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For quantitative description of a molecular charge distribution it is convenient to 
dissect the molecule into well-defined atomic fragments. A general and natural 
choice is to share the charge density at each point among the several atoms in 
proportion to their free-atom densities at the corresponding distances from the 
nuclei. This prescription yields well-localized bonded-atom distributions each of 
which closely resembles the molecular density in its vicinity. Integration of the 
atomic deformation densities - bonded minus free atoms - defines net a tomic 
charges and mull:ipole moments which concisely summarize the molecular charge 
reorganization. ]?hey permit calculation of the external electrostatic potential and 
of the interaction energy between molecules or between parts of the same molecule. 
Sample results for several molecules indicate a high transferability of net atomic 
charges and moments. 
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1. Defining Atomic Fragments 

Chemists have acquired, with experience, a reasonably serviceable notion of the charge 
distributions in the molecules they work with. In many instances a look at the struc- 
tural formula of a molecule is enough to suggest which regions are electron-rich and so 
vulnerable to electrophilic attack and which are more likely to attract nucleophilic 
reagents. The theoretical underpinnings of these insights, however, have been slow to 
develop. Instructive quantum-mechanical calculations, both ab initio and semi-empirical, 
are available for a wide variety of small molecules; yet the electrostatic information 
that can be extracted from such studies is rarely presented in a usable form. Apart from 
a few expectation values that can be compared directly with experimental measure- 
ments, such as molecular dipole and quadrupole moments and the electric field grad- 
ients at selected nuclear positions, a detailed description of the theoretical charge 
distribution is usually lacking. If  such a description is attempted this is likely to take 
the form of a listing of Mulliken atomic populations [1 ], sometimes accompanied by 
a warning that these indices have little quantitative significance [2, 3]. 

Central to any such population analysis is the idea, of unimpaired validity, that a good 
way to describe a molecule is to divide it into atoms and examine how these differ 
from the free atoms. An imposing variety of published schemes attest to the recurrent 
fascination of this theme and to the wealth of mathematical ingenuity it has inspired. 
But for a straightforward dissection of molecular charge, the partitioning procedure 
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advanced by Politzer and Harris [4] has two compelling advantages over most of its 
rivals: 

1) It makes the charge on each atom an unambiguous property of the molecular charge 
distribution, independent of the mathematical formalism used to derive this 
distribution; 

2) When applied to the promolecule, made up of overlapping ground-state atoms prior 
to any charge migration between or within these atoms, it yields neutral atomic 
charges. 

Politzer and his collaborators have applied this definition to a selection of linear 
molecules [5, 6] and have presented atomic charges that appear reasonable in magni- 
tude, vary in a sensible manner among chemically similar molecules, and conform to 
accepted ideas about electronegativity differences between atoms and groups. They 
also tend to be smaller than values obtained by other methods [7]. 

Yet disconcerting shortcomings remain. The atomic fragments defined by Politzer 
and Harris [4] are bounded somewhat artificially by an array of partition planes. 
Bonded atoms with plane faces are conceptually foreign to quantum chemistry as well 
as mathematically awkward. While yielding acceptable atomic charges they are ill-suited 
to the definition of other properties that are needed for a more complete specification 
of the molecular charge distribution. For example, an apparent outward polarization 
of the bonded atoms in a series of diatomic molecules examined by Politzer [5] is 
undoubtedly in part an artifact of the partitioning procedure, which interchanges the 
mutually trespassing portions of overlapping atoms and so attributes spurious moments 
to the two atoms even in the promolecule. Moreover, it is unlikely that the proposed 
partitioning into atomic regions can be extended without ambiguity to non-linear 
molecules of arbitrary symmetry. 

Fortunately, these disabilities can be remedied in a simple and natural fashion. In the 
promolecule the total density is a sum of well-defined contributions from all the con- 
stituent atoms. All we have to do is mimic this atomic composition of the promolecule 
density in apportioning the actual molecular density among the several atoms. Accord- 
ingly, we divide the molecular density at each point among the atoms of the molecule 
in proportion to their respective contributions to the promolecule density at that point. 
Like partners in a stockholders' corporation, each atom thus partakes of the local gain 
or loss in direct proportion to its share in the capital investment. 

