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Summary. We prove an estimate for the Prohorov-distance in the central 
limit theorem for strong mixing Banach space valued random variables. 
Using a recent variant of an approximation theorem of Berkes and Philipp 
(1979) we obtain as a corollary a strong invariance principle for absolutely 
regular sequences with error term t ~-~. For strong mixing sequences we 
prove a strong invariance principle with error term o((t log log t)~). 

1. Introduction 

In a recent paper Kuelbs and Philipp (1980) proved several almost sure 
invariance principles for sums of @mixing random variables with values in a 
separable Banach space. As remarked in a paper of Dehling and Philipp (1982) 
[-6] their theorems hold even for partial sums of absolutely regular sequences. 
One of the purposes of this paper is to improve some of the results of Kuelbs 
and Philipp (1980) even further by using a different approach. We establish 
first estimates for the Prohorov distance in the central limit theorem for strong 
mixing B-valued random variables. These results, which may be of independent 
interest, together with a recent variant (see [6]) of an approximation theorem 
of Berkes and Philipp (1979), yield then almost sure invariance principles. 

First we introduce some notation. Throughout the paper B denotes a real 
separable Banach space. Let {X~, v > l }  be a sequence of B-valued random 
variables and denote by 93l b the a-field generated by the random variables 
X.,  X a + 1, "",  Xb" 

i) {X,,, v> 1} is said to satisfy a strong mixing condition if there exists a 
sequence of real numbers c~(n).~O such that 

I P(A n B) -P(A) P(B)J < c~(n) 

for all AegJl~ and BegJ~k~+, and all k,n> 1. 

* Supported by the Studienstiftung des deutschen Volkes 

(1.1) 



394 H. Dehling 

ii) {X v, v > 1} is called absolutely regular if for some fl(n)+0 

g sup [P(AlfOI~)-P(A)i<=fi(n) (1.2) 
A e 9J l~+  n 

for all k, n > 1. 
iii) {X,, v> 1} is called r if for some q~(n)$0 

I P(A ~ B) - P(A) P(B) I <= ~ (n) P(A) (1.3) 

for all AeOJt~, B E ~ k +  n and k ,n> 1. 
It is well known that ~b-mixing implies absolutely regular which in turn 

implies strong mixing. Moreover e, fi and 4) can be chosen in such a way that 

c~(n) < fi (n) < 4)(n). (1.4) 

On the other hand there exist examples of stationary sequences that are strong 
mixing but not absolutely regular and there exist examples that are absolutely 
regular but not ~b-mixing. For a detailed investigation of these properties for 
stationary Gaussian processes see Ibragimov and Rozanov (1977). From their 
results it is also easy to derive the examples mentioned above. We denote the 
space of all probability measures on B by J//(B). If #, v~J//(B), their Prohorov- 
distance is defined by 

u(# ,v )=in f{e>Ol#(A)<v(A ' )+e  for all closed sets A ~ B }  

where A~={x~BL ]kx-Akl <e}. 
A measure # on B is called Gaussian, if #of-1 is a normal distribution on 

the real line for all f e B * ,  the topological dual space of B. It is well-known that 
each Gaussian measure is completely determined by its mean and its co- 
variance function T which is defined by 

V(f, g) = ~ f (x)  g(x) d#(x), f, g r 

We denote therefore the Gaussian measure with mean a and covariance opera- 
tor T by N(a, T). 

B-valued Brownian motion is defined in exactly the same way as Brownian 
motion on the real line. It is well-known that for each mean zero Gaussian 
measure # on B there exists B-valued Brownian motion such that X(1) has 
distribution #. 

TheoremA. Let {Bk,mk,k > 1} be a sequence of Polish spaces. Let ~k denote the 
Borel field of Bk, let {Xk,k > l } be a sequence of random variables with values 
in B k and let ~k be a non-decreasing sequence of a-fields such that X k is ~k- 
measurable. Suppose that for some sequence {ilk, k> 1} of non-negative numbers 

E sup IP(Xk~AI ~dk-1)-P(Xk~A)I <fig (1.5) 
A e f ~  k 

for all k ~ l .  Denote by F k the distribution of X k and let {Gk,k>l  } be a 
sequence of distributions on B k such that 

Fk(A)<__Gk(AP~)+~r k for all A~f~ k. (1.6) 
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Here Pk and a k are non-negative numbers and A~= U{y:mk(x,y)<e}.  Then 
xffA 

without changing its distribution we can redefine the sequence {Xk ,k> l  } on a 
richer probability space on which there exists a sequence {Yk, k > l }  of inde- 
pendent random variables Yk with distribution G k such that for all k > 1 

P{mk(Xk, Yk) >= 2(fi~/2 + Pk)} < 2(fi~/2 + ak)' (1.7) 

The proof of Theorem A can be found in Dehling and Philipp (1982). It is 
practically the same as the proof of similar approximation theorems of Berkes 
and Philipp (1979) and Philipp (1979). 

In order to prove estimates for the Prohorov distance in the central limit 
theorem we need the following Theorem of Yurinskii (1977). 

Theorem B. Let XI ,  X 2 . . . .  , X .  be independent ]Re-valued random variables with 

EXI=O , E[[Xil]3< oo. Denote the distribution of n -1/2 ~ X i by p, and let v, be 
i = i  

the Gaussian measure with mean zero and same covariance as #,. Then: 

r~(#,, v,) <c f /4p~/4n  - 1/8(1 + Ilog(p 3 n 1/2 d-  1)]1/2) (1.8) 

where p 3 = n - 1  ~ E]IXIll 3 and c is an absolute constant. 
i = 1  

Our first theorem is a partial generalization of Theorem B to weakly sta- 
tionary strong mixing sequences of random variables with values in a finite- 
dimensional Banach space B. 

A sequence {Xv, v > l }  of B-valued random variables is called weakly sta- 
tionary if 

Ef(X,)g(Xm)=Ef(X,+k)g(Xm+k)  for all n,m> l, k>O, f,g~B*. (1.9) 

Theorem l. a) Let {r be a weakly stationary strong mixing sequence of 
random variables with values in a d-dimensional Banach space B, centered at 
expectations and with (2+cS)-th moments uniformly bounded by P2+~, where 
O< 6 <2. Suppose that the mixing coefficients ~(k) satisfy 

c~(k)~k -(1+~)(1+2/~) for some O<e_<l. (1.10) 

Then the two series defining the covariance function T of the sequence { ~ ,  v >_ 1} 
which is defined by: 

T ~ , g ) = E f ( ~ l ) g ( ~ ) +  ~ E f (~ )g ( r  ~, Ef(~k)g(~l) f g ~ B *  (1.1l) 
k ~2  k>2 

converge absolutely. Moreover, there exist constants 2 > 0 and C, depending only 
on e, 6 and the constant implied by ~ in (1.10), such that 

7z ~a n-~/2j= 1 J,; N(O,T =<Cn-)d3(l+~,2+~J.'d/3 (1.12) 
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In particular, if B is an inner product space, (1.12) can be replaced by: 

7~ ~ n -  1/2 j , N(O, T =< Cn-~d3/2( 1-ez+aj.-a'~/3 ~ (1.13) 
j = l  

b) I f  the sequence { ~ , v > l }  is @mixing with rate 

~b(k)~k -2(1+~) for some O < e < l .  (1.14) 

then the conclusions above remain valid. As a matter of fact we can replace 
(1.12) and (1.13) by 

and 

n ~ n -1/2 {j ;N(O,T =<Cn-X'd4/a(l+,d/avz+aj ~ (1.15) 
j 1 

~ (~Q.~(n-l/2 ~ j ) ; N ( O , r ) ) ~ C n - & d l / 3 ( l + p l l 3 + a  ) 
\ j = l  

respectively. 

Remarks. As a matter of fact the calculations yield 

and 

(1.16) 

2 -  - -  ( 1 . 1 7 )  
200(2 + e) 

2, = (e6)/144. (1.18) 

Theorem2. Let (X j) be a weakly stationary strong mixing sequence of random 
variables with values in the separable Banach space B such that EXj=O, 
supELIXjll2+a<p2+a< oo for some 0 < 6 <  2 and suppose that the mixing coef- 

J 
ficients satisfy (1.10). 

Let PN be a sequence of bounded operators on B with N-dimensional range. 
Assume that: 

I. ~ ( x j - e N x j )  ~ E n- ~ ~ ~ N-~ for some s > 0 uniformly in a > O, n > 1, 
j = a + l  (1.19) 

and 
IIPNII = sup IIPNx/I <N" for some r>=O. (1.20) 

Ilxll = 1 

Then the two series defining the covariance function of T, which is defined as in 
(1.11), converge absolutely. Moreover N(O, T) exists and we have: 

((  n) ,) 
7z ~ n - U 2 ~ X l  , N(O,T ~(1+-'1/3~n - '~ ,2+a l  (1.21) 

\ i=l 
s2 

where ~c- and 2 as in (1.17). 
9 + 3 r + s  

The constant implied by ~ in (1.21) depends only on g, a and the constants 
implied by ~ in (1.10), (1.19), (1.20). 
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Moreover, the consIusions remain valid for alp-mixing sequences satisfying 
(1.14). 

Using Theorem A we can easily obtain from Theorem2 the following al- 
most sure invariance principle: 

Theorem3. Let {Xj,j>I} be a weakly stationary sequence of random variables 
with values in the separable Banach space B such that EX;=O, 
supEHXi[Iz+O~p2+a<~ for some 0<6<~.  Suppose that {Xfij>l} is either $- 

J 

mixing with mixing rate (1.14) or absolutely regular with mixing rate 

f l (k)~k -(1+~)~+2/~ for some e>0. (1.22) 

Let Pu be as in Theorem2. Then we can redefine the sequence {Xj,j>I} on a 
new probability space together with Brownian motion X(t) with covariance struc- 
ture T such that 

]l ~ X ; - X ( t ) [ J  ~ t1/2-~ for some 7>0. 
j < t  

Note that, although we have an estimate for the Prohorov-distance in the 
central limit theorem for strong mixing sequences, we are not able to prove an 
invariance principle as in Theorem 3 for this case. This is due to the fact that 
Theorem A does not hold for strong mixing sequences. But a "good" estimate 
for the speed of convergence in the central limit theorem together with a 
maximal inequality always imply the law of the iterated logarithm. This on the 
other hand, implies an almost sure invariance principle with error term 
o(tloglogt) 1/2, as was remarked in Dehling and Philipp (1982). 

