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It has been shown recently that dynamical correlation effects can be adequately 
described by using an electron-gas expression for correlation between electrons 
of different spins. In this paper the method is applied to the calculation of 
excitation energies for the first- and second-row atoms and to the determination 
of ground-state properties for small polyatomic molecules, such as CH2, CH~, 
CHg, CH~-. Additionally, deficiencies of the method for cases with few electrons 
and strongly varying electron density are investigated and an empirical correc- 
tion to the electron-gas approximation is proposed. This correction is based 
on atomic data and gives an overall improvement for test molecules with two to 
four electrons. 

Key words: Dynamical correlation- Density functional. 

1. Introduction 

Since the early days of quantum mechanics attempts have been made to establish 
approximate relationships between electron densities and atomic or molecular 
potentials and energies (e.g. [1 ]). The theoretical justification for such attempts was 
provided in 1964 by the theorem of Hohenberg, Kohn and Sham (HKS) [2], which 
states that the (exact) ground-state energy E of a N-electron system is a (universal) 
functional of the charge density p. Although some points in the proof of the 
Hohenberg-Kohn theorem are still unsettled (the so-called N- and V-represent- 
ability problems [3]) and the theorem gives no hint whatsoever as to the actual form 
of the density functional, the interest in the construction of such a functional has 
been greatly increased, and a large number of papers appeared since then in this 
field. 

In most of these papers the exchange-correlation part of the functional is approxi- 
mated using the corresponding expression for the homogeneous electron liquid 
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[4, 5]. This is a good approximation in the case of light atoms where exchange and 
correlation errors practically balance each other; for the heavier atoms, however, 
the exchange error becomes dominant (in Ne it is already 1.1 a.u.) and recent 
papers are mainly devoted to finding proper corrections to the electron-gas 
exchange [6]. 

In contrast to methods derived from solid-state physics such as Xa SW, DVM or 
LMTO, where a local exchange approximation is highly advantageous if not 
absolutely necessary, the LCAO method which is commonly used in quantum 
chemistry, requires no such approximation: the two-electron integrals have to be 
calculated anyhow, and the construction of the non-local HF exchange does not 
introduce special computational difficulties. This seems to be promising for the 
density-functional approach since only a numerically very small part - the correla- 
tion part - of the functional has to be approximated. 

The first try for the correlation functional is naturally the local-density (LD) 
approximation: 

= f pet(p) dr (1 Eo ) 

where the correlation energy per particle is locally replaced by that of the homo- 
geneous electron liquid. Eq. (1) has been tested by various authors [7 to I0]. 
The results can be summarized as follows: (a) Eq. (1) is a very poor approximation 
to the absolute values of correlation energies for atoms and molecules: they are 
over-estimated by roughly a factor of 2; (b) Correlation energy differences between 
closed-shell systems are often described quite well when using Eq. (1); (c) Eq. (1) 
yields unsatisfactory results for correlation energy differences between closed- and 
open-shell systems. The following explanation can be given for these points: 
According to Gordon and Kim [9] the systematic overestimation of correlation 
energies is due to contributions which they termed "correlation within an 
electron" and which arise from the treatment of the electron as continuous electron 
density and the subsequent calculation of the correlation between different parts of 
this density (leading, for instance, to a non-zero correlation energy for the H atom). 
Correlation energy differences are better described by Eq. (1) than absolute values, 
because here t he"  self-correlation terms" are expected to largely cancel each other. 
Energy differences between closed- and open-shell systems may nevertheless exhibit 
large errors, because the function Co(p) in (l) stems from the "closed-shell" electron 
gas and does not provide a proper treatment of open-shell systems. 

Attempts to correct the above mentioned defects of the LD approximation do in 
fact exist: Tong and Schneider [8, 1 l] suggested a global correction to (1) for each 
atom or molecule by estimating the change in correlation energy when the infinite 
homogeneous electron liquid is replaced by a finite number of electrons in a (finite) 
box; the difficulty here is that the finite system can only be treated by second-order 
perturbation theory and that the choice of the size of the box and the (homo- 
geneous) density in the box are within certain limits arbitrary. 