Algebraically, we write the promolecule density at point r as 

pPr~ ) = ~ pat(t),  
i 

where the functions pat are suitably positioned, spherically averaged ground-state atomic 
densities. For each atom we define a sharing function 

Wi(r ) = pat (r)/ppro (r), 

that specifies its relative share in the promolecule density at r. The several functions 
wi(r ) are all positive and their sum equals one everywhere. We now define the charge 
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density of the bonded atom i as 

pb'a'(r) = wi(r)pm~ (1) 

where pmol is the actual molecular density. In this way we obtain overlapping, con- 
tinuous bonded-atom distributions that fully retain the two advantages, enumerated 
above, of the Politzer-Harris definition. The stockholder recipe is completely general, 
requires no arbitrary placing of boundary surfaces, and produces well-defined atomic 
fragments that differ from the free atoms only to the degree that the molecule itself 
differs from a superposition of free-atom densities. 

From here we can proceed along either of two paths. We can subtract the density of 
the free atom from that of the bonded atom to obtain the atomic deformation density 

5pi(r) = p/b'a'(r)- pat(r). 

Alternatively, we carl form the molecular deformation density, defined as the density 
difference between the molecule and the promolecule 

Ap(r) = pm~ -- ppr~ 

and apportion this to produce 

6Pi(r) = wi(r)Ap(r). (2) 

It is by virtue of our particular choice of sharing function wi that these two routes lead 
to the same atomic deformation density 6Pi. 

By way of illustration, Fig. 1 shows the deformation density in the linear molecule 
HC~-C--C=-N, together with its separate atomic fragments. The atomic deformation 
densities are, as expected, well localized in space. They closely resemble the molecular 
deformation density in their respective neighborhoods, and density maxima in the bond 
regions are divided smoothly between the adjacent atoms. We note also that the 
molecular and the individual atomic deformation maps share coincident zero contours, 
as required by Eq. (2.). Since the wi all lie between 0 and 1, each atomic deformation 
function 6pi has evelTwhere the same sign as Ap and is smaller in magnitude. 

2. Atomic Charges and Moments 

The total electronic charge in our bonded atom is given by 

Qi = - f P/b'a'(r) dr, 

the negative sign, here and below, obeying the convention that electrons are negatively 
charged. Adding the nuclear charge Zi gives the net atomic charge 

qi = Qi + Zi. 

In practice, the integrand pb.a. varies too steeply for easy numerical integration; thus it 
is generally more convenient to integrate the atomic deformation density, which yields 
directly 

q, = - ~ ~m(r) dr .  (3) 



132 F.L.  Hirshfeld 

" r' 

' ,  j 

', J / ~ - " " x  
L 1 , ,  / , 

... ,,' ",,..: ..;.7 ','CZ..," ",:..?: -%' ',!~;:" ' / /  

H C" 'C C N 

i 
, I 

: " ' "  " " " , .  , / " ' " ' "  / 

Fig. 1. Molecular deformation density Ap (upper figure) in HC=-C-C~-N from Hartree-Fock wave 
function [8], resolved into atomic components 60 i (lower figure: H, =-C-, N below axis; two other 
C atoms above axis). Contour interval 0.1 eA -3, zero contour broken, negative contours dotted. 
Inner contours around heavy nuclei have been omitted 

Because our definition, like that of  Politzer and Harris [4],  takes the promolecule as 
reference state, we expect the two recipes to yield rather similar atomic charges. This is 
tested in Table 1 for a selection of  linear molecules analyzed by Politzer e t  al. [5, 6] .  
The two sets o f  values have been derived from the same wave functions [8] ; thus the 

small differences in the listed charges qi  arise entirely from the difference between the 

two definitions, apart from negligible integration errors. 