Theorem4. Let {X;,j>I} be a weakly stationary strong mixing sequence of 
random variables with values in the separable Banach space B such that EXj=O, 
su.p E]lXj[[2+o < oo for some 0 < 6 < 2  and suppose that the mixing coefficients ~(k) 

J 
satisfy 

c~(k)~k -(2+~)(1+2/~) for some e>0. (1.23) 

Let PN be a sequence of bounded operators on B with N-dimensional range and 
assume that (1.20) holds and that 

E H n - 1 / Z ~ ( x j - - P N X y 2 < ( I o g N )  -3~ forsome ~>1. (1.24) 
j < n  

Then we can redefine the sequence {X j , j>  1} on a new probability space together 
with Brownian motion X(t) with covariance structure T such that 

II ~ X;  - X(t)LI = o(t log log t) ~/2. 
j<=t 

Remark. For Hilbert space valued random variables this theorem was proved 
in [6] under much less restrictive assumptions, namely without (1.24) and with 
(1.23) replaced by (1.10). 
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If the random variables have values in the separable Hilbert space H, then 
Theorem 2 and 3 assume a simpler form. 

Let {Xj , j>I}  be a strictly stationary sequence of H-valued random vari- 
ables centered at expectations and with finite (2+ b)-th moments. Suppose that 
{X j, j >  1} is either q~-mixing with mixing rate (1.14) or absolutely regular with 
mixing rate (1.22). As a consequence of Theorem 8 and 9 in these cases the 
Gaussian measure N(0, T) exists, where T is defined as in (1.11). 

It is well known that T can be regarded as an element of B(H, H), the space 
of bounded linear operators from H into itself. Moreover T is compact, 
selfadjoint and has finite trace. Hence there exists an orthonormal basis (~) of 
eigenvectors of T with corresponding eigenvalues (2~) for H. Denote the system 
consisting of those ei with ~7i=t=0 by (ei) and let (2i) be the corresponding 
eigenvalues. Then every xEH can be written as: 

x = ~ (x, el) e i + L(x) 
i 

where L is the orthogonal projection from H onto the orthogonal complement 
of the closed linear span of the e~'s. 

The following corollary is an improvement of Corollary 3 of Kuelbs and 
Philipp (1980). 

Corollary l. Let {Xj,j>=I} be as above. Moreover suppose that with the ei's 
defined as above we have in the b-mixing case 

y" E(XI,ei)2 ~ N  -s for some s > 0  (1.25) 
i > N  

and in the absolutely regular case 

(E( ~ (Xl ,  ei)a)l+a/z)z/(z+a) 4 N  -s for some s>0.  (1.25') 
i > N  

2s 
Then (1.21) holds with ~ -  . Moreover the conclusion of Theorem 3 remains 
valid. 2 + 2s 

Of course the statements of Theorem 2 and 3 as well as Corollary 1 contain 
central limit theorems for weakly stationary sequences. For strictly stationary 
sequences {Xj , j>I}  with values in a separable Banach space we can prove 
central limit theorems under much weaker conditions. If the sequence 
{Xj , j> I}  is ~b-mixing, we need only finite second moments and that the 
mixing coefficients q~(k) satisfy: 

q51/2(k) < oo. (1.26) 
k__>l 

If the sequence is strong mixing, we need still finite (2 + 6)-th moments, but 
(1.10) can be replaced by 

(c~ (k)) a/(2 + ~) < co. (1.27) 
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In the special case where B is a separable Hilbert space our theorems general- 
ize theorems of Ibragimov (1962). 

Theorems 2, 3 and 4 will be applied to an example that was already treated 
before by Kaufman and Philipp (1978) and Kuelbs and Philipp (1980). 

Let c~ > 1/2 and define 

A~=~f~C[O,  1]:lf(x)-N(Y)I < l x - Y l  ~ x,y~[O, 1], 
i } 

f (0)=f(1) ,  ! f d x = O  . 

(~.28) 
By Arzela-Ascoli's theorem A~ is a compact subset of C[0, i] and hence C(A~), 
the class of all continuous real-valued functions on A~ is a separable Banach- 
space with the usual sup-norm. 

Now let {~j , j>l}  be a strictly stationary sequence of random variables 
uniformly distributed over [0, 1]. Moreover, assume that {~i, i>  1} is either qS- 
mixing satisfying (1.14) or absolutely regular satisfying (1.22) or strong mixing 
satisfying (1.10). 

We define now random variables Xj with values in C(A~) in the same way 
as Kuelbs and Philipp (1980). 

Xj(co, f )  = f(~j(co)). (1.29) 

The following result is a partial improvement of Theorem 6 of Kuelbs and 
Philipp (1980). 

TheoremS. Let X i be defined as in (1.29). Then there exists a Gaussian measure 
# on C(A~) such that: 

(( nll  
7Z ~,~ n -1/2 2 Xj  ;# ~ n  -1r for some • > 0 .  

\ j = l  

a) I f  {~j,j> 1} is O-mixing or absolutely regular, we can redefine {X j , j>  1} on a 
new probability space together with C(A=)-vaIued Brownian motion X(t) such that 

]r ~ X i - X ( t ) [ I  ~ t~-;~ for some 2>0.  
j<=t 

b) I f  {{ i , j> 1} is strong mixing satisfying (1.23), we can redefine {Xj,j>= 1} on a 
new probability space together with C(A,)-valued Brownian motion X(t) such that 

][ ~ X s - X(t)[I = o ((t log log t) l/2). 
j<_t 

As a second example we shall consider C(S)-valued random variables. Let 
(S,z) be a compact metric space and let C(S) be the set of all continuous real- 
valued functions on S. C(S) equipped with the sup-norm is a separable Banach 
space. 

Since S is compact, there exists for every ~ > 0 a finite number of e-balls 
that cover S. Denote the minimal number by N~(S, e). N~(S, e) is a non-increasing 
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function and hence there exists a (not necessarily unique) inverse function g(x), 
say. 

Let { X j , j>  1} ={X~(s),j> 1} be a weakly stationary sequence of C(S)-valued 
random variables centered at expectations and with (2+6)-th moments uni- 
formly bounded by Pz+~. Again suppose that {Xj, j > l }  is ~b-mixing or 
absolutely regular with the usual mixing rates. 

Let R,(s)-- ~ X ~(s) and suppose 
j < n  

supEsup{n-l lR,(s)-R,(s ' )[z:z(s ,s ' )<e,  s,s'~S} <=u(e)$O (1.30) 
n>=l 

as e ~ 0 .  Then the sequence { n - I / Z R , ; n > l }  is tight and hence with the usual 
arguments one can show that {X~,j> 1} satisfies the central limit theorem. If, 
moreover, uog(x) goes to zero fast enough as x ~ o o  we can even improve this 
and get the following result: 

Theorem 6. With the notation as above assume 

u(g(n))~n -s as n--,oo for some s>0.  (1.31) 

2s2 
Then (1.21) holds with K -  and the conclusion of Theorem 3 remains valid. 

9 + 2 s  

Remark. In a forthcoming paper Marcus and Philipp (1982) prove similar 
almost sure invariance principles, but only for independent random variables. 

As a by-product of the proof of Theorem 1 we obtain the following result 
which is useful in applications: 

Theorem7. Let kt and v be two Gaussian measures on IR a with mean 0 and 
covariance operators T and S. Then the following estimation for their Prohorov- 
distance holds: 

n (#, v) _-< C hi T -  S II I/3 dl/6(1 + log(I] T -  S IL[ 1 d)l 1/2) (1.32) 

where C is an absolute constant. 

Remark. In (1.32) llAl[1 denotes the trace class norm of A, which can be defined 
for compact operators on a separable Hilbert-space H. The definition of JI II1 
goes as follows: (for the details see Kuo (1975,) 

A can be written in the form A = U T ,  where T is a positive compact 
operator on H and U is an isometry mapping the range of T into H. Then 

IIAItl = ~ ,~., 
n = l  

where the 2,'s are the eigenvalues of T. 
If A is also self-adjoint, there is a simpler representation of IIAll 1. 

Lemma 1.1. For a compact and self-adjoint operator A on H we have: 

hlAIIl=sup ~ I(Ae.,e.)l, 
(e~) n= 1 

where the supremum is taken over all orthonormal bases (e,) of H. 

(1.33) 
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Proof i) If A is in addition positive definite, (1.33) trivially holds: In this case 
we have for every complete orthonormal system (e,): 

~. ](Ae.,e.)[= ~ (Ae.,e.)= ~ 2.=rlAl] 1. 
n = l  n = l  n ~ l  

ii) In general, we have the following spectral representation of A: 

Ax= ~. 2.(x,G)e ., 
n = l  

where the e,'s are the eigenvectors of A and the 2,'s are the corresponding 
eigenvalues. We define: 

A+(x) :  ~ 2"+ (x,e.)e. A-(x)= ~ 2 2(x ,e . )e . ,  
n = l  n = l  

where 2. + =max(2,, 0) and 2 2 = m a x ( - 2 , ,  0). 