Lie and Clementi [12] and (similarly) McKelvey and Streitwieser [13] corrected 
defect (a) mentioned after Eq. (1) by introducing a modified function ~o in (1) which 
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was fitted to atomic correlation energies; furthermore they used a modified density 
p~ in (1) for open-shell systems such as to approximately get around defect (c). 
Absolute values of correlation energies are greatly improved, of course, by this 
procedure, but there is no guarantee that the same is true for small correlation 
energy differences such as correlation contributions to binding energies etc. Indeed, 
taking into account point (b), this is generally not even to be expected: The fitting 
procedure essentially amounts to setting ~o m eo/2, and this means that the correla- 
tion energy differences which were satisfactorily reproduced by Eq. (1) are now too 
small by roughly a factor 2. This has in fact been observed by Lie and Clementi; 
in order to get reasonable results they therefore coupled their modified LD approxi- 
mation with limited CI. 

In our approach described in [14] (hereafter referred to as I) we firstly avoided 
defect (c) by using the local spin density (LSD) approximation instead of the LD 
approximation: 

Eo = f (p+ + p_)~o(p+, p_) dr. (2) 

The function ec, depending now on the partial densities p+ and p_ of + and 
- spin, was taken from data for the spin-polarized electron liquid in [4]. Closed- 
and open-shell systems could now be treated on equal footing without introducing 
any adjustable parameters. We then corrected defect (a) by arguing that Eq. (2) 
should only be used in atoms and molecules for correlation between electrons of 
different spins which amounts to subtracting the LSD correlation energy of the 
pure spin systems from Eq. (2), thus explicitly excluding "self-correlation" terms: 

eo = f ( , +  + p_).~o(p+, p_) dr 

f o) dr - f dr (3) 

It was shown in I that Eq. (3) yields generally absolute values of atomic correlation 
energies with errors of only ~ 10~o. As pointed out by the referee, configurations 
which correspond to excitations from MO's of the same spin, contribute, in CI 
calculations, up to 20~ to correlation energies. Although this is not directly con- 
nected with Eq. (3), one may conclude that Eq. (3) overestimates correlation 
between electrons of different spins by a few per cent. In Sect. 4 we discuss the 
reasons for this overestimation which is shown to be mainly restricted to the core 
region. Correlation contributions to atomic ionization energies and binding 
energies of monohydrides, which were also given in I, are reproduced with an 
average error of 0.5 eV and 0.3 eV respectively. 

In a recent paper [15] Perdew picked up again the idea of subtracting "self- 
correlation" terms. He did not subtract, however, the correlation energies of the 
pure spin systems, but LSD correlation energies which can be attributed to indi- 
vidual spin orbitals. His results for atomic correlation energies are much the same 
as ours in I. However, a disadvantage of this method should become apparent in 
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molecular applications: Perdew's expression is not invariant with respect to 
transformations within the occupied HF subspace. 

In the following we briefly discuss Eq. (3), adding some further arguments (not yet 
discussed in I) to support the validity of the procedure leading to this equation. We 
then give further applications (not yet included in I) of Eq. (3), in particular to 
atomic excitation energies, binding- and ionization energies of some molecular 
systems (CH2, CH4, CH~, CH~-). In the last section we proceed to cases with few 
electrons and strongly varying electron density, where Eq. (3) is shown to yield 
unsatisfactory results; we present a simple empirical correction (containing only 
atomic data) to Eq. (3), which leads to an overall improvement when applied to 
K-shell atoms, ions and molecules. 

2. Modified LSD Approximation 

As shown by Hohenberg and Kohn [2, 4], the lowest (non-relativistic) energy E 
for each symmetry type of a N-electron system is a (universal) functional of the 
exact (partial) charge densities p%• p~ of electrons with spin + and spin - :  
E = E[p% x, pC_X]. The proof by Hohenberg and Kohn can be easily modified to 
demonstrate that an analogous statement holds for the Hartree-Fock (HF) energy 
as a functional of the HF  charge densities pE+~, pa_F: Ear  = Ear[p~+F, pnF]. The 
correlation energy can, therefore, be expressed as: 

Eo = E[p% x, p~] - Enr[pa+ r, p ~_F] 

<< E[pH+r, p~_F] _ EaF[p~+r, per]. (4) 

Here it is implied that a variation principle is valid for E[p +, p_ ] (for the proof cf. 
[2]). In the cases where the HF  determinant is the (single) leading term in a CI 
expansion for the wave function, one can safely assume that p~ ~ pHr, and the 
second line in (4) should be a reasonable approximation to Eo. 

