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Summary. The problems of obtaining optimal aver- 
age parameter estimates (APE) from experimental 
pharmacokinetic data are considered. Four different 
approaches, three parametric and one non-paramet- 
ric tests, are compared, using selected individual al- 
cohol concentration data. Pooling the raw data for 
estimating APE can obscure individual pharmaco- 
kinetic characteristics, whereas averaging individual 
parameter estimates (IPE) exposes unique statis- 
tical problems. Furthermore, careful consideration 
should be given to weighting procedures. The advan- 
tages and shortcomings of all four methods are dis- 
cussed. It is concluded that none can be considered 
as a universally applicable statistical method in view 
of the purpose for which the information, derived 
from a set of data, e.g. an alcohol-kinetic study, is re- 
quired. 
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In pharmacokinetics great effort has been put into 
analytical procedures and into finding kinetic mod- 
els that define optimal parameter estimates for ade- 
quate and precise description of individual data sets, 
and for relating them to physiological and patho- 
physiological parameters. 

Furthermore, in order to make accurate predic- 
tions in any given individual, it is often of the utmost 
importance to obtain estimates of population charac- 
teristics from an), routine data of which the pertinent 
data sets are true samples. It follows, therefore, that 
pharmacokinetic data analysis not only deals with 
relating individual parameter estimates (IPE) to any 

particular individual set of data, but also with extra- 
polating the information to population parameters. 
Any such procedure bears unique statistical prob- 
lems, which often are not fully appreciated by the ki- 
neticist. 

Average parameter estimates (APE) can be ob- 
tained by applying least squares nonlinear regression 
analysis to the total data pool of all individual data 
sets, using an appropriate model function. Another 
approach, quite distinct in principle, is to analyse 
each individual data set separately according to the 
proposed model function (again using nonlinear 
least squares) to yield the IPE of the set. In a second 
step, the IPE are combined to produce the APE. The 
former method is called the naive pooled data ap- 
proach and the latter method, the two-stage approach 
[1]. 

We studied the kinetics of ethyl alcohol in 3 dif- 
ferent body compartments, arterial blood, venous 
blood and alveolar air, of 42 healthy volunteers after 
oral administration of 4 standardized doses of etha- 
nol [2]. Since the blood alcohol concentration was 
well above the Km of this substance for almost the 
entire experiment, pseudo-zero-order elimination ki- 
netics, a special form of the more general Michaelis- 
Menten-type kinetics, with first order absorption, 
were found adequately to describe the data, i. e. 

C(t) = Co (1 - e-  kt) _ fit Eq. (1) 

Four separate approaches (Methods 1, 2, 3, 4) for es- 
timating pharmacokinetic parameters were applied 
to all the alcohol concentration data using different 
nonlinear least squares algorithms. 

Part of the data was chosen for this paper to illus- 
trate the problems inherent in certain methods for 
routine pharmacokinetic data analysis and to present 
akernative approaches to solving these problems. 
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The results obtained by the four analytical methods 
are compared and their advantages and shortcom- 
ings or pitfalls are discussed. 

General Approach to Summarizing Individual Kinetic 
Data 

1.2. the average parameter curve, after averaging all 
equally indexed IPE of the experiments. The two- 
stage approach first determines the IPE, e.g. Pk,i, and 
in a second step averages the n IPE to obtain the 
APE: 

n 

lX{Pk} = n i~1Pk,i" Wk,i Eq. (8) 

1. Parametric Analysis of  the General Response 
Function 

Any kinetic experiment can be characterized by a 
general input function Yi (t) and a response function 
Yi (t) in such a way that 

Yi(t) = f(p~,~ . . . . .  ,p~,,)yi(t) Eq. (2) 

where f is the linear or nonlinear operator (e. g. Bate- 
man function), p are the parameters (fixed and ran- 
dom), p~.~, for k =  1,2,...n. 
For the unit impulse function, i. e. Dirac's 8-function, 

y(t) = 8(0 Eq. (3) 

let the response function be given, for example, by 

Y(t) = a. e -~t Eq. (4) 

