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A density function D (r) = 2 7 (r, r) - ~ 7 (r, r')7 (r', r) dr', where 7 (r, r') is a spinless 
first-order density matrix, has been proposed as fundamental formula repre- 
senting the spatial distribution of odd electrons in molecules. The bonding 
properties of rc electrons in some representative triatomic species have been 
examined in the light of D(r). The density function can also be used successfully 
to assess the diradical character of unstable singlet ground-state molecules. 
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1. Introduction 

When electron correlation is utterly ignored, each orbital in the singlet ground 
state of atoms and molecules can be considered to be doubly occupied by a pair of 
electrons having ~ and ]~ spins. The concept of such a double occupancy of spatial 
orbitals has provided a useful guiding principle to the understanding of electronic 
structures of stable molecules, as is endorsed by the success of the restricted 
Hartree-Fock (RHF) theory [1]. However, the concept apparently breaks down 
when the electron correlation is duly taken into account [2]. An RHF orbital is 
then more or less split into two spatial orbitals, each of which now accommodates 
either one of the paired electrons separately. An electron pair will thus be split 
spatially to assume a partial odd-electron character even in a singlet ground-state 
molecule. The nature of such split electron pairs should have a particularly 
significant bearing on the properties of the so-called singlet diradical species [3] 
as well as the transition state of certain concerted reactions [4]. 

The electronic structure of molecular systems involving the electron pair splitting 
can be represented satisfactorily well by some specific wavefunctions such as the 
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generalized valence bond (GVB) wavefunction [5]. Yet, it seems desirable to 
invent a general method of drawing information about the splitting of electron 
pairs from exact or any trial wavefunctions. Particular efforts along this line are the 
main purpose of the present work. It is also a formal complement to our general 
considerations [6] of Lewis' electron pair concept. 

2. Definition of the Odd Electron Density 

Consider a singlet ground state. The first-order reduced density matrix [7] is 
written as 

p~l~(x, x')=�89 r')[~(s)~(s') + Ns) ~(s')], (1) 

where r and s respectively denote the space and spin coordinates and where 
7(r, r ') is the spinless first-order density matrix. The necessary and sufficient 
condition [7] for a wavefunction to be reduced to a single Slater determinant is 

p(1)(X, X')--fp(1)(X , X")p(1)(X ", X) dx"=�88 f ') 

--~7(r, r")7(r", r') dr"] [~(s)7(s')+ fl(s)fl(s')] =0. (2) 

It follows that 

27(r, r ' ) -y2(r ,  r ' ) = 0  (3) 

where 72(r, r ') has been defined as 

72(r, r ' )=.fy(r ,  r")7(r", r') dr". (4) 

Equation (3) means that the natural orbitals [7] should be doubly occupied, as long 
as the wavefunction for which (S  2 ) =0  can be represented by a single S!ater 
determinant. On the contrary, when the exact wavefunction cannot be expressed 
by one determinant alone, 27(r, r')-TZ(r, r') should be nonzero. In such latter 
cases, at least one of the natural orbital pairs must be split to a certain extent. Thus, 
a spinless density function defined as 

D(r, r')=2~/(r, r ' ) -TZ(r ,  r') (5) 

is expected to provide a theoretical clue to the spatial splitting of electron pairs in a 
given molecular system. Each counterpart electron of an electron pair which is 
thus split to occupy different portions of space orthogonally will hereafter be 
referred to as an "odd electron". The extent of generation of such odd electrons 
and their distribution in molecules are the central problem of our present concern. 

Let us concern ourselves here primarily with the diagonal element of Eq. (5). We 
will express the diagonal element as 

D (r) = 27 (r) - 72 (r). (6) 
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The density function D(r) can be expanded diagonally in terms of the natural 
orbitals (Ok'S and their occupation numbers rig'S (0 <~ n k <~ 2). The result is written as 

D (r) = ~ nk(2 - nk) (O~ (r) (o k(r). (7) 
k 

Equation (7) indicates that the intensity factor of a natural orbital (ok contributing 
to the density function D(r) is nk(2--n k). Obviously, the factor rig(2--rig) takes a 
maximal value of 1 when n k-- 1, and diminishes monotonously down to 0 as n k 
approaches 0 or 2. This could be taken as an implication that nk(2--nk) is the 
probability that the electron(s) in (ok is left unpaired as if it were an odd electron in 
the singly occupied molecular orbital of a doublet radical. Our density function 
D(r) could then be regarded as a formal expression giving the spatial distribution 
of  the total odd electrons in a given molecule. 