To proceed further, we employ an (exact) relation for the exchange-correlation 
hole, given by Langreth and Perdew [16], and obtain: 

1 ~ a~o~r(r) d~-' I-V---- ~j(r, ~') (s) E[pa+v, pa_F] _ Ear[p~+r, p:~_r] = 2 _ r'l 
i ,  "= 

with 

~ij(r, r ' )  = ppF(r') dh(&j(r,  r ' ,  )~) - g~V(r, r ' ,  ~/)), (5a) 

g~j and g~F are pair distribution functions, the exact one and that in HF approxima- 
tion; h is a coupling constant in the two-electron interaction. 

Equation (5) can be reduced to the usual LSD approximation (2) for the correlation 
energy with two approximations in cr ~j(r, r ') : (a) The density p~r(r ')  is replaced by 
prfF(r), and (b) the distribution functions g,j(r, r ' ,  h) and g~V(r, r ' ,  h) are replaced 
by the corresponding expressions for the homogeneous spin-polarized electron 
liquid with (constant) densities p,Hr(r), p~r(r). 
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I f  now one would like to improve  Eq. (2), one should check, in the first place, the 
quality of  approximat ions  (a) and (b). 

To  begin with, for  i ~ j (different spins) the integrand in (5a) exhibits a m a x i m u m  
in r '  for  r '  = r (the functions g~j and g~r are schematically depicted in Fig. 1 a). I f  
p~F(v') is to be replaced by a density which is constant  with respect to v', the choice 
p~r(r ' )  ~ p~r(r)  (approximat ion (a)) seems to be a reasonable one. Fur thermore ,  
it is difficult to see how approximat ion  (b) could be improved:  at the H F  level 

= gij,el.liquid is exactly satisfied, o f  course, and beyond H F  there is no informa-  
tion at  hand to establish a gi~. which would be superior to giy,eLliquid- 

The situation is different for  i = j (equal spins). Here  the integrand in (5a) vanishes 
quadratically for  r '  = r (cf. Fig. lb). Therefore,  it would be much  better to use an 
average value tifF(r) over the Fermi  hole instead of  putt ing p~r(r ' )  = p~F(p). 
Fur thermore ,  as already stressed in I, the H F  pair  distribution function is quite 
different in a toms and molecules f rom that  of  the homogeneous  electron liquid. 

In order to assess the contr ibution to Eo of  the terms with i = j in (5) for these 
systems, we proceeded as follows: We calculated average curvatures ]~(r) for the 
Fermi  hole at r '  = r, f rom the H F  spin-orbitals ~0,~ of  the a tom or molecule under  
considerat ion:  

kr 2 ~,  , , = - -  cP~B*(~,~q)e,- q~,~q~B,). (6) 

We then chose (g~i Hr - g .  )oa.a~q~d for each r in such a way that  the curvature of  the 
H F  Fermi  hole of  the electron gas was equal to/~(r) .  ~r F r o m  g*~,oLa~qu~d we could esti- 
mate  the radius rF.~ of  the Fermi  hole to 

r~ ,~  = ~/~-~J~ 
4 ~< ~ ~< 6. (7) 

Fig. 1. Dependence of the pair distribution 
functions g,j and g~F on It' - r I (schematically), 
(a) for i ~ j, (b) for i = j 

(a) 

(b) 

____/Z: 
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(For v ~ = 3.4 ~ 80~o and for v ~ = 6.0 ~ 90~ of the exchange charge are contained 
in the sphere with radius rF.,). We finally averaged p~F(r') over the sphere around r 
with radius rF,,. In a series of test calculations with v ~ = 5 we could reproduce 
atomic correlation energies up to Ne with an accuracy of 2 to 3~.  We furthermore 
found that the terms with i = j contributed only ,-~ 10~ to Eo. This means that 
correlation between electrons of the same spin is already adequately described by 
the HF exchange for atoms, while this is only partially true for the electron liquid 
(where ,-~ 50~ of E~ arises from the terms i = j) .  Considering this fact, we felt it 
might be justified to neglect in our first applications the i = j terms, thus avoiding 
the considerable computational effort for the calculation of/~(r).  This leads to the 
simple expression (3) for Eo, with (from [4]; in a.u.) 