Among the regularities revealed by the tabulated charges is the near constancy of  the 

charge difference across the C=N bond, with qc  - qN ranging between 0.25 and 0.27 e 
in the three molecules HCN, HC~C--C=N, NC-CN.  The C - H  bond shows a more variable 
polari ty,  while the net charge on hydrogen remains close to the 0.1 e. Such trends 
are, of  course, no more than tentative suggestions of  what to look for in more extensive 
compilations as these become available. 

We can now go on to derive additional properties of  the bonded atoms, such as their 
dipole and quadrupole moments ,  etc. The k component  (k = 1,2,  3) of the dipole 
moment  of  a tom i is 

~i,k = - f xkSPi(r) &, (4) 
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Table 1. Net charges q (e), dipole moments ~z (eA), and second moments #zz and #xx  (eA2) of 
atomic deformation densities 6p i, derived by Eqs. (3, 4, 5). Molecular axis is z, positive to the right. 
Charges in parentheses are from Politzer et al. [5, 6]. Small charge imbalances reflect errors of 
numerical integration. The quadrupole moments in these axially symmetric molecules are given by 
Ozz =/~ZZ - -  l~xx 

HCN H C N 

q +0.133 (0A8) +0.066(0) -0 .201 ( -0 .18)  
,% -0 .104 -0.161 -0.045 
I~zz +0.089 +0.046 -0 .134  
,axx +0.096 +0.149 -0 .037 

HCCCN H C C C N 

q +0.124 (0.18) -0.015 (-0.06) -0.031 (-0.05) +0.096 (0.09) -0.176 (-0.16) 
tzz -0.105 -0.167 +0.155 -0.127 -0.035 
~Zzz +0.082 +0.052 +0.005 -0.018 -0.101 
~xx +0.087 +0.079 +0.054 +0.117 -0.030 

HCCH H C C H 

q +0.094 (0.14) -0.094 (-0.14) -0.094 +0.094 
#z -0.103 -0.159 +0.159 +0.103 
, z z  +0.079 +0.021 +0.021 +0.079 
~xx  +0.073 +0.038 +0.038 +0.073 

NCCN N C C N 

q -0.126 (-O.10) +0.126 (0.10) +0.126 -0.126 
~z +0.033 +0.143 -0.143 -0.033 
#zz  -0.104 +0.011 +0.011 -0.104 
#xx  -0.002 +0.164 +0.164 -0.002 

OCO O C O 

q -0.208 (-0,23) +0.413 (0.46) -0.208 
~z +0.043 0 -0.043 
**zz -0.006 -0.024 -0.006 
~*xx +0.001 +0.308 +0.001 

where xk is the k component of the vector r measured from the atomic nucleus. We get 
formally the same result if we insert p/b.a, rather than 6p i  in the integrand but, again, 

the deformation density is computationally more tractable. 

The atomic moments ~tz listed in Table 1 seem to be more directly transferable than 
the net charges and are evidently strongly characteristic of the hybridization state of 
the bonded atom. Thus, we consistently have values near 0.10 eA for - H  (thepositive 
sense is - . . .  +; 1 eA = 4.8 D), 0.15 eA for -=C-, and - 0 . 0 4  eA for =N, the negative 

sign here indicating that the nitrogen lone-pair moment  slightly outweighs the opposite 
polarization of the bonding density (see Fig. 1). 
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The atomic charges qi and dipole moments Idi,k together determine the molecular 
dipole moment. With Xi,k denoting the k coordinate of atom i relative to a chosen 
molecular origin, the molecular moment is given by 

t-tk = ~ X i&q i  + ~ lli,k 
i i 

and is thus made up of two kinds of terms. The first, involving the net atomic charges, 
arises from the interatomic charge migration and is related to the polarities of the several 
bonds. The second comprises the atomic moments, regarded here as reflecting an intra- 
atomic charge polarization. In HCN and HCCCN, as well as in the non-linear H2CO 
(M. Eisenstein, unpublished calculations), this intra-atomic contribution to the molecular 
dipole moment is somewhat smaller than the interatomic and is in the same sense. This 
two-fold classification, though often overlooked, accords completely with well- 
established chemical thinking, which distinguishes between moment contributions 
from heteropolar bonding and those associated with non-spherical (e.g. lone-pair) 
distributions of the individual atoms. Even if we consider bond moments and atomic 
moments to represent no more than a mathematically useful decomposition of the over- 
all charge migration, the recognition that both contribute can save us from an un- 
rewarding attempt to derive atomic charges from dipole moments alone. A qualitative 
but cogent exposition has been given by Coulson [9] in discussing the molecular 
moments of HC1, H20, NH3, and CO, among others. 