In open-shell ground states, unpaired spin densities do exist at the outset. The 
first-order density matrix is 

p (1)(x, x') = go(r, r')o~(s)c~(s') + 7~ (r, r')fl(s)fl(s'), (8) 

the spinless first-order density matrix being written as 

y(r, r')=7~(r, r ')+7~(r, r'). (9) 

In this case, the density function for odd electrons D(r) is formally expressed as 

D(r) = 2y(r)-- 72(r) 

= 2[{y=(r) - y2(r)} + {ye(r)-  7~(r)}] + (~=- ~ )2(r) (10) 

where the term (7=-7p)2(r) is the diagonal element of the integrated square 
(Eq. (4)) of the customary spin density function 7=(r)- 7~(r). Clearly, 7~(r)-Tp (r) is 
due to the presence of unpaired spin(s) in the ground configuration. In cases where 
the wavefunction happens to be given by a single determinant, we have 

go(r)- 7~(r) = 0, 7p(r)- 7~(r) = 0, (11) 

which give an obvious result for the unpaired spin(s) : 

D(r) = (7~- 7/~)2(r) �9 (12) 

Thus, the unpaired spin(s) has already been incorporated in our D(r) as a part of 
the odd electron density. It is the first term of the right-hand side of  Eq. (10) that 
represents the splitting of  paired electrons themselves. 

With the distribution function D(r) at hand, we can readily calculate the popula- 
tions of the odd electrons on given atomic sites in a given molecule. Thus, D(r) is 
expanded over the atomic orbitals {zt(r)} : 

D (r) = ~ ~ 4 .  Z* (r)z.(r). (13) 
t u 

After the manner of Mulliken [8], the atomic-orbital population of odd electrons 
can be defined by 

D t = ~  d,,(Z, I z.> (14) 
u 
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The gross population on atom A is simply a sum 
A 

DA= Z D t. (15) 
t 

Needless to say, the total sum of DA'S over the atoms involved should be finite: 

DA=Tr n(r)<~N, (16) 
A 

where N is the total number of electrons. 

3. Applications to Some Specific Orbital Theories 

Prior to the application of the theory to existing molecules, we will here derive the 
expressions of D(r) pertinent to a few typical orbital theories. It is hoped that such 
expressions will assist a proper understanding of the features of numerical results 
for molecules which will be presented in Sect. 4. 

3.1. Doubly Occupied Orbital CI Wavefunction 

For the sake of simplicity, we choose the configuration-interaction (CI) wave- 
function composed of doubly occupied (DO) spatial orbitals [9] 

occ  unocc  

g*=Co4}o+ ~ • C;cb,~ a, (16) 
i a 

where ~b 0 stands for the ground configuration and ~ f  is a Slater determinant 
having two (~- and fl-spin) virtual orbitals ~b, in place of two occupied ones ~b i. 
Form Eq. (7), D(r) becomes 

D(r) =4  ~ [u~c~ (CF) 2 -  {Una~ee (ca) 2}2]~b~(r)~i (r) 

+4  y, (C?) z -  (C•) z ~b*a(r)(o~(r). (17) 
t_  i 

In the simplest DOCI theory, we only consider the highest occupied (HO) and the 
lowest vacant (LV) MO's as the q~i and ~ba, respectively. Further, if we reoptimize 
~bHo and ~bev simultaneously with C Lv, the optimized double-configuration (ODC) 
version [10] will be obtained. In either case, Eq. (17) is simplified into 

D(r) = 4 (CLV)  2 [-1 - (ChV) 2 ] [q~*o(r)~bno(r ) + ~b*v(r)~bLv(r)]. (18) 

The expression is useful for the consideration of the diradical character of singlet 
molecules, as will be discussed later. 

3.2. Singlet UHF Wavefunction 

By use of the corresponding orbitals [-11], the unrestricted Hartree-Fock (UHF) 
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wavefunction for a singlet state can be written as [12] 

~=[a lb l a2b2 . . . [ ,  (19) 

where the bar denotes //-spin orbitals. The corresponding orbitals satisfy the 
following relation: 

< aklb~> = sk6k~. (20) 

Since the U H F  wavefunction is a single Slater determinant, D(r) should consist 
only of  the spin density term. Thus, 

D(r) = (7~ - 7p)2(r) 

= ~ {a*(r)ak (r) + b*(r)bk(r ) - S k [a~(r)bk(r ) + b*(r)ak(r)] }. (21) 
k 

Equation (21) suggests separate contributions ofak(r) and bk(r) to the D (r) function. 
The spatial splitting of the u- and fl-spin electrons is thus apparent in this case. 