In case of a linear operator the general response 
function is then determined by the convolution 

Y(t) = a ~ y(t-t')e-~t'dt' Eq. (5) 
0 

When n experiments are carried out under the same 
standardized conditions, there is a tendency to sum- 
marize the results in order to draw conclusions about 
important common characteristics using the average 
result, and to obtain an estimate of interexperimental 
variation as well as residual variances. Therefore, 
any set of n response functions of the general type 
such as Eq. 5 can be characterized by: 

1.1. the arithmetic mean curve of all individual curves 

g{Y(t)} ~ Yi(t) Eq. (6) 
i=1 

and their variance curves: 

v{Y(t)} = (Yi(t) - ~t{Y(t)}) z Eq. (7) 
i=  

which we may call "pooled average functions" or 

where Wk, i are statistical weights, depending on the 
parameter index k and the test index i. Those func- 
tions will be called "parameter averagefimctions" 

The pooled data approach, which leads to the 
pooled average function, is always possible and in its 
strict sense plausible. 

The two-stage approach yielding the parameter 
average function is meaningful only when the fol- 
lowing criteria are satisfied: 

1.2.1. All individual data sets can be represented ade- 
quately by the same model function. 

1.2.2. The null hypothesis for the distribution of all 
equally indexed IPE has to be satisfied, i.e. all n 
functions of the set are true samples of the same pop- 
ulation with normal parameter distributions. 
When the prerequisites 1.2.1. and 1.2.2. are not appli- 
cable, weighted parameter averaging is not strictly 
correct. 

To illustrate the absurdity of parameter averaging 
under unsuitable conditions let us assume the fol- 
lowing unit impulse response functions: 

• l(t) = al. e -/~'t Eq. (9) 

• 2(t) = a2. e -/~t Eq. (10) 

for al = 4.0, a2 = 3.0, fll = 0.5 and r2 = 2.0. 

These two functions are shown in Fig. 1 together with 
the pooled average, the parameter average and the 
"characteristic parameter" (cf Section 3) curves. It is 
clear that the parameter average curve is far from the 
other averages and, in fact, is quite unrealistic. 

In order to avoid inadequate averaging we pro- 
pose the following considerations and procedures: 
a. For a series of experiments input functions (e. g. 

i.v. doses) of  the same type should always be em- 
ployed, e. g. impulse functions or step functions. 

b. The response is measured in adequate time inter- 
vals until the response function can be approxi- 
mated by its asymptotic behaviour. 

c. A nonlinear least squares fit gives an estimate of 
the adequacy of the model function and the accu- 
racy of the parameter estimate of that function. 
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Fig.l. Demonstration of the inadequacy of the parameter average 
curve in a case where the two individual curves (full lines) exhibit 
very different shapes despite identical analytical representation. 
Curve n .  represents the pooled average fi~nction, ©. the parameter 
average function, and A. which represents the average response 
function is calculated with the "characteristic parameters" 

d. Adequate resulting curves, according to chi-square 
tests, are weighted, where the weight function 
takes into account both the roet mean square (rms) 
fitting error and standard deviation, i.e. the a 
priori estimate of the measurement error. 

e. Averaging of the adequate weighted model func- 
tion yields the average response function, which is a 
phenomenological description of the typical re- 
sponse function of each single set of data that fol- 
lows the model function. 

This average response curve need not necessarily fol- 
low exactly the model function, but it can be charac- 
terized on a model free basis with moments and cu- 
mulants [3, 4, 51. 

2. Nonparametric Analysis of the General Response 
Function Using Moments and Cumulants 

When a dose is instantaneously introduced into the 
body, Eq. (4) describes the drug concentration (Y(t)) 
at any given time t. 