eo(p+, p_)  = ep(r.) + (e;(r .)  - ep(r . ) ) f ( r  

e~(r.) = -c~ (1 + x p ) l n  1 + 1 + ~ x ~ - x p -  

f ( O  = ( (1  + C) ~'~ + (1 - ~ ) ~  - 2 ) / ( 2  ~ - 2 )  

xp = rd l l .4 ,  

(i = P, F) (8) 

x;  = rJ15.9, ce = 0.0333, ce = 0.0203 

r~ = (4~rp/3) -113, p = p+ + p_, ~ = P+ -- p_. 
p + q - p -  

One final problem has to be considered in connection with Eq. (3) and (4), and that 
is the question if Ec in (3) represents the energy difference E - E RaF or E - E uEF. 
This is not important for the determination of atomic correlation energies, where 
E ~E~ - E v~F ~ 0.1 eV is much smaller than Eo, but it can be essential when 
discussing e.g. small correlation contributions to binding energies. The answer 
cannot be unequivocal, because for the homogeneous spin-polarized electron liquid 
which provides the data for eo(p +, p_) in (8), RHF and U H F  yield the same results. 
We may argue however, that because of the Brillouin theorem p~HF shows better 
agreement with p%x than p~HF, in particular for the spin density p + - p_, so that the 
approximation E[p% X, pk X] ~ E[p~+ aF, p~_Hr] in (4) is better than it would be for RHF.  
In addition, singly substituted determinants do not directly couple with the HF 
determinant in the electron-gas case, and the same is true for UHF (but not for 
RHF) in atoms and molecules. We consequently use U H F  calculations as starting- 
point for the evaluation of Eo in (3). 

The procedure for the numerical integration in the r.h.s, of Eq. (3) has already been 
described in I and need not be repeated here. But it should be clear that the com- 
putational effort is much smaller than that of a HF calculation, because the integra- 
tion has to be done only once (at the end of the HF iterations) and it is to be 
performed over a function of easily accessible quantities (p+, p_). A further ad- 
vantage is, that eo in (8) is a relatively smooth and slowly varying function of rs, so 
that results obtained with (3) show only slight dependency on the size of  the basis 
set used in the preceding HF calculation. 
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3. Applications 

Turning  now to appl icat ions ,  we give in Table 1 excitat ion energies for first- and  
second-row atoms.  The  values are  calculated f rom separate  S C F  calculat ions for  
g round  and excited states. The  excited states are no t  in every case the lowest  ones : 
We  have chosen such states which can be represented by a single determinant .  The 
A S C F  values exhibit  an average error  o f  0.82 eV compared  to experiment .  This 
error  can be reduced to 0.15 eV th rough  the use o f  our  corre la t ion expression (3). 
The errors  are general ly smaller  in the second- than  in the f irs t-row; this is, in our  
opinion,  due to the larger  size of  the valence shell: the densi ty gradient  in the valence 
region is smaller  and,  for this reason,  the e lec t ron-gas  approx ima t ion  becomes more  
appropr ia te .  I t  is interest ing to  note  that  the result  for  the ap exci tat ion of  Si is by  
no means  less sat isfactory than  the other  values,  a l though the H K S  theorem is not  
strictly appl icable  in cases where g round  and excited state have the same symmetry.  

Table  2 shows the results for CH4. Corre la t ion  energy, as well as b inding energy and 
first vert ical  ioniza t ion  potent ia l  (de termined f rom two calculat ions for CH4 and  
C H ~ )  are in excellent agreement  with P N O  CI C E P A  [191 and exper imenta l  values. 
I t  should be noted  tha t  our  basis set was substant ia l ly  smaller  than tha t  o f  Meyer  
[19] (in this case, po lar iza t ion  funct ions are not  very impor t an t  at  the H F  level, as 
indicated by the first two rows of  Table  2). 