One can easily see that rlA]Pa= ~ I,Z.I = IIA+II1 + IIA-I/1 and hence: 
n = l  

HAlPl = ~, ]2.[<sup ~ KAe.,e.)] 
n =  1 (en)  n = 1 

<sup ~ (A +e . , e . )+sup  ~ (A-G,e.) 
( e . )  n =  1 (e~) n =  1 

=[IA +[11+ [IA-IIl=HAlll 

which proves (1.33). [] 

Let us finally briefly indicate the contents of the various sections. Section 2 
gives estimates for the Prohorov-distance of two Gaussian measures with 
different covariances. Section 3 contains lemmas on mixing random variables. 
Most of them are known, but we list them for the sake of completeness. 
Section4 gives central limit theorems, weak and distribution type invariance 
principles for mixing sequences. In Sect. 5 we prove Theorem 1, part (b), by 
combining Theorem A and B. Since its proof does not work for strong mixing 
sequences, we need a different proof for part (a) of Theorem 1, which we give in 
Sect. 6. Section7 contains the proof of Theorem2, Sect. 8 the proof of Theo- 
rem3 and Corollary 1. Theorem4 is proved in Sect. 9 and in Sect. 10 and 11 we 
treat the examples given in Theorem 5 and Theorem 6. 

2. Estimates for the Prohorov-distanee of  Gaussian Measures 

Later in this paper we shall often face the problem that we have to estimate 
the Prohorov-distance of two mean zero Gaussian measures with known co- 
variances. A first almost trivial, but nevertheless sometimes useful result in this 
direction is 
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Lemma2.1. Let X and Y be IRa-valued square integrable random variables with 
mean zero. 7hen we have the following estimation for the Prohorov-distance of the 
corresponding Gaussian measures: 

re(N(0, coy X); N(0, coy g)) -5_ (E 11 X -  Y II 2)~/3. (2.1) 

Proof. We consider the random variable (X, Y) in N2a. (X, Y) is square integra- 
ble and hence there exists a Gaussian measure # on IR 2e with mean zero and 
same covariance. Let Z be an N2d-valued random variable with distribution/~ 
and denote by pr~ and pr 2 the projections of p,2a on the first d and the last d 
coordinates. 

Then the r.v.'s pr lZ,  pr2Z, pr lZ-pr2Z have alle Gaussian distributions with 
the same covariance as X, Y, X -  Y 

By Cebyw inequality and the fact that E]hXll2=trace(covX) for any 
mean-zero random variable X, we get: 

n(g(o, coy X); N(0, coy Y)) _<_(E IIpr 1 2 -  pr 2 ZII 2)1/3 
--- (trace(coy (pr I Z - pr:  Z))) 1/3 

=(EI IX -  yll2) 1/3. [] 

Unfortunately, in most problems we know only the covariance matrix of the 
Gaussian measures, but nothing about the L2-distance of related random vari- 
ables. In order to obtain estimates for the Prohorov-distance in this case, we 
shall first prove a general result about Gaussian measures in Banach spaces. 

For this we recall the notion of differentiability of functions with domain 
and range in a Banach space. 

For  two Banach spaces E, F we define: 

L(E,F)= {qS: E ~ F L ~  is bounded and linear}. 

A function f :  E--,F is said to be differentiable at the point xo~E , if there exists 
a ~ L ( E , F ) ,  such that: 

lira II f (Xo + h) - f (Xo) - 0 (h)ll = O. 
h~O Iihll 

In this case we define the derivative i)xo f of f at x 0 to be qS. In the same way 
we can define higher derivatives of f, which we denote by D~f. For fixed x~E 
the n-th derivative D~f is an element of L(E .. . .  ,E;F), the space of all con- 
tinuous n-linear functions from E x . . .  x E into F. (See also Cartan (1971).) 

For n-times differentiable functions f : E - ~ N  an analogue of Taylor's theo- 
rem is valid. 

Lemma2.2. Let f : E - ~ N  be n times differentiable and let x, heE. Then 

1 
�9 - - D  "-~ f ( h , . . . ,  h) + R~(x, h , f )  f ( x  + h) = f i x )  + Dxf(h ) + 1 D 2  f(h, h) +.. .  + (n - 1)! x 

(2.2) 
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where l 
R,(x, h, f)  ~- ~ ~ sup IID~f lj Hh[I n. 

For the proof of this lemma see Cartan (1971), Theorem 5.6.2. 
We can now prove a result about the difference of the integrals of certain 

functions with respect to two Gaussian measures, which will be a key in the 
proof of Theorem 7. 

Proposition2.1. Let E be a separable Banach space and let f :  E ~ I R  be a three 
times differentiable function with bounded third derivative. I f  # and v are Gauss- 
sian measures on E with mean zero, we have: 

I~ f d # -  ~ fdv[ < �89 sup [~ D~ f(y,  y) d(# - v)(y)J. (2.3) 
E E xEE E 

Proof We shall prove this theorem by using the so-called operator method, 
due to Trotter (1959). Let # be a probability measure on E; we define an 
operator W~ on C ~ the class of all bounded real-valued equicontinuous func- 
tions on E, in the following way: 

Wuf(x) = S f ( x  + y) d#(y). 
E 

If #, #1 .. . .  , #,, v, Vl,..., v, are probability measures on E, the following facts are 
easily proved: 

i) W~f~C~ pl Wupl < 1, 

ii) W,, v = % 0  Wv, (2.4) 

iii) Jr Wu ...... , . f -  W~l ....... fll  _-< ~ IP wu, f -  w~,fl[. 
t l  

i = 1  

Now let S and T be the covariance operators for the Gaussian measures # 
and v. We define: 

#,=N(O,n-IS) ,  v ,=N(O,n- tT) .  (2.5) 
Hence: 

# = # , ,  ... , # ,  v = v , *  ... , v , .  (2.6) 

Using (2.4) and (2.6) we conclude: 

I ~ f (x) d #(x) - ~ f (x) dv(x)] = [W u f(0) - W~ f(0)[ 

< l p w u f - w ~ f r l < n J I W u . f - w v . f l j .  (2.7) 

By definition we have 

FI W u . f -  W~.f J] = sup 15 f ( x  + y) d(#, - v,)(Y)I. (2.8) 
x 

We fix xeE,  and using the Taylor-expansion of f about x and the linearity of 
D x we get: 

f (x + y) d(#, - v,)(y) = ~ f (x) + D x f (y) + �89 D 2 f (y, y) + R 3(x, y, f )  d(#, - v,)(y) 

= �89 ~ D 2 f(y,  y) d(#, - v,)(y) + ~ R 3(x, y, f )  d(#, - Vn)(y). (2.9) 
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By (2.5) and bilinearity of D~f  we have then: 

= 1~ D2 f (y ,  Y) d(# - v)(y). D~2 f(y,  y) d (# , -  v,)(y) (2.10) 

From (2.2) we get: 

[~ R3(x, y, f )  d(/~, - v,)(y)]<-~ sup [] D 3 f ][ 51]Y]I 3 d(#n + vn)(y) 
x 

=~sup  I[D3fl] n-3/2 ~ llylla d(#+ v)(y) 
x 

= Cn -3/a (2.11) 

where C is independent of n. Combining (2.7), (2.8), (2.9), (2.10) and (2.11) we 
obtain: 

I~ f(x)  d# (x) - ~ f(x) d v (x)[ _< �89 sup I~ D2~ T(Y, Y) d(# - v)(Y)[ + C n-t/2 
x 

Passing to the limit finally yields (2.3). []  

The usefulness of Proposition2.1 lies in the fact that, at least in Euclidean 
spaces, the right side of 2.3 can be estimated in terms of the covariance 
operators of # and v: 

In what follows let E be the d-dim Euclidean space Na. By Schwartz's 
theorem we know that D~f  is symmetric, hence applying the principal axis 
theorem gives us the existence of an orthonormal basis e~ .... , e~ for Na such 
that: 

d 

D~f(y, y) = ~ 2~(y, e:[) 2 
i ~ 1  

where ):~ are the eigenvalues for D 2 f  So if T and S are the covariance- 
operators for the Gaussian measures # and v, we get using (2.3) and (1.33): 

d 

]~ fd# -~ fdv[  <=�89 sup ~ 12~ 11 ( (T-  S)e~; e~)] 
x i ~ l  

<�89 IID2fl[ 11 T -  S]] z. 
x 

We summarize this result and get: 

Corollary2.1. I f  in Proposition 2.1 E is replaced by N a and T and S are the 
covariance-operators o f#  and v, then we have: 

IS f d # -  ~ fdvJ<�89 T - S  ~. (2.12) 

In order to obtain an estimate for the Prohorov-distance of # and v we will 
apply Corollary 2.1. to the smooth "indicators" of sets, as defined by Yurinskii 
(1977). 
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Lemma 2.3. Let A c l R  d be a closed set, then for any e~(O, 1) there exists a three 
times continuously differentiable function gp(x), such that: 

o_<_4(x)_<_l 
r for x~A (2.13) 

/ 1\ll 2 
qb(x)<2e for x e l R a \ A  ~* where e , = 4 e l l o g e )  dl /2+4ed U2, 

iiDx3 q~l[ < 2 e - 3 d -  1/2 

IID2~ll~e-2d -1/z 

IID~ 41l <=e- t d -1/2 

(2.14) 

Proof All the statements of the lemma except the last two inequalities are 
proved in Yurinskii (1977), Lemma4, thus we only have to estimate IlD~4)ll 
and I]Dxq~ll. 

Recall from Yurinskii (1977) 

~(x)= j" ~(x+z)g(z)dz 
IR a 

[ (z,~)] 
where g(z)=(2uea) -d/2exp ~ 2e 2 ] and where 

I[Dx~[l <=d- l/2 e- ~. 
As is proved in Yurinskii (1977), we have 

q~ is a.e. differentiable with 

D x ~(u) = ~ D~+ ~ ~)(u) g(z) dz, 

D 2 ~ (u, v) = - ~ D~ ~(u) D~_ ~ g(v) dz. 