In the following formalism, Y(t) can be any drug 
concentration as a function of time which may result 
from a specified "drug input" procedure, provided 
that the following conditions are satisfied: 
- the time of incorporation and[ the total dose ad- 

ministered in this time must be', finite, 
- Y(t) must be zero for all times t < 0, apart from a 

possible equilibrium concentration Y0=const., 
which would have to be subtracted from Y(t), 

- Y(t) must vanish for t---+ oo : in fact asymptotically 
Y(t) must vanish more rapidly than exp. ( - a t ) ,  
where 0 < a < co. 

Under these conditions Y(t) can be described by the 
methods of moments and cumulants [4, 5] analogous 

to methods applied in mathematical statistics to fre- 
quency distribution functions. Moments and cumu- 
lants are measures of area, location and shape of 
functions of the class defined above. The 1 th moment 
(1=0, 1, 2 , . . . )  of Y(t) is defined by Eq. (11), 

M I ( Y ( t ) )  = ~ tly(t)dt Eq. ( 1 1 )  
0 

The response function Y(t) has a Laplace transform 
Y(s) which can be written: 

Y(s)= ~ Y(t)e-Stdt= ~. ( -S) lM 1 Eq.(12) 
0 1=0 1! 

where Ml = ~ 0Y(t)dt (i. e.  l th moment) 
0 

Eq. (13) 

and Y(s)= exp {~0= ( -  s)~ C ~ } I !  Eq. (14) 

where C~ is the 1 th cumulant 
The convolution of two functions, cf. Eq. (5), 

leads to a function whose cumulants are the sum of 
the respective cumulants of the functions to be con- 
voluted. Therefore, in a linear model, the unit im- 
pulse response function can be obtained from the re- 
sponse function to a general input function by 
simply subtracting the C~ of that input function from 
the C~ of the observed response function. 

An analogy can be drawn from physical en- 
gineering to illustrate the significance of moments 
and cumulants. 

The zero, first and second moment in relation to 
the origin of the function Y(t) correspond to the 
weight, the torque and the moment of inertia, respec- 
tively, of the area under the Y(t) vs. t curve. For high- 
er order moments there is no such analogy. 

The zero cumulant equals the logarithm of the 
zero moment, the first and second cumulants are the 
abscissa of the centre of gravity of Y(t) and the cen- 
tral moment of inertia, respectively. 

3. Combination of Parametric and Nonparametric 
Analysis 

For any average response function one can find val- 
ues of the parameters that characterize the model 
function, such that the first moments of the associat- 
ed model function exactly match the first moments 
determined from the average response function. We 
shall call them the "characteristic parameters". Fur- 
thermore, the characteristic parameters, which are 
derived from the weighted average response curve 
are always meaningful, even when the points 1.2.1. 
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Fig.2. Blood alcohol concentration [g/l] vs time [mini after p.o. 
administration of ethyl alkohol 1.25 g/kg body weight at time 0. 
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Fig,3. Blood alcohol concentrations [g/l] vs time [rain] in subjects 
007 ( a ) ,  008 (©) and 011 (•) as shown in Fig.2. The curve corre- 
sponds to the unweighted average parameter estimates (APE) as 
given in Table 1. Unweighted averaging in this case has led to a 
paradoxical "average" curve 

and 1.2.2. do not hold true. In practice, the computa- 
tion of moments has to be restricted to a finite upper 
limit of time, or the integrations have to be extrapo- 
lated into the asymptotic region extending to infinity. 

Methods and Results 

Ethanol Concentration Time Profiles as an Example 
of Typical Pharmacokinetic Data: 

Parametric Evaluation (Two-Stage Approach) 

Unweighted Parameter Averaging. The individual da- 
ta sets from 3 subjects (Nos 007, 008 and 011) from 
the dosage group ethanol 1.25 g/kg have been cho- 
sen to exemplify and illustrate the problems in ana- 
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Table 1 

Methods/estimates Individuals from Fig. 2 Average 
parameter 
estimates: 

Fit: SAAM program 007 008 011 (unweighted) 
a O [] Fig.3 

rms resid, conc. [g/l] 0.07683 0.0386 0.0984 0.21 
Co [g/l] 1.89 2.20 3.30 2.46 +_0.43 
k [h -1] 1.74 1.97 0.67 1.46 +0.40 
fl [g/l- h] 0.170 0.239 0.489 0.299+0.097 
Cm~ (calcul.) [g/t] 1.50 1.73 1.47 1.75 
Cm~(observ.) [g/l] 1.54 1.71 t.54 1.60 _+0.07 

lysing pharmacokinetic data mentioned in the intro- 
duction. 

