Genome of the European Elk Papillomavirus (EEPV)

ANNIKA ERIKSSON,¹ HARRI AHOLA,^{1,2} ULF PETTERSSON,² AND JORGE MORENO-LOPEZ¹

¹Department of Veterinary Microbiology (Virology), Swedish University of Agriculture Sciences, Biomedical Center, Box 585, S-751 23 Uppsala, Sweden ²Department of Medical Genetics, Uppsala University, Biomedical Center, Box 589, S-751 23 Uppsala, Sweden

Key words: papilomavirus, European elk, EEPV genome organization, Sequences, L3 ORF

Abstract

The genome of the European elk papillomavirus (EEPV) was found to be 8,095 base pairs (bp) long and its genetic organization was similar to that of other papillomaviruses. Ten open reading frames (ORFs), designated E1-E7 and L1-L3, were identified in the genome, all located on one strand. The presence of the L3 ORF is rare among the papillomaviruses and to date has only been identified in the genomes of EEPV, the deer papillomavirus (DPV) and the Cottontail papillomavirus (CRPV). The ORF is well conserved between DPV and EEPV with regard to both length and sequence. Potential promoter regions were identified at the 5'-end of the E6 ORF, at the 3'-end of the E1 ORF and downstream of the L1 ORF. Furthermore, two potential polyadenylation signals were found, one located in the long control region (LCR), downstream of the L1 ORF, and another preceding the L2 ORF. The EEVP genome is closely related to the genome of the DPV, the most highly conserved regions being ORFs E1 (70%), E5 (69%), and L1 (74%).

Introduction

Papillomaviruses belong to the Papovaviridae family and consist of a protein capsid surrounding a circular double-stranded DNA of approximately 8,000 base pairs (bp). They have been isolated and characterized from many different animal species (for references, see 1). The papillomaviruses induce proliferation of either the epithelial layer (papillomas), or the fibroblastic layer (fibromas), or both these layers (fibropapillomas). The majority of the papillomaviruses cause papillomas, but a few also cause fibromas or fibropapillomas. We have focused our attention on viruses from the two latter groups. Warts induced by the European elk papillomavirus (EEPV) and the deer papillomavirus (DPV) are mainly fibromas, while the reindeer papillomavirus (RPV) and the bovine papillomavirus types 1 and 2 (BPV-1 and 2) give rise to fibropapillomas (2-5). EEPV also causes benign lung fibromas in elks (9). All of these viruses transform cultured murine fibroblast cells and induce sacromas in hamsters (2-4,6-8). Moreover, their genomes are more closely related to one another than to other papillomaviruses. Under stringent hybridization conditions EEPV DNA hybridizes to the genomes of DPV and RPV, but not with the BPV-1 genome that is more distantly related to EEPV (4).

The biological properties of EEPV have been described previously (2) and recently the nucleotide sequence of the early (transforming) region of EEPV has been published (10). We report here the complete nucleotide sequence of the EEPV genome. A molecular analysis of the late region made possible a comparison of regions which are equivalent to previously characterized regions in BPV-1, BPV-2, DPV and human papillomavirus type 6 and 16 (HPV-6 and 16) (11-16).

EEPV was isolated from the epithelial layer of a cutaneous fibropapilloma. The viral DNA was cloned into the plasmid vector pBR322 and subclones were constructed to facilitate sequence analysis as described before (2,10). The nucleotide sequence, obtained by the technique of Maxam and Gilbert (17), was analyzed using the University of Wisconsin Genetic Computer Group (UWGCG) software (18). The strategy for sequencing the late region is shown in Fig. 1 and the complete 8,095 bp nucleotide sequence of EEPV starting with the first nucleotide of the *Hpa*1 recognition site is presented in Fig. 2.

The sequence of EEPV DNA revealed that all open reading frames (ORFs) longer than 400 bp are located on one strand (Fig. 3). Ten ORFs were identified, seven in the early region (E1-E7) and three in the late region (L1-L3) (Table 1 and Fig. 3). Three additional potential ORFs were identified, one 309 bp long (ORF \times) located between the E5 and L2 ORFs, and two located in the long control region

Fig. 1. The strategy for sequencing the late region of EEPV. The arrows show the direction in which the sequence was determined.