(2.15) 

(2.16) 

Using (2.15) we get the last inequality in (2.14). Using (2.16) and the fact that 

we get 

1 
Dzg= - - f i g ( z ) .  z 

1 
v)l <I ID~ q~(u)l ~(z-x,  v)g(z-x) dz 

< [] u J[ d -  1/z e- l e- 2 y [(z, v)[ g(z) dz 

< JFUll d -  t /2~-  3 0 (z, v) 2 g(z) dz) 1/2 

= Ilull d-~/2e-3(~2 ii vii 2)1/~ 

=]lUll Ilvlld-l/2,?. -2. [] 

The following almost trivial lemma enables us to prove Theorem 7. 
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Lemma2.4. Let #, v be two Borel measures on IR d, A ~ I R  d a BoreI set. I f  
~b:]Rd-+[0, 1] is a measurable function such that: 

~b(x )> l -2e  for x~A, 

~b(x) <2e for xelRd/A ~* 

then #(A) < v(A ~*) + 4e + 6 
where 6: = [~ ~ d ( # -  v) l. 

Proof of Theorem7. Take ~=llT-Sll~/3d -~/3 and observe that in case e > l ,  
(1.32) is trivially valid. Thus we can assume without loss generality e < 1. 

Let ~b be as in Lemma2.3. By (2.12) and (2.14) 

[~ r  r189 ~ 

=�89 dl/6 I] T-S]I ~/3. 

Then we get by Lemma2.4: 

~(#, v) < 4 II T - S  II ]/~ d-  1/3 dl/aKlog (i I T -  S II ~ t/3 d l/3))~/2 q_ 4 [[ T - S  II I/3 dr~6 

+4 II T-SI] 1/3d- I/3 +�89 II T -S l l  l/3 

=<CIIT-SIII/3d ~/6 (1 + log IIT-SII~d ~/2) . 

3. Some Lemmas on Mixing and Absolutely Regular Random Variables 

Lemma 3.1. Let ~ and 15 be two a-fields. Define 

a(~, 15) = sup [P(A ~ B) - P(A) P(B)[ 

the supremum being extended over all A ~  and B~15. Let ~ and t 1 be random 
variables with values in a separable Hilbert space H measurable ~ and 15 
respectively. I f  ~ and tl are essentially bounded then 

IE(~,tl)-(E~,Etl)] < 10 ~(~, ~)II~[I oo II r/ll oo. (3.1) 

Here I1"11oo denotes the essential supremum with respect to H. Moreover, let 
r , s , t> l  with r - t  + s - l  + t - l -= l .  I f  ~ and tl have finite r-th and s-th moments 
respectively then 

/E(~, rl) - (E~, Etl){ < 15~'/'(~, 15) fl ~[Ir IItl tls. (3.2) 

For real-valued random variables (3.1) is due to Volkonskii and Rozanov 
(1959) with I0 replaced by 4 and (3.2) is due to Davydov (1970). The proof of 
Lemma 3.1 in the general case was given by Dehling and Philipp (1982). 

Lemma3.2. Let {~v,v>l} be a weakly stationary sequence of H-valued random 
variables centered at expectations and with (2+ 6)-th moments uniformly bounded 
where 0 < 3  =< 1. I f  {~,, v> 1} satisfies a strong mixing condition with mixing rate 
(1.27), then 

E ~=a+la~" Iv 2=a2n+~ (3.3) 
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and in fact 

where 

a + n  2 

E ~=~+ ~ < n ( l +  ~ (.(/))6/(2+6)supll~ll~+~ 
j__>l v > l  

(3.4) 

cr2=EJl~l[12+2 ~ E(~, ~v). 
v > 2  = 

For a proof of this see e.g. the proof of Lemma 2.3 in 1-14]. 

Remark. (3.4) holds without the assumption of weak stationarity. 

Lemma3.3. Let { ~ , v >  1} be a sequence of random variables with values in a 
separable Banach space satisfying a strong mixing condition (1.1) with mixing 
rate 

~(k)~k  -(l+~)(l+z/~) for 0 < e < l .  (3.5) 

Suppose that their (2 + (5)-th moments are uniformly bounded by b, where 0 < c5 < 1 
and that for some a < oo 

a+n  1{2 
E ~=~+i~ <a2n for all a>0, n> l .  (3.6) 

Then for all a>_O and all 0< c~_<ec5/8 

a + n  2 + e  

where the constant implied by ~ only depends on e, (5 and the constant implied by 
in (3.5). 

In the real-valued case Lemma3.3 is due to Sotres and Malay Ghosh 
(1977). But as was already remarked in Dehling and Philipp (1982) their proof 
still works for B-valued random variables. 

For qS-mixing sequences the three lemmas stated above can be strengthened 
considerably. 

Lemma 3.4. Let ~ and 0 be two a-fields and define 

~b (~, t5) = sup IP(B]A) - P(B)[ 

the supremum being extended over all Azq~ and Br Let ~ and r l be random 
variables with values in a separable Hilbert space H measurable q~ and (5 
respectively. I f  p, q> l satisfy p - l + q - t = l  and if ~ and ~ have finite p-th and 
q-th moments respectively then 

]E(~, ~l)-(E 4, Erl)l < 2O ~/P(~, (5)[J~.l[v I[~lllq. (3.7) 

The proof of this lemma can be found for real-valued random variables in 
Billingsley (1968), p. 170, but his proof works also for H-valued random 
variables. The same is true for the following lemma. 



408 H. Dehling 

Lemma3.5. Let {{v,v> 1} be a weakly stationary sequence of H-valued random 
variables, centered at expectations and with finite second moments. Suppose that 
{{~, v>= 1} is O-mixing and that the mixing coefficients O(k) satisfy (1.26). Then 

and 

glln-1/2 2 ~vll 2 =0"2 -~ O(1) (3.8) 
vK=n 

glln -1/2 ~, ~vl12~_~ lq-k=210I /2(k)  EII~ll l  2. 
vNn 

(3.9) 

Lemma3.6. Let B be a separable Banach space and {{~,v>l} be a O-mixing 
sequence of B-valued random variables centered at expectations and with (2 + 6)-th 
moments uniformly bounded by P2 +a where 0 < 6 < 1. I f  for some a < oo 

holds, then we have 

a+n 2 
E ~ 1  ~ = 7 +  <~ a > 0 ,  n > l  (3.10) 

a•n ~v 2+6 
E <.~ nt  + a/2(0"2 + a -1- p2 +6 ) (3.11) 

v = a + l  

where the constant implied by ~ depends only on 0 and (~. 

Remark. Note that the only requirement on 0 is 0 (k )~0 .  Lemma3.6 was 
proved by Kuelbs and Philipp (1980) under the additional restriction that 0(k) 
tends to zero at a certain rate. 

Proof of Lemma3.6. The proof follows completely the lines of Doob (1953), p. 
225-227 and only a few minor changes are necessary. First note that without 
loss of generality we can assume a z+6 +P2+a < 1. Then define 

~ + .  112+6 
c , = s u p  E ~, ~v �9 

a v= a-I- l 

As in Doob we can show that cn<bn ~+~ for some constant b depending only 
on 0 and 6. For the proof of (7.10) in Doob we have to use of course our 
Lemma 3.4. Finally note that because of our definition of c n we do not need 
stationarity. []  

Now that we have stated inequalities for strong and 0-mixing random 
variables, the reader may wonder whether there are similar inequalities for 
absolutely regular sequences. Unfortunately no special inequalities are known 
for these sequences and all we can do is to use the ones for strong mixing 
sequences. The only reason for the fact that our main results for absolutely 
regular sequences are worse than for 0-mixing sequences is the fact that the 
above lemmas yield worse estimates for the strong mixing than for the 0- 
mixing case. 

Now let H be a separable Hilbert space and denote by Y the set of all 
covariance operators of Gaussian measures on H. Let 0 ~ be equipped with the 
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metric d, defined by 

d(S, T)= [IS- TIll 

It is easy to see that (5:, d)is a complete metric space. 

Lemma3.7. a) Let {~/,i>1} be a weakly stationary O-mixing sequence of H- 
valued random variables with E ~ i = 0  , EiI~iJ[2<~. Assume that the mixing 

coefficients satisfy (1.14). I f  the covariance-operator of n-,/2 ~ ~i is denoted by 
i=1 

T,, then (T,) converges in ( ~  d) to a limit T, say. Moreover T is given by 

(Tx, y)=E(~I,x)(~I,Y)q- E E(~t,x)(~k,Y)+ E E(~k,X)(~l,Y) (3.12) 
k~2 k~2 

and the following estimate holds: 

FIT. - TJ[, ~ n - ~ E  J[ ~ [I 2 (3.13) 

where the constant implied by ~ depends only on the one implied by ~ in (1.14) 
and on a. 

b) Let {~i,i> 1} be a weakly stationary strong mixing sequence of IRe-valued 
random variables centered at expectations and with (2 +6)-th moments uniformly 
bounded by P2+~. Assume that the mixing coefficients co(k) satisfy (3.5). Then the 
two series defining T as in (3.12) converge absolutely and the following estimate 
holds 

.~ 3,-~,,2(2+~)-~ (3.14) IIT,-T]I1 . . . .  v2+a - 

Here the constant implied by ~ depends only on ~ and the constant implied by 
in (3.5) but not on d. 

Proof. a) First we show that T as defined in (3.12) belongs to 50. By Lemma 3.4 
and weak stationarity we have that: 

t(Tx, x)l < E(~,x)  2 + 2  ~ E(~l,x)Z(r - 1)) 1/2 
k>2 

~E(G,x)2(1 + 2  ~, k-(I+~)). 
k > l  

Hence for each orthonormal basis {% n> 1}: 

F, [(re., e.)l ~EI14111 ~(1 +2 y k-'-~) 
n=l  k> l  

to show (3.13). By weak stationarity we have, putting It remains 
s . = n  -1/2 Y, 4, 

i<n 

(T. x, y) = e(S.,  x) (&, y) 
1 ~ =E(Gx)(~,y)+~ E (n-k+ 1)E(Gx)(G,y) 
'~k=2 

n 
+1 E (n-k+ 1) EG , x) (G y). 

