a key role in the development 
of further neural networks for protein sequence 
analysis (Hirst and Sternberg 1992). 

It must be stressed that an optimization of the 
empirical network parameters---e.g., the size of the 
input layer, the transfer function itself, or the ratio 
between positive and negative examplesmmust be 
done for every new application. A systematic ap- 
proach for this task has already been proposed 
(Lohmann 1992). Unfortunately, a neural filter bas- 
ing on the PROFI architecture cannot take into con- 
sideration amino acid interactions from residues 
which are spaced far apart on the protein sequence. 
Thus, it is limited to locally encoded protein func- 
tions and structures in its present state. The next 
steps will be the development of filters for the pre- 
diction of membrane protein topology and the pre- 
diction of secondary structures from the amino acid 
sequence. The first experiments with these new 
prediction systems already are very promising. 
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