1	GTTAACAATC	ACCAGATCTT	GCCCGTTTTT	GTGAGCGGGA	AAGCTGGTTA	CAGGTTTATA	60
61	TAAAAAGGCC	CACCGCACAA	GTTTTCACAG	ACGGTTCAGG	ATACTTCTAA	TACATGCATG	120
121	TGTGGCGAAT	GCTATGCATA	CCTCACCTGC	ATCTGGTGCA	AGAAGGGCTT	AGATAAGGTA	180
181	GATGCAAAGC	GATGCCATGA	AAAAAAATA	AGAATAGCGT	GCAGGAACGG	AAAACATTGT	240
241	GCTGTCTGTA	CATCTTGCCT	GGAAAATGGG	CTGTACCTTG	AAAGGTCCCT	TTTTCCTGGG	300
301	CGACCCATCT	ACCCTGGAGA	CCTGTATGAG	CCCGATCCAT	GGGTCATGTT	CAACGACATT	360
361	AGATGCATGT	ATTGTGGTGG	ATGCCTAACC	CGCGACGAAA	AAGAGAGACA	CAGACTGTTT	420
421	TGTGAAGACT	TCTGGATATT	CAGGCATCAG	GTGCGGGGAC	GTTGCTATCT	CTGCACCAGG	480
481	CATGGTTCAC	GGCCCCCGTA	CAAAGAAACA	CCTGCCGCCG	TATGAATCAC	CTCCCCTCAC	540
541	ACTGCTCCTA	GAGCCAGTTG	CTCCGGTGCA	ACAGACAGGC	ATTCAGGCAC	CGCAGAGGAA	600
601	GCCACCTTCC	CAGEAAAGGAC	ACAAAAAAGG	ACACAAGAAA	GTTTATTCTG	TGACTGTGCC	660
661	TTCCANTGGA	TETEACAAAA	ACCTGGAATT	TTGTGCAAGA	ACTTCCAGCG	CCACCATCTT	720
721	NACCOTCON N	A COTTONE	TCANAGACCT	AGACTTCCTG	TECTETACET	GCGAGACCAA	780
701	CONTRACTORA	AACCICCIGC	LOARAGACCI	AGACIICCIG	ACCUMANT	TCCTTTCAAC	840
701	CCATGGCTGA	AACIGCAGGI	AGCICGGGGC	AUGGGGGGGG	AGCITATATC	CARREAL	000
841	CCGACTGTAG	CGACTUTGAT	ACAGAGGITG	ATTCACCTGF	ACAAIGCICI	GATTCAAGIG	900
901	ATGAGGATCT	AGTAGATAAT	GCCAATATCG	TTCCGGGAAA	CCACCTGGAG	TTGTTCCAAA	900
961	CGCAGGAAAA	AGAGGCGGGA	GAAAGACAGA	TTTCGCTTTT	GAAAAGAAAA	TTCTGTTTGA	1020
1021	GCCCGGGAAC	CTCAGAGGTC	GAGGAGCTTA	GTCCTGGGCT	TGCCGGAATC	AGAATCTCTC	1080
1081	CGCCAAAGCG	AAATCCGGTG	GTTAGGAGAA	GGCTTTTTGA	CGCAGGTGGG	AGAGACGCCG	1140
1141	TGCGAACACC	GCGTGATCAT	GAAGTTAATA	GTTCTCCTGA	ACCCAGGAGT	CAGGTACAGT	1200
1201	CGGGAAGTAG	CAGTAGGTCT	TGGGAGGGAC	ATCTGGAATC	CATTAACGAG	CCTGCTAGTG	1260
1261	ACGGCAACAT	GGCCGCCGTG	ATGCACAAGT	TGTTCAAGAC	TTTGTACATC	GCGGGTTTTG	1320
1321	GGGAGATAAC	ACGCGTCTTT	CAAAGTGATA	AAACTAACAA	TAATCAGTGG	GTGATAGCAG	1380
1381	CCCATGGCGC	ATCAGAGGTG	CTTTATGCCG	CAAGCTTTGA	AATACTGAGC	AAACACTGCA	1440
1441	GCTACCTGCA	GGCGTCTAGG	AAGGTGCATG	AGACAGGAAG	CATGTCTTTG	TTCTTAGCTG	1500
1501	TCTTCAATGT	TGGGAAGAGT	AGGGAGACTG	TCAGAAAACT	AATTTCAGGT	GTCTTAAACA	1560
1561	CCCCGTGTAG	CCGCCTACTA	TTGCAACCGC	CGAAAATTCG	TGGACTATGT	CCTGCTTTAT	1620
1621	TTTGGTTTAA	GTTGGGGGCTC	TCCCCAGCAA	CACAGACGCA	CGGTACGACT	CCGGACTGGA	1680
1681	TTAAGCAGCA	GACCAATGTG	GCCTATAATA	CTGGGGAGGC	CTCTAAATTT	GATTTTGGCA	1740
1741	CAATGGTACA	GTGGGCATAT	GACCACCGGC	TAACAGAGGA	GTGCAAAATT	GCATATCAAT	1800
1801	ΔΤGCAAAATG	TGCAGGTACA	GACCTAAATG	CGAAAGCATT	TCTTGCAAGT	ACCANTCAGG	1860
1861	CACGGCTGGT	CANGGACTGC	TGTACTATGG	TGAAACATTA	CCTGAGAGCT	GAAGAGCAGT	1920
1021	CATTAACCAT	TTCTCCTTTT	ATTANAACCA	GATCCCATAA	TGCAACTGGA	AAAGCAGTT	1980
1091	GGTTGAGCAT	TATGAATCTG	TTAAAGTTTC	AAGCONTCOA	GCCCATTAAC	TTTGTANATG	2040
2041	COTTGAGCAI	ATCCCTCANA	GGCACCCCAA	AAGGCAICGA	CATAGOANTE	GENGENCECC	2100
2041	CLIIGAAACC	CINCECTORRA	GUCACCCCAA	CCCTCATCAT	CRINGCARII	GINGGACCCC	2100
2101	CAAATAGTGG	GAAGICICIT	LIGIGCAAIA	COULTAIGIC	GITTCIGGGA	GGAAAGGTAC	2100
2101	TGACGTTTGC	CAACCACTCC	AGCCACTTCT	GGTTAGCGCC	CCTTACCGAC	TGTAGGGTCG	2220
2221	CCTTGATAGA	TGATGCCACG	CATGCGTGCT	GGAGATACTT	TGACACATAT	CTCAGAAATG	2200
2281	TACTTGACGG	TTATCCAGTT	TGTATTGACA	GAAAGCACAA	ATCCGCTGTG	CAGCTCAAAG	2340
2341	CCCCTCCCCT	TTTGCTAACC	AGTAATATTG	ATGTGCATGC	AGATGAAAAG	TATTTCTATC	2400
2401	TGCAAAGTAG	AGTCAAAACC	TTCTATTTCA	AGGAGCCGTG	CCCTGCGTCT	GATACTGGTG	2460
2461	AGCCCCTTTT	CTTTATTACT	GATGCTGACT	GGAAAAATTT	TTTTGAAAGG	CTATGGGAGC	2520
2521	GATTAGATCT	CAGCGACCAA	GAGGACGAGG	TTGATGAAGA	TGAGTGCAGC	CAGCGATCAT	2580
2581	TTACTTGCAG	CGCAAGAAAC	ACAGATGCAA	TGCATTGAGA	AAGATAGTCG	CCTGTTACAG	2640
2641	GATCATGCAT	GCTATTGGGG	GGCAGTAAGA	AGGGAAAAAC	TGTTATTATA	TGCAGCGAGA	2700
2701	ACAAAGGGGT	TAAAAACAAT	TGGGTGTGTG	CCTGTGCCTC	CTTGTTCTGT	TACTGCAGAG	2760
2761	CAAGCGAAGC	AAGCAATATG	CATGCAATTG	ATTGTGGAGG	AATTACTGCA	CAGTCCATGG	2820
2821	GCCAAAGAAC	CATGGTCCCT	TACAGACCTA	AGCTGGGAGA	GATATCAGGC	TGCCCCAAAA	2880
2881	GGGTGTTTGA	AAAAAGGCGC	CAGAGTGGTG	GAAGTGGAGT	ATGATGGGAA	CTCTTCTAAT	2940
2941	AAGACTTGGT	ATACAGĈTTG	GAGTACAGTG	TACGTGCGCG	GAACGGAAGA	GGAGGGCTGG	3000
3001	GAGACTGCTG	TCTGTGCTGC	AGACGGACAG	GGCATTTATT	ATTGCGCCGG	GATGAGCAGT	3060
3061	AAGGTGTACT	TTGAAACCTT	TGAAACTGAT	GCCCGCAGAT	GGAGCAGGAC	GGGGCACTGG	3120
3121	ACTGTGAGGG	ATAACGATGT	GATATAŤCAŤ	TCAACCTTTG	GTGCACCCCC	TCACTCTAGA	3180
3181	AACGACAGAG	ACTGCATCGA	AGGATTCTGG	AGCGACGCCG	GGGAGCGTAG	AGGCTCGAGA	3240
3241	GGGTCCGACA	CAACCGACAG	AGCCCTGCCT	TACCCTGCTG	CTCGACAATC	CCCCATTTGT	3300
3301	CGCCCCGTCA	GAACTGGCGA	AAACCGGAGT	CGGGCCGTTC	ACCGCCAGGC	TCCCTACAGC	3360
3361	GCACCATCAT	CCCCGGGGGAG	TTCCGTGGGC	CCCGATTCCC	CCTCCGAGAG	CTCGCGCCAG	3420
3421	GTACCGCTGG	TTTTGCTACC	AGGACCATCA	GATCCAGCGC	CGCCGTCGCC	GGACTCTACA	3480
3481	GACGTAATCO	CAGAGGGGTGA	CAAGGAACCT	GAGCGGTTC	GCATTCTC	AAAACCAGG	3540
35/1	GGGCAGCAM	GTCTGATACT	TAGTOGANAC	GGAAACCARC	CTARGE	TCOTTCCCC	1400
3601	TECNACICAT	AUTORIACI	ACACTA MCAC	CACATAACCAAG	CENCERCER		3000
3661	CACCARGAGAT	ATTICAGAGA	ACACIATCAG	TCTCTTCTCCTCC	CCACCTGGTG	GACTGTAGGA	1000
3001	CAGLGAGGGAT	CIGAAAGGCA	COGAGATOCC	TTTCCCCCCC	CANTEGRE	AGACAGTTCC	3720
2701		TGTTTTTGAA	ACANTOCCT	TIGCCACCTG	GAATGCGCGC	GLAGGCACTT	3/80
2021	ACAATGATTG	CGGACTTTTG	AGAATGTGAC	CTGGTAGCC	GCAATACTGT	GCAGTTTGCT	1840
3841	CACCTTCATG	TTTTACCTGT	GTAGCACAGA	LIGCIGCATG	CTGTGATGAC	ATACGGTTTG	3900