Ilk= 2 
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Hence for any orthonormal basis (e j) of H we have: 

((T-- T,)e~,e~)<=2 (k=~+ E(~,,e)(~k,eJ) + k~2~@J-E(~,e)(~k,e) ) 

< 2  1/2(k- 1) + ~/2(k-1 E(~l,ej) 2 
k = n + l  k = 2  n 

k - l - ~ +  E k-k-l-~ E(~l, eJ) 2 
k = n  k = I  n 

< n- ~E(~. e l .  

Summing over j  and using (1.33) we get (3.13). 

b) The absolute convergence of the series in (3.12) follows by the same kind 
of computations as in (a). Instead of Lemma3.4 we just have to use Lemma3.1 
with s=t--(2+[) -~ and r = 5 ( 2 + 5 )  -1. In the same way we can show that 

r~--e t 1 2 ( 2 + ~ ) -  J ((T,-T)ej,  e ) ~ .  v2+~ . 

Summing over j then yields (3.14). 

Lemma3.8. Let 3 and (5 be two a-fields and define ~=~(~,(5)  as in Zemma3.1. 
I f  ~ is (5-measurable and E[~lr< o% then we have for 1 <r <p, 

1 r r 

EIE(~I3)-E~I~< 15c~ -~(EI~lV)~. (3.15) 

Proof. For the proof we use a trick of Philipp and Stout (1975). Assume 
without loss of generality that E~ =0. Then we get using (3.2) 

E ]E(r 13)1 ~ = E(E(~ 13) sgn E(~ 13) [E(r 13)[~- ~) 

= E(~ sgn E(~ 13) IE(~ 13)(-  t) 
r - - 1  r 

< 15~ ~-;(EI~I~),v(EIE(~IF)Iv) 
r r 

Lemma3.9. Let {~,,v->_l} be a strong mixing sequence of B-valued random 
variables, centered at expectations and with (3 + 5)-th moments uniformly bounded 
by P 3 + o for some 5>0.  Suppose that the mixing coefficients ct(k) satisfy 

ct(k)~k -(1+~)(3+9/~) for some e>0.  (3.16) 

I f  a2=supE]ln-~/2 ~ ~,[I z, then we have 
v<=n 

E <_ Cn3/Z(a3 + ,~3/(3+~)~ (3.17) 
- -  F 3 + ~  ! 

where C is a constant depending only on e, 5 and the constant implied by ~ in 
(3.16). 
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Proof We follow the lines of a similar proof in Kuelbs and Philipp ([14]). For 
given n define 

k = [ n  "}-~] m = [�89 - k  

where 7 is chosen in such a way that ( �89189 Then ~(2k)<n -�89 
Define 

a + m  2 m + 2 k  

v = a +  1 v = a + m +  2 k  + l 

3 + 6  
Now put in Lemma 3.8. r --3 - 2 ,  P = ~  to get 

EIE(lFS.H2193~.l+m)_ErlS]r213/2~ Cn -�89 - 3/(3+,~))(E]lSal13+6)3/3+,~ 

<_ Cn-3/2n 3 

< Cn3/2. 

The rest of the proof follows now as in [14], p. 1016. 

4. Some Central Limit Theorems 

The following central limit theorems improve recent results of Kuelbs and 
Philipp (1980) and of Dehling and Philipp (1982). 

Theorem8. a) Let {Xj , j> 1} be a stationary sequence of random variables with 
values in a separable Hilbert space H centered at expectations and with finite 
second moments. Suppose {Xj , j> 1} is J-mixing and that the mixing coefficients 
O(k) satisfy (1.26). Then the two series defining T, which is defined as in (1.11), 
converge absolutely and n-1/2 2 X v converges weakly to a Gaussian measure 

v ~ n  

with covariance T. 
b) Let {Xj,j>= 1} be a stationary sequence of B-valued random variables with 

the same properties as in a). Moreover assume there exists for  each p a 
measurable map Ao:B ~ B with finite-dimensional range, such that 

E A p X I : 0 ,  EI[ApX1H2<~ 
(4.1) 

n 

t/2j~=t(X ~ - A p X )  <p. E n -  

Then the conclusion of a) hold. 

Theorem 9. Theorem 8 continues to hold for strong mixing sequences with finite 
(2 + 6)-th moments if the mixing coefficients satisfy (1.27) and if 4.1 is replaced by 

EAoXI =O, EI[ApXl ll2 +~ < oo 
(4.1') 

E n-1/2~= ( X j - A p X )  <p. 
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Proof of Theorem 8. b) For N-valued random variables this is just Theorem 1.5 
in Ibragimov (1962). Using the Cram&-Wold device we get the theorem if 
B = N e. Then we can proceed as in Proposition 4.2 of [14]. 

a) This can be proved as Corollary 2 in [14]. 

Proof of Theorem 9. This time for N-valued random variables the result is just 
Theorem 1.7 in Ibragimov (1962) and the remaining part of b) follows as above. 
Part a) can again be proved as Corollary2 in Kuelbs and Philipp (1980) if we 
replace their (4.33) by our (3.4). [] 

Although we have been unable to prove an almost sure invariance principle 
under the assumptions of Theorem 8 and 9, we still have a functional central 
limit theorem. We define a random element Z,  of CB[0, 1], the space of all 
continuous functions f :  [0, 1] ~ B, by: 

( n - 1 / 2 2 X  j if t=k /n  
Z,(t, co) = ~ j <= k (4.2) 

(linear in between. 

Theorem l0. Let {Xj , j>I}  be a stationary sequence of random variables with 
values in B or H such that the assumptions in Theorem 8 hold. Then the sequence 
{Z, ,n>1} defined in (4.2) converges in distribution to a B-valued Brownian 
motion on [0, 1] with covariance structure T. 

Proof We apply Theorem 3.4. of Eberlein (1979). It is easily seen that the array 
{n- t /2Xj ,  l < j < n ,  n > l }  satisfies Eberleins conditions and this proves our 
theorem. 

Theorem l l .  a) Let {X j , j>  1} be a stationary sequence of random variables with 

values in a separable Hilbert space H centered at expectations and with finite 
(2 + (5)-th moments. Suppose { X j , j  > 1 } satisfies a strong mixing condition (1.1) with 
rate of decay (3.5). Then the sequence { Z , , n > l }  defined in (4.2) converges in 
distribution to a B-valued Brownian motion on [0, 17 with covariance structure T. 

b) Let { X j,j  > 1} be a stationary sequence of B-valued random variables with 
the same properties as in a). Moreover assume there exists for each p a 
measurable map Ao:B--* B with finite-dimensional range, such that 

EApX~=O, EIIX 1 -AoXl t l2+~<p 2+~, 
(4.3) 

E[In -t/2 ~ (X j -  ApX j)IIZ <=p 2. 
j ~n  

Then the conclusion of part a) holds. 

Remark. The assumption in a) are exactly the same as in Theorem 1 of Dehling 
and Philipp (1982), where an almost sure invariance principle is proved. 

Proof b) We first show that the sequence Z,  converges in distribution to some 
probability measure on CB[0,1]. If ~ denotes the Prohorov distance on the 
space of all measures on CD[-0, 1], it is sufficient to show that the distributions 
of Z,  form a Cauchy sequence with respect to re. Let Z,  p be the random 
element of CB[O, 1] defined as in (4.2) with Xj replaced by ApXj. Then we 
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know by Theorem 4 of Kuelbs and Philipp (1980) that for fixed p the sequence 
(Z, p) converges in distribution as n ~ .  If we can show that ~z(Se(Z~), ~ (Z , ) )  
converges to zero uniformly in n as p ~ 0, we are done. 

From (4.3) and Lemma3.3 we know that 

n 2 + c t  

E Yl-1/2j 2=I(XJ-ApXj) ~ Cfl 2+~ 

for some constant C, where ~=~6/8. Hence by stationarity 

n 2 + ~  

E j~=k(Xj-ApXj) <=Cp2+~ln-kl t+~/2 

If we define M,P=max tl ~ (Xi-ApXj)I[, then Theorem 12.2 in Billingsley (1968), 
k<= n j<=k 

which continues to hold for Banach space valued random variables, implies 
that for all 2 > 0 

P{MP, > 2} < K2-(2 + ~)n 1 +~/2,o 2 + ~. 

1 2 + ~  

If we put J~=K 3+~ .n~/2p 3+~ we get 

1 1 

P{MP,>nl/2K3+,p~}<K3+~p ~ where 7=(2+~) (3+c0  -~. 

Since IlZ,-Z,Vlr <n-i/2M~, this implies that P([IZ,-ZP, ll > Cpr)< Cp ~ for some 
constant C and hence 

~(d(z.), ~(z.;))< c f .  

To finish the proof, we have to show that the only possible limit point for the 
sequence { I1,} is Brownian motion with covariance structure T. But this can be 
done by a minor modification of the proof of the corresponding part of 
Theorem3.1 of Eberlein (1979). Note that in his proof of this part strong 
mixing is sufficient and that all the other assumptions are easily verified, since 
we work with a sequence of random variables rather than with an array. Part 
a) follows from part b) in the usual way. 

5. Proof  of Theorem 1, Part h) 

First we prove a special case of Theorem 1 where B is the d-dimensional 
Euclidean space and where X i are independent. We state this result separately. 