Proceeding further, we derive the symmetric second-moment tensor of the atomic 
deformation density, whose six independent components are 

= -- f XkXl6pi(r) dr.  ( 5 )  Pi,kl 

These are related to the atomic quadmpole-moment tensor, with components given by 

1 1 
O i , 1 1  = g i ,  l l  - -  211i ,22  - -  21di,33, e t c .  

I~ i  12 = 3 , 2 /2 i ,  12,  e t c .  

Since the quadrupole moments may be derived from the second moments but not vice 
versa, we prefer to list the second moments in Table 1. For example, in the three cyano 
compounds listed both atoms of the C-N group have negative quadrupole moments 
| But Table 1 shows that in the carbon atom this is due principally to a charge con- 
traction towards the molecular axis, as evident in Fig. 1, while in nitrogen it arises from 
an expansion in the axial direction. (Because of the negative sign preceding the integral 
in Eq. (5) a positive diagonal second moment gi,kk implies a net contraction in the k 
direction.) Similarly, the uniformly small quadrupole moment of the bonded hydrogen 
atom provides scarcely a hint of its nearly isotropic contraction. 

As these examples show, the intricate pattern of charge reorganization that attends the 
union of separate atoms in forming a molecule is compactly summarized by the charges 
and moments of the atomic deformation densities. While lacking some of the detail 
and almost all the subjective appeal of a contour diagram, such as Fig. 1, these numer- 
ical data offer a precision and a computational facility that no pictorial representation 
can match. 
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3. Derived Electrostatic Properties 

One reason for our interest in the kind of  data that are presented in Table 1 has been 
hinted at above: the search for regularities and trends that can help us to estimate the 
charge distributions in larger molecules from what we find in smaller molecules. A more 
immediate use is in the prediction of  the properties and behavior of  molecules in so far 
as these are governed by electrostatic effects. To illustrate this application, Fig. 2 shows 
the electrostatic potential around a molecule of  HCN as derived from the data in 
Table 1, neglecting contributions from atomic multipoles higher than quadrupole. Such 
a calculation can be valid only in regions free of  charge; hence the blank inner portion 
of the plot, defined roughly by the atomic van der Waals radii. For comparison, we 
also map the potential of  a single point dipole, -0 .682  eA = 3.27 D, and point quadru- 
pole, 0.557 eA 2 = 2.68 buckinghams, at the molecular center of mass. The molecular 
quadrupole momenl;, like its atomic counterparts, may be deduced from the second 
moments of the molecular deformation density; these are given by the expression 

I~kl = ~ ( X i , k ~ i , l q i  + Xi,lddi,l + Xi, ll~i,k + IJi, kl), 
i 

in which the atomic coordinates X i , x  are measured from the center of mass of  the 
molecule. Not surprisingly, the replacement of  the individual atomic charges and 
moments by a single molecular interaction center is a good approximation far from the 
molecule but fails at distances comparable with the molecular dimensions (Fig. 2). An 
obvious corollary is that the larger the molecule the larger the region of  space in which 
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Fig. 2. Electrostatic potential around HCN molecule. Contour interval 0.01 e/A = 0.144 V. Upper 
section: potential due to atomic charges and moments listed in Table 1. Lower section: potential 
due to point dipole and quadrupole at molecular center of mass (marked by small circle) 
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the potential can be estimated adequately only from an atomic-scale description of the 
charge distribution. 