Fig. 2. The complete 8095 nucleotide sequence of EEPV, starting with the first nucleotide in the Hpa1 recognition sequence. The sequence data for the early (transforming) region is from Ahola et al. (10).

3901	CTTTTGTTTC	TGGGGCTCAC	ATTTGGACTA	CAGCTGATGC	TACTTGTCTT	TCTGCTGTTT	3960
3961	TTCTTTCTCC	TATCOTOCOA	CCAGTTTGGC	TECCETTETE	A A A A C ATCCA		40.20
	incriticied	1410010004	CCAGITIGGC	IdeedIIdId	ANAACAIGCA	GIIGIARAIA	4020
4021	GTGTATATTG	AGGTGTAGAT	ATTCATTTGA	TCCTGTACAT	ACATTTTCTC	TATTTTTTA	4080
4081	AAAAATGCTG	GTTGATAAAC	ATACATAGGT	CACAAACAGG	TCATTCCATA	ACGTACAACA	4140
41 41	M A C M M M M	Accompany of	BCBCBB BCB	CTOTO COTTO	componence.		1200
4141	IACIIIIIAI	AGGCGIGGAG	TETETIMICI	CIGICCCITI	GITTCICICI	TITGAACIGI	4200
4201	TATCCGAGTC	AGCAAGTGCC	ATTTTTGTTG	CCATTTTCTT	CAAGTGCCAA	TCTCCTAACT	4260
4261	GCATCCCCAA	GAGCTGGTGT	AACGTCAGAA	GAACAGTCGA	GAATCTAGCC	TTTCAAACAC	4320
1201	GENTECCEAN	GAGCIGGIGI	AACGICAGAA	GRACAGICGA	GAATCIAGCC	TITGRAAGAC	4520
4321	TTTCAACCCT	CAAACAGACC	ATGTGCATAC	CTCCTGTAAC	AGCAAAGCTG	CCACGACATT	4380
4381	GAAGCCTGCA	TGAAATATTG	TTTACTATTG	TTTTTGCTGC	TATTGCTGGG	GCAGTGGAAT	4440
4 4 4 1	CCNNTCTCCC			THE RECEIPTE			4500
4441	CCARIGIGGG	INITGITACI	AATIGICIGG	HUICCAILG	IACITITATI	IGAGITGCAT	4500
4501	TTTGTGGAAC	ACTTCACATG	ACAGGCTGCA	CTGCAGCGCC	TTCATCTCAT	CCCTAAATTT	4560
4561	AATAAACCTT	CCCCTATTTA	ACCCCTACCA	TGGCGCCTCG	GCGAGTAAAG	CGTGCAAATG	4670
4631	man navaan	anymaaatay	neccerneen	10000000000	Testestes	COLOCAANIG	1020
4621	TCTATGACCT	GTATCGCACA	TGCAAGCAGG	CAGGCACCTG	TCCTCCGGAT	GTGATACCTA	4680
4681	AGGTGGAAGG	GAAGACGATA	GCAGACAAGA	TATTGCAGTA	TGGAAGCATG	GGCGTTTATT	4740
1711	TACCCCCCC	NCCCN THCCN	ACACCERCEC	CARACCARC	ANCICCICC	TAMATCCAC	4900
4/41	INGGCGGCCI	AGGCATIGGA	ACAGGLICIG	GRAAGCCAGG	AACAGGAGGC	TATATICCAC	4000
4801	TCAGAGGTGG	GGGCTCTACC	ACTTCACTAT	CAAGCAAACC	TTTTGCTGGG	GGGATACCCT	4860
4861	TAGAAACCTT	AGAAGGGATA	GEGGCATTCC	GGCCTGGCAT	AGTECANENT	GC NGGGCCTG	4930
4001	INGARACCII	AGAAGGAIA	GGGGCHIICC	GOCCIGGCAL	NOIGGNAGAI	GCNGGGCCIG	4920
4921	CTTTAGAAGG	CATTCTTCCT	GACGCACCAG	CAGTTGTCAC	TCCTGAGGCA	GTGCCAGTGG	4980
4981	ATGAGGGGTT	AAGTGGGCTA	GATATTTCCA	GGGAATTAAG	CCAGGAACAA	ATTCTCAGCT	5040
5041	THERECALCE	TCACCORCCC	CARCARATTO	CACHACHECA	COTANCCCCA	ACACAACATC	E100
2041	IICIÇCACCC	IGAGGGICCG	GAIGAIAIIG	CAGIACIIGA	GGIAAGGCCA	ACAGAACAIG	5100
5101	ATCAGGCACA	TTTGCTGTCT	ACAAGCACAC	ACCCAAATCC	ACTGTTTCAG	GGTCCTGTAC	5160
5161	AGCAGGCACG	AATTATTGCA	GAAACATCTG	GTGCAGAAAA	CGTTTTTGTG	GGTGGAAGTG	5220
5 3 3 1	0017700110		a) a a) a) mma	N CTICN CL CT	COMPACE AND		5 3 4 4
5221	GCATTGGAAG	CAATGCAGGA	GAGGACATTG	AACTGACACT	GTTTGCTGAA	CCAAGGACAA	5280
5281	GTACACCTGA	GGTGCCTATT	AAACGTTCTC	GGGGCATTTT	CAATTGGTTT	AGCAGGCGCT	5340
5341	ACTATACACA	GGTACCTGTC	GAAGACCCAG	ACGAGATTGC	TGCTGCAGGC	TEGTATETET	5400
							5 4 6 0
5401	TTGAGAATCC	TGTATACGAT	TCAAAGGCGT	TCAAACCTGC	GCAGCAGCCG	GACATTACTC	5450
5461	TACAGGATGA	AGCTTCTGTC	ACTGGGCGGG	ACGCTGCAAG	ATTGCTGGCG	GGACCCTCGG	5520
5521	GCAGGATTGG	GTEGAGTCET	ATCACACGAC	CCACTAGTCT	TGGANCACGT	AGTGGCGTGA	5580
5521	GCAGGAIIGG	GIGGROICGI	AICACACOAC	CCACINGICI	TOORACACOL	AGIGGEGIGA	5500
5581	GGGTAGGCCC	TCTTTATCAT	TTACGATCCT	CTTTCAGCAC	TATCCATAGT	CCTGAGACAA	5640
5641	TAGAGCTAAT	ACCCACAGTA	CTTGAGGATG	ATACTGAGGT	GCTTACAGGT	GTTCCTGAGA	5700
5701	CACACACTCC	THE THE A THE A THE	CHCCATTRCC	ACACEATACC	A A CTTC A C A CTT	CONTRACTAC	5760