Proposit ion5.1.  Let X1, . . . ,X ,  be independent IRa-valued random variables with 
EXi=O, EllXill2+~ < ~ .  I f  #, and v, are defined as in TheoremB, then 

7z(#,, v,)< c n-~/s ~,41/4 U2+~t ~"1 /~  11 + Ilog(n- ~/2 d-  1 p2 + o)la/2) (5.1) 

1 " 
where p2+~=~ ~ EIIX~II 2+~ and c is again an absolute constant. 

i = I  
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that  n-~apz+a<l. Define" 

we define for every n e N :  

p(n) = [nl/2], q(n) = [nl/3], l(n) = ~ (5.6) 

and we get 
///1/2 ~ l(n) ~ F/1/2. (5.7) 

Proof. Without  loss of generality we can assume 
Yi=Xi l{llx~l L _<_r /~i=EY~, Z i =  Y~-/31. Then we have: 

g ]lZil 13 <=4Ell Y~I[ 3 =4gl[xibl3 l{llx, Li-_<v~ 

< 4 E  It X~ll 2 + a n+" -~) 
1 n 

P3 = ~ x  E IIZ, II a < 4n+<t-a)p2 +a" 

Thus we have by (1.8): 

i ,0 n ~,~ n - -  1/2 Z i ; N(O, c o v ( n -  1/2 Zi 
i = l  f = l  

1 - ~  i-6 

=<Cda/4~t/4v2+a-" 8 n 1/8(l+llog(d-ln 2 n-1/2p2+o)[1/2 ) 

= Cd 1/4 p1/4+a n- a/8 (1 + Ilog (d- 1 n-  6/2 P2 + 6)11/2). (5.2) 

Since 
ElhXi-Zi[I 2 <-_EIIX~- Y~II 2 = E  IIX~II 2 l~llx, N _>_r 

<=n-6/2EIIXIN 2+6 
we have: 

1 n i n ]12 t ~ ) /n- l&EllXi l [2+a\n-a /2  

=p2+an -6/2. 

Using this, Cebygev's inequality and Lemma 2.1 we get: 

(( ) (  ~ n - 1 / 2~X  i ;Sf n - 1 / 2 V Z ] ~ < n  -a/6,,1/3 ,]]= ~'2+6, (5.3) 
\ i=1  i = l  

7"f,(N(O, cov(n-112i~lXi))'~N(O, cov(n-1/2i~=lZi)))~vl-o/6p1913+6. (5 .4)  

Now using (5.2), (5.3), (5.4) we get the desired result. 

Remark. Instead of (5.1) we will often use the following inequality. 

~(#n, Vn) -~ (".-6/9/11/3 n 2 / 9  (5 .5)  ~ ' ~  ~ 1"2+6" 

Now we conclude the proof of Theorem 1. 
First we shall prove (1.16) and (1.18). Since all d-dimensional inner-product 

space are isometrically isomorphic, we may as well assume that  B = I R  d. Then 
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For the moment let n be fixed. We define blocks H j, 1 <j < l, and I j, 1 <j < 1 + 1 
of consecutive integers such that: 

card Hj = p, card Ij = q 1 < j  < l 
(5.8) 

card I z + 1 = n - l(p + q) 

and the order of the blocks is Hi, 11, H 2 . . . .  , Hi, 11, It+ 1- We further define 

Xj= ~ r l <j<l  
wHj (5.9) 

Zj= ~ ~ 1 =<j=</+l. 
v~Ij 

~ ,  l / + 1  

Hence ~j= ~ Xj+ ~ Zj and therefore using Lemma3.5 we get 
j = l  j = l  j = l  

E n- z 1/2j~j____l 2 1/2 2 X j - n -  
j = l  

= n - l E  t~,lzj" 2~n-l(lq+p ''~'~2/(2+6)4~'-l/6''2/(2+6)-~AJU2+6 -'--.,~ /..'2+6 

IIJ =1 II 

which implies 

~ (~Q~(n-1/ej~=lXJ),~(n-1/2j~=l~j))~n-1/18(pl/3+6~l). (5.10) 

By Theorem 2 of Berkes and Philipp [-2] we can redefine the sequence (X j, 
1 <j<=l) on a new probability space together with a sequence (Yj, l < j < l )  of 
independent random variables such that Xj and Yj for each j have the same 
distribution and such that: 

Hence 

P{ l lXj -  Yj]I => 6 qS(q)} < 6 q5 (q). 

1 1 
g(L(n-1/2j~=lXj),L(n-1/2j~=lYj))<=614o(q)~n-*/6. (5.11) 

Now we are going to apply Proposition 5.1 to the sequence {l*/2n-1/eyj, 
1 < l<j}. By Lemma3.5 and 3.6 and by definition of I and Yj we know that 

El]ll/Zn-1/2 Yj[12+O~p2+ 6. (5.12) 

If we denote by T,' the covariance of 11/2n -1/2 Yj, then we get using (5.5) 

n -*/2 ,N(0, T , ) -~o  ~ e2+a . . . .  t t-2+a- 
j = l  
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We finally have to estimate n(N(0, T,'); N(0, T)). This will be done in two steps. 
First we get using Lemma2.1: 

n(N(0, T~'); N(0, Tp)) < (EII I(1 (P- 1/2 _ 11/2 n-  1/2)II 2)1/3  

<~ ( n -  1 / 2 ( n l / 2  - -  (/9 l)1/2))2/3(E lip- a/2 I71 II 2)1/3  

(n-  l(lq + p + ~1~2/3 n2/3(2+5)-1 
"111 Y 2 + 6  

n- 1/9(1 + p~/+3 ). (5.14) 

Using (3.13) and Theorem7 we finally get 

n(N(O, Tp), N(O, T) )~dl /4p-~/r  a 1/2 "~dl/4n ~/8( 1 -p24-61.-1-,~1/3 "~ (5.15) 

Note that in all the inequalities above the constants implied by ~ depend only 
on e, 5 and the constant implied by ~ in (1.14). Now put (5.10), (5.11), (5.13)- 
(5.15) together and get (1.16) and (1.18). 

The general result is now an easy consequence of (1.16) and the fact that 
the Banach-Mazur distance of a d-dimensional Banach space B from Nd does 
not exceed d. 

LemmaS.1. Let  B be a d-dimensional Banach space with norm I]'1]. Then there 
exists an inner product norm I1" I[1 on B such that 

~ll xll~ < llxil < llxll~ x ~ B .  (5.16) 

Proof  See Lindenstrauss, Tzafriri (1977), p. 17, proof of Lemma 1.c.4. 
Now let Iq" [11 be the inner product norm defined above on B and let nl, n 

be the Prohorov metrics on J/(B) with respect to the norms [1"][,, I[" I[. Then it 
is easy to see that 

1 
~,(', ')_-< ~r(',')_-< ~1(','). 

Hence we have from (1.16) 

-1/2 ~ " N(O, T < Cn-aldt /3(1 -tt-'2+ol p 7~ n ~i ~ 
\ \ i ~ l  / 

~(1) _supE][~ 12+ where p2+o- ~i 1 O~dZ+~P2+~ and this implies (1.15). 
i > l  

6. Proof of Theorem 1, Part a) 

Because of the lack of an approximation theorem like Theorem A for the 
strong mixing case, we have to use a different method to prove part a) of 
Theorem1. Our proof is essentially a variant of Yurinskii's proof of 
Theorem B. 
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Proposition6.1. Let X I , . . .  , X  n be a set of IRe-valued random variables with E X  i 
= 0 and p3..= sup E I[Xi[ 13< oe. Let 9J~ denote the a-field generated by Xa,. . .  , X b 
and define c~=sup k , ~(gJ~l,gJ~k+l). Let Z t .... ,Z ,  be a set of independent 
N(0, cov Xi)-distributed random variables. I f  f :  IRa___,IR is three times differenti- 
able, then 

[E f (n- 1/2(X 1 nL... -~- Xn)) - -  E f (n- 1/2(Z 1 +.. .  + Z,))[ 

< C(c~ 2/3 n ~/2 sup HD~f [] p~/3 + d2c~1/3 sup NDZ~f [[ p~/3 +n-1/2 sup r[D~f[l P3 
x x x 

(6.1) 
where C is an absolute constant. 

Proof We can take Za, ..., Z, to be independent of XD... ,X.. Then 

IE f (n-1/2(X 1 +. . .  + X , ) ) - E  f ( n -  I/2(Z 1 +. . .  + Z,))I 

< ]Ef(n-1/2(X 1 +.. .  + X , ) ) -  Ef (n-1 /2(X 1 -~-... ~-Xn - 1 -~- Z n ) )  

-~-... 

+ [Ef(n-  ~/2(X 1 + . . .  + X i + Z~+ 1 +.- .  + Z,)) 

- E f (n -1 /2(X  1 + ... + X~_ I +Zi+ ... + Z,)) 
-~-... 

+ [Ef(n-  1/2(X 1 + Z 2 + . . .  + Z , ) ) -  E f ( n -  1/2(Z 1 +.. .  + Zn))[. 

We estimate each of the n summands by using Taylor-expansion of f about 
n - 1 / Z ( x ~ + . . . + X i _ I + Z i + , + . . . + Z , ) .  For the sake of brevity denote 
W / ~ ~  n -  1 / 2 ( X 1  '~- �9 �9 - ~ - X i -  1 ~-Zi+ 1 -~-... -JyZn). 

]Ef(n- a/2(X~ +.. .  + X~_ 1 + X~ + Z~+ 1 ~-"" ~- Zn)) 

-- E f ( n -  1/2(X~ + . . .  + Xg_ 1 -[- Zi  ~- Zi+ 1 q-  . . .  -[- Z n ) ) ]  

<-_ IE(Dw, f (n- 1/2 Xi)) [ + [EDw ~ f (n-1/2 Zi)[ 
2 n -  1 /2  2 - 1 /2  + ]EDw, f (  Xi) - EDw~ f (n  Zi) [ 

+ ~ - s u p ] [ D ~ f [ I E ( ~ X ~ 3 +  ~ Z ~ 3 ) .  

We estimate now these summands separately: 

Dw, f (n- 1/2 Xi ) = n-  ~/2(grad f(Wi); Xi). 

If 3 denotes the a-field generated by Z I . . . .  , Z,,  then 3 is independent of 9J~ 
and hence 

~ (~J'~/1-1V 3;  ~ i )  ~CZ" 

Now W//is 9J~-1 v 3-measurable. Hence by Lemma 3.1, we have, 

[EDw, f ( n -  1/2 Xi )  [ ~ 150~ z/3 n-  1/2 sup [JD~f [] [IX 1 II 3 
x 
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and EDw, f (n  1/2Zi)=O , since Z i is independent of W~. 