Fig. 3 plots the electrostatic interaction energy of a pair of  HCN molecules, in parallel 
and in anti-parallel orientation, as a function of the vector separation of the two mole- 
cules. Treating the atoms as hard spheres with van der Waals radii of  1.1 A for H, 1.7 
for C, and 1.5 )k for N, we find two energy minima: -4 .1  kcal/mole for the linear head- 
to-tail arrangement and - 2 . 7  kcal/mole for side-to-side anti-parallel contact. While 
these numerical values neglect the mutual (static) polarization of the two molecules, 
dispersion forces, and the Pauli repulsion energy, the results illustrate a practical route 
to the qualitative prediction of  stable configurations that play an undoubted role in 
crystallization and in chemical reactions. The same kind of calculation, applied to inter- 
actions between portions of  the same molecule, can be of similar value in deriving the 
electrostatic component  of  intramolecular energy changes associated with conforma- 
tional flexibility. 

In the computations leading to Fig. 3 it was found that  the interaction of atomic point 
charges alone, neglecting the atomic dipole and quadrupole moments,  accounted for a 
fairly constant fraction, between 1/3 and 1/2, of the total intermolecular energy at all 
separations. This observation, supported by similar experience with other highly polar 
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Fig. 3. Electrostatic energy of two HCN molecules as function of vector separation of their centers 
of mass (small circles). Inner excluded volume assumes hard-sphere radii of 1.1 A for H, 1.7 A for C, 
1.5 A for N. Contoui interval 1 kcal/mole = 0.00301 e2/A. Two minimum-energy positions are 
shown at a (-4.1 kcal/mole) and b (-2.7 kcal/mole). Upper section: parallel molecules. Lower 
section: anti-parallel molecules. 
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molecules (HCCCN and H2CO), suggests that a point-charge model, with suitably 
scaled-up atomic charges, might yield a fair approximation to intermolecular energies 
in some circumstances. The need for circumspection with such simplified models is 
emphasized, however, by the fact that with molecules lacking a dipole moment, such as 
HCCH, NCCN, and CO 2, the charge-charge terms provide a much smaller and less 
uniform fraction of the total energy of interaction between two molecules. 

Evidently, quantitative information of the sort presented in Table 1 can be useful for 
estimating the electrostatic properties of molecules and for predicting many features of 
their physical and chemical behavior. As noted above, they may also serve for the 
correlation of properties of chemically related molecules and, in particular, for a 
quantitative examination of the degree of transferability of bond properties between 
molecules. 

Yet the proposed method is obviously only one of many equally valid ways of express- 
ing the same information. It should be superfluous to emphasize that, as there are no 
actual atoms in a molecule, any definition of atomic fragments must be essentially 
arbitrary. Thus we cannot canonize any single dissection scheme as more "correct" 
than any other. Nor should we expect that any one such procedure will prove superior 
for  all purposes to its various alternatives. Were this so we should be deprived of 
valuable opportunities for enhanced understanding through alternative dissections of 
the same charge distribution, for example dividing a polar molecule both into atom- 
like and into ion-like pieces. However, the present recipe does offer certain virtues, 
some shared with various other schemes, that fit it for the specific uses suggested above. 
Being defined rigorously by the first-order charge density of the molecule, and of its 
component atoms, ":he bonded-atom fragments permit the unambiguous evaluation of 
all one-electron properties of the system, to an accuracy limited only by that of the 
charge density itself. Since these fragments are continuous but well localized in space, 
we expect their multipole expansions to converge smoothly. Because the atomic 
deformation densities vanish for the promolecule, they are particularly suited to de- 
scribing those molecular properties, like the external Coulomb field, that arise 
entirely from the redistribution of charge on bonding. Finally, since the proposed 
decomposition can be applied with complete generality to any charge distribution, 
theoretical or experimental, linear or contorted, molecular or crystalline, neutral or 
charged, it permits the widest possible correlation of properties among species of un- 
limited chemical diversity. Whether or not these advantages outweigh others that may 
be claimed for alternative proposals, it is highly desirable that some unambiguous means 
be adopted for the reporting of quantitative charge-density information whenever this 
is produced by an accurate theoretical or experimental investigation. 
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