5701	GAGACACIGG	TTTTGATGAT	GIGGATIIGG	ACAGIAIAGC	ANGIGACAGI	CCATTACIAC	5760
5761	CTGAGCGGCA	TCACCTTGCT	TTTGGAGCAA	GGCGGTCTCA	CATTCCAATT	GTGGCACGAC	5820
5821	CAGGTGTTCA	AACTGGTACA	GTGATTGATA	CACGTCAGAT	GGCTGAAAAC	TCTGTTTACG	5880
5891	TOTOGONCAN	TECNECACNE	CAGTCACAGC	NENCECCAC	TOTOGTANTC	ANTGGCAACA	5940
2001	IGICGGACAA	IGGAGGACAG	GAGICACAGC	AGACOCCCAC	TOTOGIAAIC	ANIOGCAACA	5940
5941	TTAATGTGTC	CATGGAATAT	TTTAGGCATT	ACTATTTGCA	CCCTAGCCTT	CTAGGTCGCA	6000
6001	AACGAAAACG	TCTATTCGGT	TAATGTTTTA	CAGATGGCGT	TCTGGCAGCC	TAGTCAAAGG	6060
6061	CRATACCRCC	CTCCCACACC	TOTOLONANC	GTCCTCTCCC	CTGACCAATA	TATTACCCT	6120
0001	CTATACCIGC	CICCACACC	TGTGACAAAG	GIGCIGIGCI	CIGAGCAAIA	TATTAGGCGT	0120
6121	AAGGACGTAT	TTTATCACGG	GGAGACGGAG	CGCATGCTCA	CTGTAGGGCA	TCCATATTAT	6180
6181	GAAATTAAAC	AATCAGGGTC	TGGGAAAACC	ATTCCAAAGG	TTTCACCTAA	TCAATATCGT	6240
6241						100010000	() 0 0
6241	GTTTTTCGGA	TETTACTGCC	GGATCCCAAC	CAGITIGCIC	TTCCAGATAA	AGCCATGTAT	0300
6301	GACCCAAGTA	AGGAAAGGCT	AGTCTGGGCT	GTTGTGGGGG	TACAGGTGTC	TAGAGGACAA	6360
6361	COTTAGGE	CCTCTCTTTTC	AGGACATTCG	TATCAGAACA	CTCTGATTGA	TOCGGAGAAT	6420
6421	GTTAGTAAAA	AGGTAAATGC	ACAGGGCACA	GATGACAGGA	AGCAGGGAGG	CATGGACGTC	6480
6481	AAGCAACAGC	AAATTCTACT	GCTAGGATGC	ACCCCAGCTA	TTGGTGAGTA	TTGGACAACT	6540
6541	GCTAGGCCCT	CCCTTACAGA	TAGGCCAGAG	ACTOCCTCCT	GCCCCCCTAT	3G33CT3333	6600
0.541	GCIAGGCCCI	GCGIIACAGA	INGOCCHONG	Actoucteet	Jeccecini		
6601	AACAAACCTA	TAGAAGATGG	TGATATGATG	GATATTGGCT	TTGGTGCAGC	TAATTTCAAA	6660
6661	GAGTTAAATG	CCACAAAGTC	AGATCTCCCT	TTAGATATTG	CAAAAGATAT	TTGTTTGTAT	6720
6721	CCTGATTATT	TAAAGATGAC	TGANGANGCG	GCTGGCAACA	GTATGTTTTT	TTTTCCTCGG	6780
0721	CCIGALIATI	TAAAGATGAC	IGANGANGCG	GEIGGERACA	GIRIGIIIII	1111001000	0700
6781	AAAGAACAAG	TTTATGTTCG	CCACATCTGG	TCGCGTGGGG	GTACCGACAA	AGAAATGCCT	6840
6841	CCAGAGGCAT	ACTTTCTGAA	GCCAAAGGGT	GGGGACCAAA	CACAGAAAAT	GCCTAGTATT	6900
())]	ammmmca) c	macchiamac	C) C	TCTLCLCLTC	CACAATTCTT	TATACACCT	6060
090T	CITITIGGAG	TGCCAAGTGG	CAGITIAGIT	TCIACAGAIG	GACAAIIGII	TRATAGACCI	0900
6961	TACTGGCTGT	TTCGTGCACA	GGGCATGAAT	AATGGCATAT	GCTGGCTTAA	TCAACTGTTT	7020
7021	GTTACTGTTG	GTGACAATAC	AAGAGGAACC	ACATTAACCA	TTACGGTGCC	TACATCCGGG	7080
7001		GTG110100	a) ca) ca))))		TTCA A ACCCA	TOTTO A ACAA	7140
1081	TUCCCACTCA	CIGAATATGA	CACGAGCAAA	TTTAATGTTT	LICAMAGGCA	AAGAAGIIGIIGI	/140
7141	TATAAGCTTG	CCTTTGTATT	TCAGCTTTGC	TCTGTCACTC	TAAGTCCAGA	AACCGTCTCA	7200
7201	CATCTCCAGG	GGTTAATGCC	TTCGATCCTG	GAACACTGGG	ATATTAACAT	GCAGCCTCCT	7260
7261	Langener	mammaladi		mamormo a am	CACCECCEAC	TAAMCTCC	7220
/261	ACGTCCTCGA	TTCTTGAGGA	TACTTACAGA	TATUTTGAAT	CACCIGCIAC	TAAATGTGCA	1520
7321	GATAATGTAA	CCCCTATGGG	ACCTGAAGAT	CCCTATGCTG	GTTTAAAGTT	TTGGGAGGTG	7380
7381	AATCTAAAAG	AAAGGTTGTC	TCTTGATCTT	GATCAATTTC	CTCTGGGACG	GCGTTTTCTT	7440
7441			CACHACHACI	NCNCCCTTC	CACCTOTOCCC	TANCOTONCO	7500
1441	GCGCAGCAAG	GATTAGGGTG	CAGIACIAGA	ANGAGGGTTG	CACCIDICCC	TANGUICACU	7500
7501	GAAAAAAGGA	TTGTTAGGAA	AAGAAGAAAG	GGGAATTAAG	GGCATGAAAT	СТТАААААС Т	/560
7561	GCTGTGTTTG	CTAAATAAAT	GCAATTTTTC	TTATGTGTCA	AGAGTTTATG	TGTCATGTCC	7620
7671	TOCTOTICAC	TCCAACTTCC	ACCACACCCC	GTGCTCGCAT	CTGATTAGAC	GCAGTGTCAG	7680
.061	TOCIOLICHO		Lechence	Lavalavas	acanacaca	CRANACAN	7740
/681	CAGCTTTATG	AAAAGCAGAC	ACTTGGCTAG	ACACACAGGC	GULTGGCGCC	CTCATCGAAT	7740
7741	TGGCGCACCG	CTGGCGTTCG	GGATCAAATT	TCCTCTACCG	CTGCCGGTTG	TTAAAGCGCC	7800
7801	CTTCCTGTAC	CGTTCCCGGT	AGCGCCTCTT	CTCTCCCTTC	AGCGCTACCG	CTCCCGGTGT	7860