In a first step the IPE (Co, k, fl), which describe 
the proposed model function, Eq. (1), were estimated 
according to the Gauss-Newton criterion using a 
nonlinear least squares regression program (SAAM- 
25) on a UNIVAC-1108 digital computer [6]. The in- 
dividual plasma concentration - time curves of the 3 
subjects are presented in Fig. 2. 

In a second step the unweighted APE (Co, k,/3) 
were obtained by taking the arithmetic mean of the 
three sets of IPE. Unweighted averaging of the IPE, 
which yielded the APE, occasionally resulted in par- 
adoxical model functions in which some average 
time-concentration curves reached a higher peak 
concentration than the maximum concentration val- 
ues observed in the corresponding individual experi- 
ment. All individual data points and the resulting av- 
erage plasma concentration curve are shown in 
Fig.3, constructed with the computed unweighted 
APE values. 

The results thus obtained were analysed in the 
following way: The optimum IPE were checked us- 
ing MARFIT, a nonlinear least squares regression 
program of the MARQUARDT type; Tables i and 2 
show excellent agreement of the results obtained by 
this program with those from other program the 
(SAAM-25). In addition, through interactive simula- 
tion MARFIT permits visualization of the model 
function and the individual data points on a CRT, a 
quasi-analog simulation. This reveals optimal start- 
ing conditions for the digital optimization procedure 
of the MARQUARDT algorithm. 

Fitting the data to the proposed model function 
in this way, it was possible to demonstrate that by 
correlated changes in the parameter values, almost as 
good an adjustment could be obtained, satisfying the 
Gauss criterion, with rather different IPE. 

The MARFIT program provides the sum of 
squares of the deviations from the fitted curve as well 
as the standard deviations of the IPE, determined 
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Table 2 
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Methods/estimates Individuals from Fig. 2 

Fit: MARFIT Prog. 007 
A 

Average parameter 
estimates: 

008 011 (weighted) Fig. 4 
O 121 

rms resid, conc. [g/l] 0.07681 
Co+ % [g/1] 1.881 _+0.15 
k _+ ~rk [h-~] 1.765 + 0.25 
fl_+ cr~ [g/1. ll] 0.168 _+ 0.49 
Cm~ (calcul.) [g/1] 1.50 
goo = 1 / ~  44 
gk = 1/O~k ° 16  

g~ =1 /o}  4 

0.0385 0.0963 0.045 
2.199 _+0.065 3.272 _+1.21 2.15 _+0.06 
1.964 +0.110 0.669 _+0.23 1.72 _+0.09 
0.239 _+ 0.020 0.483 _+ 0.24 0.241 _+ 0.020 
1.72 1.46 1.63 

237 1 282 
83 19 118 

2500 t7 2521 

Table 3 

Chi-square Test of Co k fl 
Parameter Distribution 

Z z 4.6 26.0 1.05 
p (Z 2) 0.1 0.001 0.6 
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Fig.4. Blood alcohol concentrations [g/1] vs time [min] in subjects 
007 (A), 008 (©) and 011 (U) as shown in Fig.2. The full curve 
corresponds to the weighted average parameter estimates (APE) 
as given in Table 2. The dashed curve corresponds to the "charac- 
teristic parameter" values as described in text. Both curves agree 
within the confidence limits and represent credible estimates of 
average blood alcohol concentrations vs time under the condi- 
tions employed. The bad representation of the observations for 
subject 011 is due to the very large standard deviations of those 
IPE, as can be seen in Table 2, i. e. to extremely unreliable observa- 
tions in this case 

from the linearized error propagation of the individ- 
ual fit deviations (Table 2). These were of such differ- 
ent magnitude that simple parameter averaging re- 
sulted in the "paradoxical" average concentration 
curve of Fig. 3, while strictly weighted parameter av- 
eraging yielded the more realistic curve of Fig. 4. 