1 

e -1/2 2 -~/ZZi)I_=~IEX~A(W~)XT EZ~A(W~)ZT I n  ~ " IEDw~f(n X i ) - E n w ,  f (n  

where A=A(Wi) is a symmetric d x d-matrix A(Wi)=(ak,1)l<_ka<=a and where ak, l 
are realvalued random variables, measurable with respect to a(W/). 

If .v(t) X(ah X i = I,~ i , then 

[E(Xi Xi akd)--E(Zl Zi ak, Y 
k,l 

<ZiE(Xlk)X~,)akz)_ (k) ~,) E(X i X~ )Eakr 
k,l 

(k) (0 (k) (t) +~IE(Z~ Z~ akz)--E(Z ~ Z i )Eakz I 
k,l 

because X~ and Z~ have the same covariance. The second sum vanishes again, 
because Z~ is independent of Wv By applying Lemma3.1. to each term in the 
first sum, we get: 

[EX~A(W~) X r - EZiA(Wi) Zri l < d 2 15 o; 1/3 II Xi[131sup 11 ak, z [I 
k, l  

and hence 

[ED~, f ( n -  ~/2 X~) - ED 2, f ( n -  ~/2 Z y  < 15 n-  a d 2 c( 1/3 II Xi ]13 sup I[ D 2 f I]. 
x 

Using the fact that there exists a universal constant c such that 
E II/ihl 3 =< c(g ILN~II 2)3/2, we get finally 

E([in-1/e Xill3 + LIn-1/2 Zi]13) < cn- 3/2 HXiII3 .3 

Combining the above estimates we obtain the desired result. [] 

By applying Proposition6.1. to Yurinskii's smooth "indicators" of sets we 
can estimate the Prohorov-distance of 2,r I + . . . + X . ) )  and 

N 0, ~ covXi Using Lemma2.3 and Lemma2.4 we get for every e~(0,1) 
i = 1  

n 

lJ2 xl+ + . ) ,  N (0,n li cov i)) 
C(~ 2/3 n 1/2 e- 1 d-  1/2 p~/3 q_ d 2 51/3 D2/3/3- 2 d-  1/2 -4- n-  1/2 P3 ~- 3 d-  1/2) 

1 1~ 1/2 
+ 4 e + 4 e  llog~) dt/2 +4ed 1/2. (6.2) 

Proposition6.2. Let {~, v > 1} be a strong mixing sequence of ~(d-valued random 
variables centered at expectations and with (3 + (~)-th moments uniformly bounded 
by P3 + ~ for some ~ > O. Suppose that the mixing coefficients ~(k) satisfy (3.16). 
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I f  T, denotes the covariance operator of n-1/z ~ ~ ,  then 
v=<n 

rc(L~(n- 1/2 ~ ~);  N(O, T,)) ~ n- 1/2~ ~ -v3+a-*-"3/<3+6)~, (6.3) 
"r 

where the constant implied by ~ only depends on ~, ~ and the constant implied by 
in (3.16). 

Proof. For fixed n put p=[nt/2],q=[nl/4],  l= ; ~ l ~  . Again we 

define blocks H j, 1 < j  =< l and Ij, 1 =<j =< l + 1 of consecutive integers with: 

card Hj = p (1 < j  < l), card Ij = q (1 < j  < I), card I1+ 1 = n -  l(p + q). 

Define X j = p  -1/2 ~ ~,,, 1 <j<l .  Using Lemma3.2 and Lemma3.9 we get 
v~Hj 

E]IXj][ 3< Cb 3, where b =,~l/(3+a) / ' 3 + 6  " 

C is a constant, depending only on e, c~ and the constant implied by ~ in 
(3.16). 

Using Lemma3.2., Minkowski's inequality and the mean-value theorem we 
obtain, 

1- 1/2 n l Iv 2 

j = l  v = l  2 j = l  v~Hj 

j = l  v~Ij 2 j ~ l  v 

~(n-~/Z(lq+p+q)l/Z +(lp)~/2(n ~/2-(Ip)-~/2))b 

(n- 1/2 (n3/4 + nl/2)1/2 + n- 1 (n - l p)) b 

( n -  1/8 -4:- n -  1 (n3/4 q_ n1/2)) b 

~ n -  1/8 b. 

Hence" 

j = l  v = l  

and by Lemma2.1 

(N(0, cov(l-  1/2 ~ X j)); N(O, T,,)) ~ n- 1/1 a be~3. 
j < t  

Next we use (6.2) to estimate the Prohorov-distance of •(1-1/2 2 X  j) and 

N(O,1-1 ~ C o v X j ) .  Note that e (k)~k  -3, hence c~=c~(q)~n -3/~. If we put 
j<=t 

e = n  -t/15, we get: 
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g(~O(l  1/2 EXj);N(O,I-1 ~CovXj)) 
j<=l j<--_l 

//-- 1/2/,/1/4-/,/1/15 d-  1/2 b + n -  1/4/,/2/15 d3/2 b 2 + n -  1/4 n3 / i  5 d-  1/2 b 3 -b n -  1/15 

+ n -  t/15 (log n m 5)1/2 dl/Z + n-  1/15 dl/2 

�9 ~ n -  1/20 d3 /2 (1  + b3). 

For the sake of brevity we define: 

T =  Coy(I-  1/2 ~ X i) S = l- 1 ~ Coy X i. 
j<=l j< l  

We want to use Theorem7 to estimate the distance of N(0, T) and N(0,S), so 
first we have to estimate liT-Sill. Let el ,  . . . ,e a be any orthonormal basis for 
P x  a . 

(Yek, ek) = E(l- 1/2 ~ X j, ek) 2 = l- 1 E E(Xj, ek) z + l-  1 E E(X,, ek)(X,, ek) 
j ~ l  j<-_I i4=j 

(S e k, ek) = l- 1 ~ E(Xj,  ek) 2. 
j<=t 

Then 

I ( T -  S) % ek)[ < 21-1 ~ IE(X~, ek)(X j, ek)l 
l <=i<j<=l 

~1-1 ~. g l /3 ( j - i )b2  
l <=i<j<=l 

1 
=1-1 ~ ~l/3(i)( l- i )b 2 

i=1 

where ~ denotes the mixing coefficient for the set X 1 , . . . , X  r Thus s 
n-  3/4 and ~(i)_< ~((i - 1) p) ~ i-  3 n-  3/2 for i > 1. Hence 

l 
[((T--S)ek, ek)]~1-1 n-1 /4 lb2+l-a  ~ i -1 n-1 /a( l_ i )b2~n-1 /4b2  

i=2 

and therefore l IT-SI l l  "~ dn-1/4 b2. 
Using Theorem 7 we get 

n(N(0, Coy(l-  1/2 ~, X j)); N(0, l- 1 ~ Cov X/)) 
j<__t j<-_t 

~dU4n-1/16bl /2dt /4=dl/2n-1/16b 1/2. [] 

Now we conclude the proof of Theorem 1, part a. 
First we prove (1.13) and (1.17). Then (1.12) can again be deduced from 

these relations using Lemma5.1. We may also again assume that B = R  d. For 
fixed n define a sequence ~v~ -- ~v~(") by 

~-=~l{N~ll=<.~/~o } and %=fv-E~-v  
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{r~, v> 1} is strong mixing with the same mixing coefficients as {~, v > l }  and 
has finite 12-th moments. Since c~ =< 2/3, we have: 

c~(k) ~ k - (  l + ~) . 4= k - (  l + ~)(3 + 9/9). 

Hence {%, v > 1} satisfies the assumptions made in Proposition 6.2. 

E r]zi]r ~2 <2  lz E II~iH 12 l{llr ] <nl/5o}NE Ilffill2+an (10-a)/50 

2+&~1/4~(10-0 )1 ,200<o i ,4 .  n( lO-&)l /200.  (E 11vilpaz)B/12<(glp~/ll J '0 = ~ ' 2 + a  

If S, denotes the covariance operator of n-t/2 ~ %, then we get by (6.3) 
v ~ n  

7 C ( ~ ( H -  1 / 2 2  Tv); N ( 0 ,  Sn) ) "~ H- 1/20 d3/2 (1 + t"2 +601/4 nil2~ a/2oo) 
v<=n 

<n-a/2OO d3/2(1 + ,~,4 
k'2+~/" 

Now we have to estimate the error introduced by replacing {~, ,v>l}  by 
v__> 1}. 

2 
If ~ '=~ then 1 +2/6 '<(1 +e)(1 +2/~), so that there exist an e '>0, such 

that 2 + e' 

(1 +d)(1 +2/6')<(1 +el(1 +2/6) 

and hence ~ (k) ~ k-(1 + ,,)(a + 2/a'~. 
ThenE [[~-zi[12+a'<4E 11~l[2+an-(a-a')/5~ <4p2  +~n-~/5~ + O -1. 
Hence by (3.3) 

2 < t ,~ n2/(2+6") ~ -  1/506~2/(2+6') E[ln -1'2 F, (~-z~)II --~v2+~ " 
v<=n 

Using (~ebygev's inequality and Lemma 2.1 this implies, 

Z r  Z 

and z(N(0, T,); N(0, Sn))< C p ~  n -  i/2ooa~ 
Using 3.14 and Theorem 7 we finally get: 

rc (N(O, T,), N(0, T)) < C d ~/2 , -  e/4 n 1/(4 + 2 0) 

Putting everything together gives (1.13) and (1.17). 

7. Proof  of  Theorem 2 

We shall prove Theorem 2 for both cases simultaneously. 
We introduce the following notation: 

( " , )  ( ) 
j = l  

�9 N # N = w - - h m  #,,, where w-lira means the limit in the weak topology on ~(B).  
n ~ o o  
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This limit exists by Theorem 1. By (1.19) and Cebygev's inequality 

7C N Cu,, #,) < N -  ~/3. 

By Theorem 1 we have with p~+a=supE HPNXjll 2+~ 
J 

3 (1 +(pLy) 1") 

32 
Now let m > n and take N = In ~] where y -  

9 + 3 r + s '  
Hence 

s7 

~ n  T + n - Z n  7~3+') ( l + p ~ a )  

Hence ~ , , n >  1) is a Cauchy sequence in (JC/(B),n) and since this is a complete 
metric space, tL=lim#, exists. That # is a Gaussian measure with covariance 
operator T defined by (1.11) is easily seen by application of Theorem 1 to the 
one-dimensional sequence (fo X i, j > 1), f ~B*. 