Fig. 2. (continued)

7861GCATGGTAAG TAGGCGGTCA TTGTCGAAGA GAACTGGTAA GCAAGTCCGA ACAAGAAAAA79207921TGCTTGGCGC AACGCTGACG GTAGTCGCTA CCGTCCGCGG TGCTCGCTTT TCTAAGAAAT79807981GCTCAAACGG TCTTGCTA GCTCTCCTCT TATGGCTGT GCTGAAATA CTCACGCCGC80408041TTTGCCTGTA CCGTGAACGG TTTTGAATCC TACTTTTTCT CAGGGAATGA TTGTT 8095

Fig. 2. (continued)

(LCR), 263 and 371 bp long respectively (LCR1 and LCR2). The L1 and L2 ORFs in EEPV have their counterparts in all papillomaviruses studied so far, while the L3 ORF has only been identified in the genomes of DPV and the Cottontail rabbit papillomavirus (CRPV) (14,19). The L3 ORF is 321 bp long in both EEPV and DPV, and parts of these two ORFs show a high degree of homology (Fig. 4), whereas no significant homology was found when the L3 ORF of EEPV was compared to that of CRPV. The L1 and L2 ORFs have been shown to code for viral structural proteins (20), but no functional activity has yet been assigned to the L3 ORF.

When compared with other papillomavirus genomes, EEPV shows a higher degree of homology to DPV than to any other papillomaviruses. The ORFs L1 (74%), E1 (70%), and E5 (69%) are best conserved (Table 2a). The extent of homology between the L1 ORF of EEPV and either DPV, BPV-1, BPV-2, HPV-6, or HPV-16 was determined and is shown in Table 2b. The homologies of other ORFs between EEPV, DPV, and BPV-1 are listed in Table 2a. A noteworthy feature of the L1 ORFs in the papillomaviruses sequenced to date is the presence of a conserved postulated splice acceptor site preceding the putative initiator ATG in this ORF

Fig. 3. Genomic organization of EEPV, including all ATG initiation codons (vertical bars above the lines) and termination codons (vertical bars beneath the lines). The ORFs in the genome are boxed. Potential polyadenylatons signals are indicated with A. The sequence data for the early (transforming) region is from Ahola et al. (10).