Weighted Parameter Averaging. The results of the un- 
weighted APE and strictly weighted APE, together 
with the o- and rms-residuals are presented in the last 
columns of Tables 1 and 2, respectively, where the re- 
ciprocal values of the respective variances of the IPE 
served as the weighting functions (Table 2). 

Using the chi-square test to examine the distribu- 
tion of the IPE, no significant differences were found 
between the parameters Co and/3, whereas the null 
hypothesis of a normal k-distribution had to be re- 
jected (Table 3). Thus, weighted averaging of the IPE 
with respect to k did not seem to be advisable, and 
unweighted averaging of the individual k-parameters 
appeared preferable. 

Weighted Averaging of the Individual Parameter Vec- 
tor. IPE and the APE will be considered as vectors 
with components Co, k and/3 according to the model 
described by Eq. (1). 

Any sample of random variable vectors (xb. . .  xi, 
. . .  xv) from a homogeneous population of such vec- 
tors can be characterized by the sample mean vector 

and its covariance matrix. This sample mean vector 
and the covariance matrix of a sample of multivar- 
iate normally distributed random variable vectors 
permits estimation of all pertinent parameters of this 
distribution. In this sense the terms IPE and APE are 
defined as stated above. 

It is important to realize that four basically differ- 
ent parameter covariance matrices (PCVM) must be 
distinguished: 
1. The intra-experimental PCVM, pertinent to a sin- 
gle set of data, is calculated from the stochastic error 
propagation by the final step of the optimization 
procedure. It does not permit any estimate of distri- 
bution or of the correlation of parameters between 
individual data sets. 
2. The inter-experimental PCVM. 
3. The total PCVM of the sample, and 
4. The covariance matrix of the AP-vector. 
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The IPE were obtained by a standard nonlinear 
least squares procedure using Eq. (1) and the MAR- 
QUARDT algorithm on all alcohol concentrations 
measured in one individual. The standard deviations 
of each IPE component, as well as the correlation co- 
efficients between each pair of them, represent im- 
portant measures of the reliability of the IPE, and are 
essential in view of the adequate averaging process 
leading from the different IPE to the APE of the set. 

The APE of any particular set has been obtained 
by weighted averaging of all IPE from the set. In 
view of the significant (computational) correlations 
between IPE components, weighted averaging must 
not be applied separately to each IPE component, 
but to the IPE vector as an entity. An appropriate sta- 
tistical weight attributable to each IPE vector is given 
by the reciprocal of the total variance; total variance 
means the trace of the IPE covariance matrix or, in 
other words, the sum of squares of the standard devi- 
ations of all the components of the IPE vector. The 
adoption of this type of statistical weight is a simple, 
yet efficient approximation, compared to more so- 
phisticated merging procedures. It emphasizes IPE 
of a particular type, which exhibits a particularly 
small standard deviation of all the components, 
while it gradually decreases the influence on the 
APE of such IPE with one or more components and 
a larger standard deviation. 

This estimate of statistical weights attributed to 
the IPE vectors would be improved if the parameters 
had previously been standardized. This is inconve- 
nient, howevel, as all optimizations must be repeated 
when new cases are added. The omission of stan- 
dardization is usually tolerable, as "ill conditioned" 
optimizations tend to exhibit markedly increased 
variances of all parameters. Still, caution regarding 
this point is necessary. Doubtful cases should be 
eliminated rather than incorporated in weighted av- 
eraging. 

The statistical reliability of the APE so obtained 
is again characterized by a standard deviation of 
each APE component, as well as by correlation coef- 
ficients for each pair of them. It should be kept in 
mind that standard deviations of APE components 
indicate statistical uncertainties of the estimated pa- 
rameter averages rather than fluctuations between 
parameters attributable to different individuals of 
the set. 