Table 1. Excitation energies of first- and second-row atoms. 
Basis sets: (a) 10s/5p, (b) 11 s, (c) 10s/6p (+ 1 Rydberg function) 
[17]. Otherwise: 9s/5p [3s/2p] (+ 1 Rydberg function) for the 
first row, 1 ls/7p [6s/4p] (+ 1 Rydberg function) for the second 
row [18] 

ASCF + 
Atom Excited state ASCF Eq. (3) Experiment 

He 3S (is ~ 2s) ~ 0.6875 0 . 7 3 8 1  0.7284 
3p (Is -+ 2p) ~ 0.7304 0.7810 0.7703 

Li 2p (2s --+ 2p) 0.0673 0.0676 0.0679 
Be 3p (2s --~ 2p) 0.0614 0.0892 0.1001 

aS (2s -+ 3s) b 0.1954 0 . 2 2 4 1  0.2373 
B 4p (2s --+ 2p) 0.0790 0.1247 0.1312 
C 5S (2s --+ 2p) 0 . 0 9 1 1  0.1542 0.1537 
N 4p (2p --+ 3s) 0.3728 0.3794 0.3795 
O 5S (2p --+ 3s) 0.2818 0.3304 0.3361 
F ~P (2p -+ 3s) 0 . 4 1 1 1  0.4477 0.4666 
Ne 3p (2p --+ 3s) 0.5547 0.5836 0.6108 
Na 2p (3s -+ 3p) ~ 0.0754 0.0772 0.0773 
Mg 3p (3s -+ 3p)c 0.0737 0.0980 0.0996 

3S(3s-+4s)~ 0.1537 0.1783 0.1877 
A1 2S(3p--+4s) 0.1032 0.1125 0.1155 
Si ap (3p ~ 4s) 0.1712 0.1784 0.1808 
P ~P (3p -+ 4s) 0.2484 0.2543 0.2549 
S sS (3p -+ 4s) 0.2028 0.2422 0.2398 
C1 4p (3p -+ 4s) 0.2969 0.3266 0.3278 
Ar 3p (3p --+ 4s) 0.3990 0.4238 0.4244 
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Table 2. Total energy Etot, correlation energy Eo, binding energy EB, and first 
vertical ionization potential IP for CH4 (geometry Ta, rcu = 2.05 a.u.). All 
values are given in a.u. Basis sets: (a) C (9s/5p), H (4s/lp), (b) C (I2s/6p/3d/lf), 
H(6s/lp), C-H (is) 

Method Etot Eo Ea IP 

UHF (this work) ~ -40.204 0.529 0.490 
RHF [19] b -40.214 0.527 0.502 
UHF + eq. (3) (this work) ~ -40.478 -0.274 0 . 6 5 1  0.520 
PNO-CI [191 b -40.458 -0.244 0.636 0.523 
CEPA [19] b -40.472 -0.258 0 . 6 4 5  0.525 
Experiment -40.515 -0.295 0 . 6 7 1  0.529 

For  CH~ we investigated the relative stabilities of species with various symmetries, 

and again compared our results with those of PNO CI CEPA calculations [19]. As 
it can be seen from Table 3 the energetical sequence proves to be the same, and  

there is even a satisfactory quanti tat ive agreement in the energy differences between 

the various configurations. 

Results for CH~ are given in Table 4 and are compared with IEPA calculations of  

Kutzelnigg et al. [20]. Our total energies are considerably lower than those in [20] 

because in the latter work only valence-shell correlation was included. Our  correla- 

t ion energy is ~ 92~  of the total (valence + core) correlation energy estimated by 

Kutzelnigg et al. Our values confirm their finding, namely that the correlation 

Table 3. Relative stabilities of various equilibrium configura- 
tions for CH~. Energies are given relative to Ta (r = 2.05), the 
equilibrium geometry for CH4 (all values in a.u.). The optimized 
geometries are taken from [19]. Basis set:see Table 2 (a) 

Symmetry This work PNO-CI [19] CEPA [19] 

Ta -0.0030 -0.0066 -0.0072 
D4h --0.0161 --0.0195 --0.0197 
Cs~ -0.0418 -0.0412 -0.0397 
D2a -0.0524 -0.0556 -0.0553 
C2, -0.0612 -0.0617 -0.0610 