ORF	Positions	First ATG	AA* From First ATG	AA*
E1	753-2615	783	611	621
E2	2527-3798	2554	415	424
E3	3231-3497		—	89
E4	3143-3484		_	114
E5	3865-4014	3886	43	50
E6	64- 522	118	135	153
E 7	389- 787	482	102	133
ORFX	4032-4379	4341	13	116
LI	5995-7536	6034	501	514
L2	4566-6020	4590	477	485
L3	5257-5577	5395	61	107
LCR1	7556-7819	7688	88	44
LCR2	7692-8063	7863	124	67

Table 1. Location and coding capacity of ORFs in the genome of EEPV

*AA = amino acids

DPV	5376	CAG Gln	AAA Lys	CCT Pro	CAG Gln	GGT Gly	 CTG Leu	 AGA Arg	 ACA Thr	 TAT Tyr	 TTG Leu	TGG Trp	GTG Val	GTG Val	 GGG G1y	GAG Glu	TGG Trp	GTA Val	 GСЛ Л1а	 CCA Pro	 CTG Leu	GGG Gly	AGG Arg	AGA Arg	 TTG L+u	 AAC Asn
eepv Dpv	5257 5451	 тса Sөг	His CAC CAC His	Cys TGT TGT Cys	Leu TTG TTG Leu	Leu CTG GTC Vel	Asn AAC AGC Ser	din Câă Căă Gin	GIY GGA AGA AIG	GIN CAA CTA Lou	V=1 GTA GCA Al=	His CAC CTC Leu	Leu CTG CTG Leu	Arg AGG AGG Afg	Cys TGC GCC Als	Leu CTA CTA Leu	Leu TTA TTA Leu	Asn AAC ACC Thr	Val GTT GGG GIY	Leu CTC • GTC Val	Gly GGG GGG Gly	Ala GCA GCA Ala	Phe TTT TTT Phe	Ser TCA TCA Ser	II. ATT ACT Thr	GIY GGT GGT GIY
EEPV DPV	5329 5526	LOU TTA TCA Sor	Ala GCA ACA Thr	Gly GGC GAA Glu	Ala GCT CAT His	Thr ACT ACT Thr	11• ATA ACA <u>Thr</u>	HÍS CAC CAC HÍS	λrg Agg Agg Agg Agg	Түт ТАС ТАС Тут	Leu CTG CTG Leu	Ser TCG TGG TGG Trp	Lys AAG AAG Lys	Thr ACC ACC Thr	Gln CAG CAG Gln	Thr ACG ACG Thr	λrg λGλ λGλ λgλ λrg	Leu TTG TTG Leu	Leu CTG CTG Leu	Leu CTG CTG Leu	Gln CAG CAG Gln	Ala GCT GCT Ala	Arg CGT CGT Arg	Met Atg Atg Met	Ser TCT TCT Ser	Leu TTG TTG Leu
eepv Dpv	5404 5601	Arg AGA AGA Arg	Ils ATC ATG Met	Leu CTG ** CAT His	Туг ТАТ ТАТ Туг	Thr ACG ACG Thr	Ile ATT ATT Ile	GIN CAA CAA GIN	Arg Agg Agg Agg Arg	Arg CGT CCT Pro	Ser TCA • ACA <u>Thr</u>	Asn AAC AAC Asn	Leu CTG * ATG Met	<u>Arq</u> CGC • AGC <u>Ser</u>	Set AGC AGC Set	Set Agc Agc Set	Arg CGG CGT Arg	Thr ACA GGT GLY	L.u TTA	Leu CTC	Түг ТАС ТАТ Туг	Arg AGG • • CGC Arg	Het ATG GAC ASP	Lys AAG CAC HIS	Leu CTT AGG Arg	Leu CTG ATG Met
eepv Dpv	5479 5670	Set TCA CAC His	Lou CTG CTG Lou	Gly GGC AGT Ser	Gly GGG TTG Leu	Thr ACG ACT Thr	Leu CTG TCC 5er	GIN CAA AAG Lys	Asp GAT ATG Het	Cys TGC CAG Gln	Trp TGG	Arg CGG •••	λ5 p GλC •••	PT0 CCT +++	AT9 CGG 	Ala GCA 	G1y GGA 	Leu TTG ***	Gly GGT	G1y GGA 	Val GTC	Val GTA	Ser TCA ***	HİS CAC •••	λsp GAC •••	P10 CCA
EEPV	5554	Leu CTA	Val GTC	Leu TTG	Glu GAA	His CAC	Val GTA	Val GTG	Ale GCG																	

Fig. 4. A comparison between the L3 ORF in DPV and EEPV. Differences at nucleotide sequence level are indicated by asterisks, nonhomologous amino acids are underlined.

	D	PV	BPV-1			
ORF	NT (%)	AA (%)	NT (%)	AA (%)		
E1	70	71	57	54		
E2	65	56	55	44		
E3		_	53	28		
E4	67	58	52	37		
E5	69	72	60	53		
E6	58	54	46	43		
E7	54	46	46	40		
L1	74	73	66	72		
L2	60	64	43	37		
L3	38	28	_			

Table 2a. Degree of homology at the nucleotide (NT) and amino acid (AA) sequence levels between different ORFs in EEPV, DPV and BPV-1, measured from the first ATG where applicable.

The sequence data was obtained from references 10-12, 14.

Table 2b. The degree of homology between L1 ORFs in EEPV, DPV, BPV-1, BPV-2, HPV-6 and HPV-16, measured from the first ATG in each ORF.

LI	NT (%)	AA (%)
DPV	74	73
BPV-1	66	72
BPV-2	66	71
HPV-6	52	46
HPV-16	56	46

The sequence data was obtained from reference 11-16.

(Table 3). This splice acceptor site has indeed been shown to be used in the case of BPV-1 by S1-analysis (22).