2. Non-parametric Evaluation (Moment Analysis, see 
page 597) 

The average response function (dashed line) calcu- 
lated from moments and cumulants is shown in 
Fig. 4. The following values for the parameters that 

characterize the model function (characteristic pa- 
rameters) have been obtained by this program: 
Co = 2.18 g/1 
k =1.63h -I 
fl =0 .24g- l - l . h  - t  

Discussion 

MeNodl 

Averaging the unweighted IPE in order to obtain the 
APE, which are estimates of the population phar- 
macokinetic parameters, yielded a paradoxical re- 
sult, of which a typical example is shown in Fig. 3, 
with the average plasma concentration curve exceed- 
ing the highest measured data point. 

There might, therefore, be great uncertainties in 
APE, as observed in the present example. Analogue 
computation in order to find optimal starting condi- 
tions for digital iteration procedures can yield entire- 
ly different parameter values, which satisfy the 
Gaussian optimization criterion equally badly. 

Unweighted averaging of the IPE, however, cer- 
tainly does not neglect interexperimental differences 
by giving equal weight to all the individual data sets. 

It is important, therefore, to have a good estimate 
of the a priori measurement error, e.g. the standard 
deviation (a), and to examine the standard devia- 
tions of IPE, as the optimization procedure might 
greatly enhance the measurement errors. Doing this 
can help to eliminate the worst cases of almost 
"faulty individuals". 

In forensic medicine this type of information 
might be crucial in predicting individual alcohol 
concentration-time profiles, as in defending a deli- 
quent, who might be an "extreme case" in respect to 
population alcohol kinetics. 

Method 2 

Weighting the IPE independently weakens the influ- 
ence of the IPE on the APE with a rather large stan- 
dard deviation. Such a procedure eliminates the ob- 
served paradoxical results, but brings statistical 
problems that often are not appreciated in their full 
extent. We found in our example that, using chi- 
square to test the parameter distribution, at least the 
first order absorption rate constant (k) did show 
skewness and kurtosis in such a way that "simple" 
weighting procedures did not seem meaningful. 

An alternative approach in estimating average or 
population kinetic parameters is to pool all individu- 
al data and analyse it all together by means of non- 
linear least squares (naive pooled data approach). 
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This approach carries several important problems, 
which need to be carefully watched when using this 
method: 
1. It totally ignores individual pharmacokinetic char- 
acteristics and, by doing so, might therefore obscure 
or loose important information on how the body 
handles physiological or xenobiotic substances. 
2. It cannot differentiate interindi~idual, intraindi- 
vidual and residual variances, although they contrib- 
ute to a varying degree to the total variance, since all 
deviations of fit are pooled in one single error term. 
This is an important drawback of the method and ex- 
plains in part the shortcomings of Point 1. 
3. It is well known in pharmacokinetics that average 
concentration curves derived either by averaging IPE 
to get APE, or directly by the "naive pooled data ap- 
proach", do not necessarily have to follow the typical 
individual model function. Undefined statistical un- 
certainties and large "unknown" interindividual 
variations might "smooth" the average response 
curve in an unpredictable way. Uncritical and false 
emphasis might therefore be given to fortuituous 
findings when individual pharmacokinetics and 
careful error analysis are ignored. We did not use this 
method. 

Weighted, independent averaging of the individ- 
ual IPE, using the reciprocal value of the respective 
variances as statistical weighting functions, empha- 
sizes the individuals with apparently precise parame- 
ter values. It, therefore, might depress inter-individu- 
al variation in an uncritical manner. This would be a 
considerable drawback in situations where the con- 
tribution of the inter-individual variance to the total 
variance is of utmost importance, as it often is in 
medicine, whereas the reliability of the individual 
parameter mean values or average concentration 
curve is less in doubt. 

Appreciating this problem, two alternative meth- 
ods were tried to solve the paradoxical results ob- 
tained with Method 1. It was the intention to use the 
data to predict individual kinetics of ethyl alcohol. 