This work IEPA [201 

(a) --40.677 -40.622 
(b) 0.0096 0.0101 
(c) 0.2013 0.2047 

Table 4. (a) total energy for CH~ in Cs geometry, (b) 
energy difference between the C~ and the Cs geometry 
of CHg-, (c) proton affinity of CH4 (all values in a.u.). 
Equilibrium geometries and basis set were taken from 
[201 
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energy differences between CH~ and CH~- (C~ as well as C, geometry) are very 
small ( <  5.10 -a a.u.). The last example in this section concerns the singlet-triplet 
separation between the aB1 and 1A1 states of the CH2 radical. We used the double- 
zeta plus polarization basis set of Bauschlicher and Shavitt [21] and found for the 
experimental equilibrium geometries a correlation contribution to the singlet- 
triplet separation of - 6 . 8  kcal/mole compared to - 1 1 . 6  kcal/mole in [21]. It  is 
gratifying that at least the correct sign could be obtained, although our implicit 
assumption of a prevailing single reference configuration is not fully justified here. 

4. Empirical Corrections 

Equation (3) together with (8), constitutes an approximation for the correlation 
energy Eo with the following properties: (a) it is exact for one-electron systems; 
(b) it is size-consistent in contrast to CI calculations with single and double substi- 
tutions, and (c) it contains only electron gas data, but no adjustable parameters, no 
information about atomic or molecular correlation energies. 

Despite its merits this approach is bound to fail in certain cases: it is clear from its 
construction that the approximation is a good one for systems with a large number 
of electrons and slowly varying electron density; it is also clear that it deteriorates 
for systems with few electrons and large density gradients. The situation is not as 
bad, however, as one would think in the first place: as it has already been stressed 
by Gunnarsson and Lundqvist [4] for the exchange-correlation hole, only the 
spherical average over r '  of  the pair distribution functions in (5) contributes to Eo; 
the non-spherical parts, which are certainly non-negligible in atoms and molecules, 
cancel, and this is the reason why (3) is a fairly good approximation to Ec in many 
quantum-chemical applications. There are nevertheless limits to its applicability, 
and this becomes apparent from Table 5, where Eo from Eq. (3) (column 1) is 
compared with exact non-relativistic values [22 ! (column 3) for 2-electron ions with 
1 ~< Z ~< 10. As expected, the error becomes larger and larger with increasing Z 

Table 5. Correlation energies ]E d for two-electron ions 
(all values in a.u.) 

This work This work 
Atom/Ion Eqs. (2), (8) Eqs. (3), (10) Exact [22] 

H-  0.0315 0.0365 0.0398 
He 0.0505 (0.0421) 0.0421 
Li § 0.0613 0.0437 0.0435 
Be 2 § 0.0689 0.0445 0.0443 
B 3 + 0.0747 0.0450 0.0448 
C ~ + 0.0795 0.0453 0.0451 
N 5 + 0.0835 0.0455 0.0453 
06 § 0.0870 0.0456 0.0455 
F 7 + 0.0901 0.0458 0.0456 
Ne e § 0.0928 0.0459 0.0457 
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(increasing density gradient). In fact, Eo from (3) goes to infinity for Z -+ m, while 
in reality Eo approaches a constant value. 

The source of the error becomes evident from the consideration of the excitation 
spectra: while for the 2-electron ion the first excitation energy goes to infinity for 
Z--> oo, the spectrum remains continuous for the electron liquid with p -§  oo. 
Moreover, although for the 2-electron ion the second-order perturbation theory 
becomes exact in the limit Z---> oo, it does not even converge for the electron 
liquid. 

The deficiency described above is already present in the simple LD approximation 
(1), and attempts have been made to overcome it. The natural idea is to incorporate 
gradient terms such a s  (Vp/p) 2 into %, which vanish for the homogeneous electron 
liquid, but which could be important for atoms and molecules with inhomogeneous 
density. Ma and Briickner [23] determined the first 2 terms in the Taylor expansion 

ec(p, (Vp/p) 2) = eo(p) + (Vp/p)2~o(p) + . . .  (9) 

for the electron liquid in the limit of a very small perturbation. However, the correc- 
tion term in the r.h.s, of Eq. (9) proved to be too large by a factor 5 when applied 
to atoms, and empirical parameters had to be introduced in order to reduce the 
numerical values of ~o(p) by that factor Ill]. 