3.3. Generalized Valence Bond (G VB) Wavefunction 

The GVB wavefunction [5] has also been applied to the studies of diradical 
species [13]. It is generally written as 

7J=dal (1 )b l (2 ) (~ f l - f l~ )az (3 )bz (4 ) (~ f l - f l~ )  . . . (22) 

where d is an antisymmetrizing operator. The orbitals ak and b k constitute a pair, 
and every pair is orthogonal to others, i.e., ( a k [ al} = ( b k ] bl} = ( ak I bz} = 0  (k#  I). 

Use of Eq. (22) leads to 

1-S~ 
D(r)=@ x~ (1 + $ 2 )  2 {a~[(r)ak(r) + b*(r)bk(r)-- Sk[a*(r)bk(r) + b~(r)ak(r)]}. (23) 

Aside from the factor (1 - 5:2)/(1 + $2) 2, Eq. (23) is identical in form with Eq. (21). 
It is likely that the U H F  and GVB theories provide similar distribution patterns of  
split spins, insofar as the spatial orbitals used in these theories do not differ 
appreciably. 

4. Numerical Examples 

In this section, we will apply the present theory to some existing three-atom species 
and to the transition state of  concerted reactions. 

4.1. Triatomic Species 

A few triatomic three-electron ~ systems (together with their two- and four-electron 
family systems) were chosen as examples. They include allyl radical C 3 H s(C 3 H~-, 
C 3 H~ ), formyl radical HCOz(HCO~- , HCO 2 ), nitric oxide NOz(NO + , NO 2 ) and 
ozone cation O~-(O~ +, O3). For all of  these species, various types of  wavefunctions 
were calculated on a common basis set by Linnett et al. [14]. Among others, their 
RHF,  full-CI and Heit ler-London (HL) wavefunctions will be adopted for our 
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Table 1. Odd n electron populations in some ground-state triatomic species 
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C 3 H  5 H C O  2 N O  2 O~- 
Wave- 
function C, a C~ b O C O N 0," O~ b 

Two-electron systems 
RHF 0 0 0 0 0 0 
CI 0.164 0.141 0.239 0.158 0.214 0.162 
HL 0.296 0.593 0.351 0.701 0.398 0.795 

Three-electron systems 
RHF 0.500 0 0,500 0 0.500 0 
C ! 0,663 0,326 0,632 0.265 0.675 0.350 
HL 0.871 0.742 0,909 0.817 0,939 0.878 

Four-electron systems 
R H F  0 0 0 0 0 0 
CI 0.188 0.141 0.295 0,133 0.295 0.163 
HL 0.296 0.593 0.351 0.701 0.398 0.795 

0 
0.393 
0.444 

0.500 
0.859 
0.968 

0 
0.411 
0.444 

0 
0.306 
0.889 

0 
0.719 
0.936 

0 
0.297 
0.889 

Terminal atoms. 
b Central atom. 

Table 2. Overlap integrals between the atomic orbitals a 

03 NO2 HCO 2 C3H 5 

O1-O2-O 3 O1-N2-0 3 O1-C2-O 3 C1-C2-C 3 

()O IX2) 0.12179 0.17005 0.21130 0,25995 
(Z1 [ Z3) 0.00862 0.01137 0.00865 0.03887 

a These overlap integrals are common to the ionized states of given 
systems. 

present purpose. The populations of odd n electrons calculated therefrom are 
summarized in Table 1. 

The salient points noticed in Table 1 are the following: 

1) The odd electron populations given by the HL method is always larger than 
those given by the CI treatment, as is expected. The populations obtained from 
the RHF wavefunction reflect the unpaired spin term, Eq. (12), only. 

2) In the CI case, the results for the two- and four-electron systems nearly coincide 
with each other. In either system, the splitting of pairs is due almost exclusively 
to that of the highest occupied MO. 

3) In both the CI and HL treatments, all the triatomic species examined have a 
fairly large odd electron density on their central atoms. 

4) Roughly speaking, the population of odd electrons increases with the decreasing 
overlap (~a [Zb) between the neighboring atomic orbitals (Table 2). 