Method 3 

In this approach weighting was applied not to every 
individual parameter separately, but to the individu- 
al parameter vector, with the components Co, k and fl 
as an entity, according to the reciprocal value of the 
trace of the intraexperimental covariance matrix. 

This method eliminates the extremes and short- 
comings of Methods I and 2, but it also depresses the 
inter-individual variation to a certain extent and in 
this way loses the advantage of Method 1. 

Careful consideration of correlated uncertainties 
of IPE components, e.g. by application of the de- 

scribed weighted averaging, is strongly recommended 
for the following reasons: The statistical uncertain- 
ties of the IPE do not only depend on the magnitude 
of statistical errors of the concentration measure- 
ments, but particularly on the configuration of the 
deviation from the fit in each case. Due to inherent 
properties of both the model function and the Gauss' 
fitting criterion, one cannot intuitively appreciate the 
magnitude and sign of correlated error propagation. 
With very similar magnitudes of experimental errors 
the corresponding standard deviations of the IPE 
components may vary by as much as an order of 
magnitude. Only the careful computation of this ef- 
fect in the course of optimising the fit can help to 
avoid the inclusion of extremely unreliable individu- 
al parameter estimates in the averaging procedure 
which leads to the APE. 

Method4 

Method 4 is basically a nonparametric analysis, us- 
ing moments and cumulants to characterize the indi- 
vidual ethanol concentration data. The first 4mo- 
ments and their corresponding cumutants, together 
with a parametric model, are used to find the "char- 
acteristic parameters" of the average response func- 
tion, which reflect a phenomenological description 
of the proposed model function. 

We consider that the "method of characteristic 
parameters" reliably gives the true parameter mean 
values, and it is appropriate therefore, when mean 
values are of primary interest. We have compared a 
direct integration method, which is less sensitive to 
scatter, with analytical integration of model func- 
tions obtained from the optimization procedure, us- 
ing the same weight function as in Method 3, and 
found comparable results. 

At present Method 4 is not set up for estimating 
intra-individual variation, since it has been used to 
obtain good individual parameter estimates. It is 
hoped, however, that the method can be extended in 
this way by further development of its theory and 
generalization of the pertinent algorithms. 

Conclusions 

When the four different methods are compared the 
following conclusions can be drawn: 
1. The four Methods (I, 2, 3 and 4) yielded compar- 
able estimates of the average kinetic parameters Co, k 
and 9, but with different standard deviations. 
2. Apart from different values of reported estimates 
and variances, the information obtained by the dif- 
ferent analytical methods should be judged in rela- 



602 E. Martin et al.: Problems and Pitfalls in Pharmacokinetics 

tion to its particular properties and its intended 
use. 

It is concluded, therefore, that, before designing 
an experiment the kineticist should carefully consid- 
er the purpose for which the results will finally be 
used. By choosing the appropriate statistical meth- 
odology for data analysis, the results will be more ac- 
curate and more reliable. 

The statistical problems of pharmacokinetic data 
analysis are now being appreciated more often than 
formerly and alternative methods of estimating pop- 
ulation pharmacokinetic parameters [1, 7] have been 
elaborated, especially for dealing with routine clini- 
cal pharmacokinetic data. 

NONMEM, Nonlinear Mixed Effect Model, a 
recently developped computer program [7, 8] for esti- 
mating population pharmacokinetics from routine 
patient data, simultaneously takes care of all the pa- 
rameters of the model, including the variance param- 
eters. It carefully analyses the variances of the total 
error, i.e. the intra- and interindividual variation, in- 
adequate pharmacokinetic modelling, analytical er- 
ror and residual error, using a method called ex- 
tended least squares. This program seems to avoid 
the shortcomings of both "standard" methods, the 
naive pooled data approach and the two-stage ap- 
proach. It provides accurate and precise estimates of 
all pertinent parameters and computes their confi- 
dence intervals [1, 7, 8, 9]. 
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