The G + C content of the EEPV genome is 47.7%. However, the bases are not evenly distributed in the genome. For example, the E3 and E4 ORFs (bp 3143-3497) have a G + C content of 62%. In the middle of the genome, including the E5 ORF, there is a T-rich area with a T-content of 35% (bp 3865-4566). A similar T-rich area has been observed in DPV DNA (14).

In the genome of BPV-1, promoter regions have been identified near positions 89 (P_{89}), 2443 (P_{2443}), and 3080 (P_{3080}) (for references see 21). Recently, three additional promoter regions were identified in BPV-1 at positions 7185 (P_{7185}), 7940 (P_{7949}), and within the region 7214–7256, designated the major late promoter (P_L) (21,22). Potential promoter regions were identified in the EEPV genome at positions 87, corresponding to P_{89} in BPV-1 (Fig. 5) and at 2392 corresponding to P_{2443} in BPV-1. A ten base pair repeated sequence (bp 7591–7600 and bp 7606–7615) was identified in EEPV. This has 8 of 10 nucleotides (nt) in common with the

EEPV	6016	TCGGTTAATGTTTTACAG	ATG*
DPV	6237	T T A T C T G A T G T T T T G C A G	ATG
BPV-1	5591	GCCTAATTTTTTGCAG	ATG
BPV-2	1399**	GCCTAATTTTTTTGCAG	ATG
CRPV	5810	CTATCTTTTTACTTGCAG	ATG
HPV-1a	5413	ATGTATAATGTTTTTCAG	ATG
HPV-5	5899	TTGTGATTTGCATTCGAG	ATG
HPV-6b	5771	TTCCCTTATTTTTTCAG	ATG
HPV-8	5833	TGTGATTTTGCATTACAG	ATG
HPV-11	5753	ТТСССТТАТТТТТАСАС	ATG
HPV-16	5619	ТАССАТАТТТТТТТСАС	ATG
HPV-18	5412	CTTTAACCTCCTCTTGGG	ATG
HPV-33	5576	ΤΤϹϹΑΤΑΤΤΤΤΤΤΤΑϹΑG	ATG

Table 3. Comparison between the nucleotide sequences at the beginning of L1 ORFs in different papillomaviruses (11-16, 19, 27-32).

The vertical line preceding the first ATG in the ORFs, indicates potential splice junctions. *This is the second ATG in the L1 ORF of the HPV-1a, HPV-8 and HPV-16 genomes. **Base position 1 is the A of the first ATG in the L2 ORF of BPV-2.

		CEAAT TATA	
BPV-1	7846	ACCTCAAAAAGGCGGGAGCCAATCAAAATGCAGCATTATATTTTAAG	зстс
EEPV	8000	AGCTCTGCTCCTATTGGCTGTGCTGAAATTACTCACGCCGCTTTGCC	стбт
		P.76	740
BPV-1	7896	ACCGAAACCGGTAAGTAAGACTATGTATTTTTTCCCAGTGAATAAT	TGT
EEPV	8050	ACCGTGAACGGTTTTGAATCCTACTTTTTCTCAGGGAATGAT	ITGT
		CCAAT	
BPV-1	7946	TGTTAACAATAATCACCACCATCACCGTTTTTTCAAGCGGGAAAAAA ********* ***	TAGC • *
EEPV	8095	TGTTAACAATCACCAGATCTTGCCCCGTTTTTGTGAGCGGG.AAAGC1 CCAAT	IGGT
BPV-1	50	CAGCTAACTATAAAAAGCTGCTGACAGACCCCGGTTTTCACATGGAC	стб
		* **** *** ** ** ** * * * ******	¥
EEPV	49	TACAGGTTTATATAAAAAGGCCCACCG.CACAAGTTTTCACAGACG0 TATA	;TTC

Fig. 5. A sequence comparison between the promoter regions P_{7940} and P_{89} in BPV-1 and the corresponding regions of EEPV.

flanking area of P_{7185} (bp 7180-7189) in the BPV-1 genome. Moreover, a similar repeated sequence is present in DPV (bp 7811-7826 and 7836-7851). Upstream of the P_L region in BPV-1 there is a sequence homologous to the simian virus 40 (SV40) late promoter element GGTACCTAACC that has been shown to be important for efficient utilization of the SV40 major late transcriptional start site (21, 23, 24). It is interesting that this sequence homology is present in EEPV at approximately the corresponding location as in BPV-1, whereas no such sequence is found in this part of the genome in DPV. No area similar to the BPV-1 promoter region P_{3080} has been identified in the genome of EEPV.

Two potential polyadenylation (pA) signals (AATAAA) are present in the EEPV genome (Fig. 3). One is located immediately upstream of the L2 ORF (bp 4561) (putative early pA signal) and the other is located downstream of the L1 ORF (bp 7575) (putative late pA signal). Potential pA signals have been found at the corresponding locations in the genomes of DPV and BPV-1 (11, 14).

The repeated motif ACCGN₄CGGT that has recently been shown to be part of two E2-binding regions in BPV-1 (25, 26), is present in five copies in the LCR of EEPV (Table 4).

Taxonomically, elk and deer belong to the Cervidae family, and they show a similar host response to papillomavirus infections, i.e., mainly fibromas develop. Besides the biological similarities between EEPV and DPV, it is interesting that the molecular analysis indicates a higher degree of evolutionary relationship between them than with the bovine fibropapillomaviruses BPV-1 and BPV-2. On the basis of the sequence homolgy and the characteristic host response to infection, EEPV and DPV could be classed as a subgroup of fibromaviruses to distinguish them from the fibropapillomaviruses.

Acknowledgments

We are grateful to Dr. S. Burnett for valuable comments during the preparation of the manuscript. This study was supported by grants from the Swedish Council for Forestry and Agricultural Research, the Swedish Cancer Society and the Swedish National Board for Technical Development.

Position	ACCGNNNNCGGT	
7777	ACCGCTGCCGGT	
7809	ACCGTTCCCGGT	
7847	ACCGCTCCCGGT	
7950	ACCGTCCGCGGT	
8050	ACCGTGAACGGT	

Table 4. Putative E2 binding sites in EEPV.