It is easy to understand this result. Even if the validity of the Taylor expansion, 
especially for large values of (Vp/p) 2, is not called into question [24], one has to 
admit that a single gradient term is most probably not sufficient to cope with 
errors as large as those indicated in Table 5. 

We consequently proceeded along different lines. Instead of using a correlation 
function which is different for different density gradients, we partition the charge 
densities p +, p_ into contributions from different atomic shells and suggest the use 
of different modified correlation functions ~o for different shells. By taking the 
atomic shell structure into account, we introduce an element of inhomogeneity 
which is exceedingly important for atoms and molecules while it obviously does not 
exist in the case of the electron liquid. 

We consequently have to determine a correction to Eq. (3) for each shell separately: 
in this paper we restrict ourselves to the K-shell, where the correction is expected 
to be largest. (A procedure similar to that described below, can be applied to outer 
shells, and will be dealt with in a forthcoming publication.) 

We have to search for a function ~o(p+, p_) which leads to constant correlation 
energies for Z --> oo (cf. Table 5): this means that ~o has to become constant at the 
high density limit. It seems to be desirable, on the other hand, to retain in ~o as 
much as possible of the original functional form of % (Eq. (8)). Both goals can be / 
achieved in a rather simple way with the replacement 

d 
~o(p+, p_) ~ ~o(p+, p_) = ~ ~o(p+,,~-, p_~-). (IO) 
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Equat ion (10) is a slightly generalized fo rm of  (8). Indeed the replacement  pertains 
only to the p-dependence in (8) while ~ is not  changed at all; moreover ,  for ~- = 1 
and ~(p)e [0, 1] suitably chosen, ~o becomes identical to eo. 

We now treat  cr and r as adjustable parameters .  For  p >> 1 we obtain f rom (8) 
eo ~ In p; this leads to ~o ,,~ 1/e in (10). By simply fixing ~ at an appropr ia te  con- 
stant value, we meet the above requirement of  constant  go in the high density limit. 
For  p << 1 (8) yields eo ~ pl/3 and this means a pl/3 dependence for ~o in (10) too. 
The paramete r  r in (I 0) can be used, however,  to vary the factor  o f  pl/3 for ~o in the 
low-density limit. 

The two parameters  cr and r in (10) can now be determined, e.g. f rom two atomic 
correlat ion energies. It  seems advantageous  to choose one a tom with large and 
one with relatively small density gradient:  we took  the two-electron a toms with 
Z = 20 and Z = 2 and obtained the numerical  values ~ = 0.185 and r = 36. 

We would like to show now that  Eq. (3) with ~o f rom (10) leads to an overall im- 
p rovement  for the K-shell a toms and molecules;  to a substantial  one for  cases with 
large density gradients, where the modified LSD approximat ion  (Eq. (3) with co 
f rom (8)) completely fails; and to a slight but  non-negligible one for  cases with 
slowly varying density, where the modified LSD approximat ion  already performs 
quite well. 

The first examples are given in Table 5 (column 2). The Z-dependence of  the correla- 
tion energy for two-electron ions is now in very satisfactory agreement  with the 
(experimental)  values of  Clementi  [22]. It  is interesting that  the corrections generally 
lead to a decrease of  IEo[ (for Z 1> 2), but that  also corrections of  the opposi te  sign 
may  occur (for H - ,  e.g.); in all cases the sign of  the correction proves to be correct. 

Molecular  binding energies are compiled in Table 6. The modified LSD approxi-  
mat ion (Eqs. (3) and (8)) already yields quite reasonable binding energies and 
essentially the same can be said with respect to the new approximat ion  (Eqs. (3), 
(10)). Eq. (10) is superior  to Eq. (8), however,  if  absolute correlation energies are 
considered, for H e l l  + e.g. one obtains - 0 . 051  a.u. f rom (8), - 0 . 0 4 2  a.u. f rom (10), 
compared  with the CI value of  - 0 . 0 4 5  a.u. [28]. 