5) For O~- the total population (2.437) calculated by the CI method exceeds 2, 
indicative of a partial triradical character. 
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As has been shown in the above examples, D(r) could be used for the comparisons 
of the features of various model wavefunctions. For preciser displays of these 
features, it will be more advantageous to use contour density maps of D(r). 

4.2. Concerted Reactions 

We here treat two types of cycloaddition reactions. One is a (2s + 2s) cyclodimeriza- 
tion of ethylene, which is a typical orbital-symmetry forbidden reaction. The other 
is a (2~ + 2~ + 2s) allowed reaction of three ethylenes to give cyclohexane. The wave- 
functions of these two concerted reactions were traced by Porter and Raft [15] 
and by Wilson and Wang [16], respectively. The latter workers noted that in 
forbidden reactions the occupation numbers of the natural orbitals normally 
show a crossing between the orbitals of high and low occupation numbers but that 
no such crossing takes place in allowed reactions. The crossing should naturally be 
accompanied by the generation of odd electrons. 

The populations of odd electrons on a carbon atom at the transition states were 
calculated by use of the occupation numbers given by Wilson and Wang [16]. The 
results were 0.55 and 0.2 for the (2~+ 2~) and (2~ +2~+ 2~) reactions, respectively. 
In the allowed reaction, apparently more electrons are kept paired during the 
course of bond interchange. 

4.3. Diradical Character 

In connection with the foregoing argument, it seems particularly interesting to 
consider the diradical character of singlet species. The diradical character is 
believed to show up also in the intermediary state of the Woodward-Hoffmann 
forbidden reactions [4]. 

Hayes and Siu [17] defined the diradical character by 

y--- 2(C~V) 2 , (24) 

where (C~V) 2 is the weight of the doubly excited configuration due to the electron 
transition from the highest occupied to the lowest unoccupied molecular orbital. 
Although Eq. (24) can well be understood intuitively, it is yet unsatisfactory on the 
following three grounds : 

1) Virtual molecular orbitals to be made use of in the CI calculation can always be 
transformed unitarily among them [18], so that no uniqueness can be attached 
to the values of t,,~Lv~2 k ,..~HO ] �9 

2) The existence of more than two odd electrons as in a triradical should not be 
precluded in general cases. 

3) It provides no information at all about the distribution of odd electrons. 

All these ambiguities can be removed by use of our D(r). To clarify the situation, 
let us consider the D(r) function in the DOCI approximation, Eq. (18). Obviously, 
the trace of D(r) 

Tr D(r) = 8(CLOY) 2 [1 -- (CLOY) 2 ] (25) 
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satisfies 

0~<Tr D(r)~<2, (26) 

as long as 

0 ~ t'g~LV'~2 ~ 1 (27) 
\~'~HO J "~ ~ �9 

Hence, one half of Tr D(r) must correspond to the diradical character 

YD-- (�89 D(r). (28) 

The YD here defined is always larger than or equal to the Hayes-Siu quantity, 
Eq. (24), so far as the condition (27) is satisfied. The diradical characters of the 
various two-electron systems obtained by the full CI treatment were 0.546, 0.295, 
0.318 and 0.235 for O2+3 , NO~, HCO]  and C3H~, respectively. 

The diradical character which can be defined likewise from Eq. (17) should be 
more general than that based on Eq. (18). The UHF and GVB expressions, 
Eqs. (21) and (23), may also be used. In either of these latter formalisms, it is 
apparent that the diradical character of a singlet state stems from the splittings of 
the corresponding orbital pairs. Clearly, the diradical character should be the 
greater, the smaller the orbital overlap S k is. 

5. Concluding Remarks 

We have defined a density function D (r) which describes the distribution of odd 
electrons in molecules. The definition is based on the spinless first-order density 
matrix, so that it precludes all the uncertainties originating from the arbitrariness 
in selecting the basis sets, virtual orbitals and configurations. Use of the density 
function sheds light on the nature of thermal reactions as well as isolated molecules. 
It is emphasized that the traditional term "diradical" is a physically acceptable one. 
Further, in the sense that D(r) expresses the distribution of electrons still capable of 
forming a new pairing, it could also be taken as a conceptual generalization of 
Coulson's free valence [19]. 

Although we have defined D(r) for the ground state only, it may also be applicable 
to excited states. However, in the virtual orbital approximation, excited singlet and 
triplet states of homopolar molecules cannot be distinguished; the former state 
should be zwitterionic [3] (not necessarily identical with zwitterion itself) while the 
latter, diradical. In such a case, recourse to the second-order density matrix would 
be unavoidable. 
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