References

- 1. Pfister H. Biology and biochemistry of papillomaviruses, Rev Physiol Biochem Pharmacol, 99:111-181, 1984.
- Stenlund A., Moreno-Lopez J., Ahola H., & Pettersson U. European elk papillomavirus; characterization of the genome, induction of tumors in animals, and transformation in vitro, J Virol 48:370-376, 1983.
- Groff D.E., Sundberg J.P., & Lancaster W.D. Extrachromosomal deer fibromavirus DNA in deer fibromas and virus-transformed mouse cells, Virology 131:546-550, 1983.
- 4. Moreno-Lopez J., Ahola H., Eriksson A., Bergman P., & Pettersson U. Reindeer papillomavirus transforming properties correlate with a highly conserved E5 region, J Virol 61:3394-3400, 1987.
- Olson C., Gordon D.E., Robl M.G., & Lee K.P. Oncogenicity of bovine papillomavirus, Arch Environ Health 19:827-837, 1969.
- Koller L.D., & Olson C. Attempted transmission of warts from man, cattle, and horses and of deer fibroma, to selected hosts. J Invest Dermatol 58:366–368, 1972.
- Dvoretzky I., Shober R., Chattopadhyay S.K., & Lowy D.R. A quantitative in vitro focus assay for bovine papilloma virus. Virology 103:369-375, 1980.
- Friedman J.C., Levy J.P., Lasneret J., Thomas M., Boiron M., & Bernard J. Induction de fibromes sous-cutanes chez le hamster dore par inoculation dextraits acellularies de papillomes bovins. C R Acad Sci, Paris, 257:2328-2331, 1963.
- 9. Moreno-Lopez J., Mörner T., Pettersson U. Papillomavirus DNA associated with pulmonary fibromatosis in European elk, J Virol 57:1173-1176, 1986.
- Ahola H., Bergman P., Ström A.C., Moreno-Lopez J., & Pettersson U. Organization and expression of the transforming region from the European elk papillomavirus (EEPV), Gene 50:195-205, 1986.
- 11. Chen E.Y., Howley P.M., Levinson A.D. & Seeburg P.H. The primary structure and genetic organization of the bovine papillomavirus type 1 genome, Nature 299:529-534, 1982.
- Ahola H., Stenlund A., Moreno-Lopez J., & Pettersson U. Sequences of bovine papillomavirus type 1 DNA—functional and evolutionary implications, Nucl Acid Res 11:2639-2650, 1983.
- Potter H.L.Jr., & Meinke W.J. Nucleotide sequence of bovine papillomavirus type 2 late region, J Gen Virol 66:187-193, 1985.
- Groff D.E., & Lancaster W.D. Molecular cloning and nucleotide sequence of deer papillomavirus, J Virol 56:85-91, 1985.
- Schwartz A., Durst M., Demankowski C., Lattermann O., Zech R., Wolfsperger E., Suhai S., & zur Hausen H. DNA sequence and genome organization of genital human papillomavirus type 6b, EMBO J 2:2341-2348, 1983.
- Seedorf K., Krämmer G., Durst M., Suhai S., & Röwekamp W.G. Human papillomavirus type 16 DNA sequence, Virology 145:181–185, 1985.
- Maxam A., & Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavage, Methods enzymol 65:499-560, 1980.
- Devereux J., Haeberli P., & Smithies O. A comprehensive set of sequence analysis programs for the VAX, Nucl Acids Res 12:387-395, 1984.
- Giri I., Danos O., Yaniv M. Genomic structure of the cottontail rabbit (Shope) papillomavirus. Proc Natl. Acad Sci USA 82:1580-1584, 1985.
- Pilacinski W.P., Glassman D.L., Krzyzek A., Sadowski P.L., & Robbins A.K. Cloning and expression in Escherichia Coli of the bovine papillomavirus L1 and L2 open reading frames. Biotechnology 1:356–360, 1984.
- 21. Baker C.C., & Howley P.M. Differential promoter utilization by the bovine papillomavirus in transformed cells and productively infected wart tissues, EMBO J 6:1027-1035, 1987.
- 22. Stenlund A., Bream G.L., & Botchan M.R. A promoter with an internal regulatory domain is part of the origin of replication in BPV-1. Science 236:1666–1671, 1987.

- Brady J., Radonovich M., Vodkin M., Natarajan V., Thoren M., Das G., Janik J., & Salzman P. Sitespecific base substitution and deletion mutations that enhance or suppress transcription of the SV40 major late RNA. Cell 31:625-633, 1982.
- 24. Brady J., Radonovich M., Thoren M., Das G., & Salzman N.P. Simian virus 40 major late promoter: an upstream DNA sequence required for efficient in vitro transcription. Mol Cell Biol 4:133-141, 1984.
- Spalholz B., Lambert P.F., Yee C.L., & Howley P.M. Bovine papillomavirus transcriptional regulation: localization of the E2-responsive elements of the long control region, J Virol 61:2128– 2137, 1987.
- Moskaluk C., & Bastia D. The E2 "gene" of bovine papillomavirus encodes an enhancer-binding protein, Proc Natl Acad Sci USA 84:1215-1218, 1987.
- 27. Danos O., Kalibera M., & Yaniv M. Human papillomavirus la complete DNA sequence: a novel type of genome organization among papovaviridae, EMBO J 1:231-236, 1982.
- Zachow K.R., Colrow R.S., & Faras A.J. Nucleotide sequence and genome organization of human papillomavirus type 5, Virology 158:251-254, 1987.
- 29. Fuchs P.G., filter T., Weninger J., & Pfister H. Epidermodysplasia vertuciformis-associated human papilicanavirus 8: genomic sequence and comparative analysis, J Virol 58:626-634, 1986.
- Dartmann K., Schwartz E., Gissman L., & zur Hausen H. The nucleotide sequence and genome organization of human papillomavirus type 11, Virology 151:124-130, 1986.
- Cole, S.T. & Danos O. Nucleotide sequence and comparative analysis of the human papillomavirus type 18 genome, J Mol Biol 193:599-608, 1986.
- 32. Cole S.T., & Streeck R.E. Genome organization and nucleotide sequnce of human papillomavirus type 33, which is associated with cervical cancer, J Virol 58:991-995, 1986.