Table 6. Binding energies for K-shell molecules (all values in a.u.). 
Equilibrium geometries are taken from the Refs. indicated in each row. 
Basis sets: H (a) 9s/[4s], 3p from [25], (b) 6s, 2p; He (c) 9s, 2p 

This work This work CI or 
Molecule Eqs. (3), (8) Eqs. (3), (10) equivalent methods 

H2 a 0.1760 0.1742 0.1745 [26] 
H~ a linear 0.270 0.268 0.280 [27] 

equilateral 0.344 0.341 0.342 [27] 
Hell + b,~ 0.071 0.071 0.075 [28] 
He~ ~ 0.090 0.087 0.091 [29] 



40 H. Stoll et aL 

Table 7. (a) Binding energies, (b) electron affinities as a function of the bond length r in H2 (all 
values in a.u.). Basis set: 6s/2p 

UHF + Eqs. UHF + Eqs. 
r (a) UHF (3), (8)/(10) Ref. [26] (b) UHF (3), (8)](10) 

1.0 0.085 0.129/0.125 0.125 
1.2 0.125 0.167/0.165 0.165 
1.6 0.126 0.167/0.166 0.169 
2.0 0.092 0.130/0.13t 0.138 
3.0 0.017 0.032/0.033 0.057 
4.0 0.003 0.007/0.008 0.016 
5.0 0 . 0 0 1  0.002/0.002 0.004 

-0.016 0.01910.021 
-0.003 0.031/0.035 
-0.003 0.029/0.034 

The applicability of  our  correlation approximations for the detailed description o f  
potential curves and energy hypersurfaces can be estimated from Tables 7 and 8 
where results for various geometries of  H2 and H3 are shown. In  the case o f  H2 
U H F  is identical to R H F  for r < 2.5 a.u.;  for larger r the " b r o k e n - s y m m e t r y "  
solution becomes lower in energy. (Because of  convergence difficulties we did not  
study the transition between the two solutions in detail.) Both Eqs, (8) and (10) lead 
to substantial improvement  for the binding energy as well as for the electron 
affinity compared to UHF.  (For  the latter U H F  does not  even yield the correct 
sign for r >1 3 a.u. [30].) The deviation between Eq. (8) and the values o f  Kolos 
[26] generally decreases when Eq. (10) is used instead of  Eq. (8), but  more so for the 
smaller internuclear distances. The saddle-point energy for H3 shows reasonable 
agreement with the value of  Liu and Siegbahn [25], with (8) as well as with (10). 
But a consistent improvement  over Eq. (8) is obtained with (10), when energy 
differences between different points on the Ha energy hypersurface are calculated: 
the deviations f rom the values of  Liu and Siegbahn (accuracy < 1 kcal/mole) are 
reduced to ~3  kcal/mole. 

Table 8. (a) Saddle-point energy of Ha relative to E(H2) + E(H) (in 
kcal/mole). (b) Energies relative to the saddle-point energy for various 
geometries of H3 (in a.u.). Basis set: 9s/[4s], 3p [25]; (c) estimated value 

This work 
t~ rl r2 Eq. (8)/Eq. (10) Ref. [25] 

(a) 
(b) 

0 1.757 1.757 7.8/8.0 9.7 c 
0 2.30 2.30 0.036110.0332 0.0289 
0 3.3711 1.41 --0.0112/-0.0125 --0.0127 
0 4.33 0 . 8 1  0.1302]0.1321 0.1324 

90 2.30 2.30 0.0545/0.0520 0.0480 
90 2.50 2 . 1 3  0.0500/0.0476 0.0433 
90 3.44 1 . 8 0  0.0160/0.0133 0.0102 
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As an example of an  excited-state potential  curve, we finally give results for H% a~+. 

We obtain  for the internuclear  distances r = 2 and  3 a.u. the following energies 

(relative to r = ~ ) :  - 0 . 0 7 8 4  and  - 0 . 0 1 3 5  with Eq. (8), - 0 . 0 6 7 2  and  - 0 . 0 1 4 0  
with Eq. (10), compared with - 0.0617 and - 0.0140 from CI calculations [31 ] (all 

values in a.u.). 
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