Hence we get 

rc(/~,, N(0, T))=l im rc(/t,, #m) ~ n-~(1 + p ~ )  
m 

which proves (1.21). 

8. Proofs of Theorem 3 and Corollary 1 

We shall arrange the proof of Theorem3 in such a way that we prove both 
cases (@mixing and absolutely regular) simultaneously. To prove Theorem 3 all 
we need is that the sequence {Xj , j> I}  is absolutely regular with /~(k) 
~ k  -m+~), that EXj=O, EIIX~LI2+a<_p2+a, that (1.21) is satisfied and that for 
some constant C < oe 

a + n  2 + ~  

E a+~l XJ ~ C r t  1+~/2 for all a>0 ,  n > l  (8.0) 
j =  

w h e r e  cz = - - .  
8 

To prove (8.0) we use in the absolutely regular case Lemma3.3 together 
with (1.19) and Lemma3.2 and in the @mixing case Lemma3.6 together with 
(1.19) and Lemma 3.5. 

Let ~c be as in (1.21) and define 
eb~c 

2 = 2 + ~  -1, nk=[kX-~], 7=256(1+2~c). (8.1) 
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Let H k and I k be blocks of consecutive integers such that 

card H k = n k card I k = [k2]. (8.2) 

The order of the blocks is H1, I1, H2,  I 2 , . . . .  Furthermore define 

k 

tk+l= card(/tj Ij). (8.3) 
j=l 

From this definition we get using (8.1) and (8.2) 

k ~ ~ t k ~ k ~. (8.4) 

If we define Yk=n~ 1/2 ~ X~, then we have using (1.21) 
w H k  

u(s y~); N(0, T)) < C n k- ~ 

where C is a constant. Now Yk and Yk+l are separated by the block I k and 
hence we can apply Theorem A to get a sequence {Zk,k= 1} of independent 
N(0, T)-distributed B-valued random variables such that: 

P{II Yk-- Zk{L >2  C n ~  + 2 fi~/2(card lk_ l)} 

< 2 C n~ ~ + 2 fll/2 (card I k_ 1) 

4.k-K('~- l) + k-(2 + ee) ~ k -  l -~  + k -(2 + 2E). (8.5) 

By the Borel-Cantelli Lemma and using the fact that/c < 1/8 we get then: 

[1Yk-Zkl[ <nk  ~. (8.6) 

If X(t)  is any B-valued Brownian motion with covariance structure T then 
(tk+ 1 - t k ) - l l 2 (X( t k+  i)--X(tk))  has the same distribution as Yk. Hence using the 
same kind of argument as Kuelbs and Philipp (1980), p. 1024 we can assume 
without loss of generality that there exists a Brownian motion X(t) with co- 
variance structure T such that 

(tk+ 1 -- tk)- 1/2(X(tk+ 1) -- X(tk)) =Zk .  (8.7) 

We shall show that X(t)  satisfies (1.22). First note that by Fernique's 
Lemma ([10]) 

I lZkl l~logk a.s. as k ~ o v .  

Using this, (8.2), (8.3), (8.6) and (8.7) we get 

II ~ Xv  - (X(tk+ 1) - X(t0)ll = [In~/2 Yk- (tk+l -- tk) I/2 Zkl[ 
v~Hk 

1/2 (tk+ z--tk)U21 []Z~II II + - 

4 ~ 1 / 2  --~ d-  la-- 1/2 k 2  log k 
'~k ~ '~k 

/,/1/2 - K. 
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Summing these inequalities we then get 

j=~--i - -  X(tk+ i) < k 
vEH j j ~  1 

< t(1/2-r)(l 11;9+1/,~<tl/2-~ 

since (1/2-- K)(1 -- 1/)0 + 1/2 = 1/2-- ~/2 < 1/2-- ? by (8.1), 
k 

Lemma8.1. Z 11 Z x~II <t~/~. 
j= 1 velj 

Proof. By Cehygev's inequality and (8.0) we have: 

(8.8) 

P{II ~ X~lh >k2}<=k-2(2+~)E II ~ X~[12+~k-2(z+~)k2(~+2)~k -2. 
VEIk VEIk 

Hence again by the Borel-Cantelli Lemma we have 

11 Y, x~hl < k 2 
vElk 

k 

which implies ~ II ~, X~II <ka <t~/~. 
j= 1 ve l j  

t Lemma8.2. ,~<t-<~k+,max ~=t~+lX~ <t~/2-L 

This can be proved in almost the same way as Proposition 2.2 in Kuelbs and 
Philipp (1980). The only difference is that instead of their Lemma2.5 we use 
(8.0). 

Using Fernique's Lemma [102 it is easy to show that 

max IIX(t)--X(tk)lL <t~/2-~. (8,9) 
tk <=t<=tk+ t 

Now let t>O and choose k such that tk<t~tk+ 1. Then we get using Lemma 
8.1, Lemma 8.2, (8.8) and (8.9) 

= v=ttk+ 1 Xv [I ~ X~-X(t)]I < ~ + HX(t)--X(tk)ll + 1[ ~ ~ X~--X(tk)ll 
v<=t j < k  veHj 

+ ~ I1 ~ x~ll <C/2-~. [] 
j < k  velj 

We now prove Corollaryl .  First consider the sequence * X~ = X, - L(X~), 
v >__ 1 and define PN X = ~ (X, G) G- The range of PN has dimension N and (1.20) 

v<__N 

is satisfied with r=0. We shall show that (i.19) holds for the sequence 
{X*, v >__ l}. If {X~,v__>l} is @mixing, then we have by Lemma 3.5 and (1.25) 
that 

E n a + n  2 1/2 Z (x~-~x~)* * 
v=a+l  

< E  IIX*-PNX*I]2(( 1 + ~ r Z E(Xl,e.~) 2<N-s. 
j > l  v>N 
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If {X v, v> 1} is absolutely regular, this remains valid because of Lemma3.2 and 
(1.25'). Hence we conclude that (1.21) and Theorem 3 both hold for {X*, v> 1}. 
Now it is easy to see that the covariance function T L of the sequence 
{L(Xv), v> I} vanishes identically. Next we use the following proposition, 
whose proof we shall postpone until the end of the section. 

Proposition8.1. Let {Yj,j>I} be a strictly stationary sequence of H-valued 
random variables centered at expectations and with finite (2 + 6)-th moments with 
0<6_<1. Moreover suppose that {Yj,j=>I} is either c~-mixing or absolutely 
regular with the usual mixing rates (1.22) resp. (1.14) and that the covariance 
function T of the sequence {Yj,j=> 1} which is defined as in (1.11) vanishes for all 
f g~H. Then we have 

E H ~ Y/le ~n  x-*. (8.10) 
j<=n 

Now we conclude the proof of the corollary. By (8.10) we have 

irn-1/2 (x -x*)H2 n 
j<n 

and hence rc(S(n-i/2 ~ X j); f ( n - i / 2  ~ X,))~n-~/3.  This combined with the 
j_<=n j<n 

facts that (1.21) holds for {X*, j > l }  and that {Xj , j>I}  and {X*,j=>I} both 
have the same covariance operator proves that (1.21) holds. To prove that the 
conclusion of Theorem 3 holds note that all we needed in the proof of it were 
the absolute regularity with fl(k) ~ k-  (2 + e), the fact that E X j  = O, E [1Xj ]l 2 + ~ < 0% 
(1.21) and relation (8.0), which by Lemma3.2 resp. 3.5 always hold. This 
concludes the proof of Corollary 1. 

The proof of Proposition 8.1 follows the lines of the proof of Propisition 4.3 
of Kuelbs and Philipp (1980). First note that their Lemma4.9 continues to 
hold in our situation, hence 

a~= l imn- lEH 2 Y/I 2=0'  

Using Lemma3.1 resp. Lemma3.4 we deduce by standard arguments that 
E II 2 Y/I 2= n a~ + O(n 1 -~), which proves (8.10). 

j<-n 

9. Proof of Theorem 4 

Our first Lemma gives us an estimate for the speed of convergence in the 
central limit theorem of the kind needed for the proof of the law of the iterated 
logarithm. 

Lemma 9.1. Under the assumptions of Theorem 4, there exists a Gaussian measure 
!~, such that 

~(~(n-  1/2 ~ X j); #)~ (log N)-~ (9.1) 
j~<n 

where c~ is the constant from (1.24). 
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The proof for this is almost the same as the proof of Theorem2 and we 
shall omit it. The following maximal inequality is due to Berkes (1974). 

Lemma9.2. Let {Xj , j>I}  be a strong mixing sequence of B-valued random 
variables with EXi=O, supE []XjII2+a<(Z). Suppose that the mixing coefficients 
c~(k) satisfy (1.23). Let a 2 be defined by a2=supEl[n i/2(Xa+l-~-...-~-Xa+n)l[ 2. 

a,n 
Then there exist constants p > 0  and n0EN such that for all n>n o 

P{max ]lSk[ I >X} < 2 P {  IlSnll > x - 2 0 n  112 a}+n -~ (9.2) 
k<=n 

Proof. We follow the lines of a similar proof in Reznik (1968) and Berkes 
(1974). 

Put Ak={[ISI][ <x  ... . .  HSg 11/<x,/ISkll >x} to get, 

P{ max IbSkL I>x}=  i P(Ak)" 
l <=k<= n k=l  

Let p > 0  be a fixed number (to be chosen later) and denote by ~'P(Ak) the 
sum over those k for which P(Ak)>n -(1+~ Hence to prove (9.2) it suffices to 
show that ~'P(Ak)<2P{HS,  I ] >x--20an1/2}. By a standard argument, this will 
follow if we show 

P(ILS,- Skll > 20a nl/2lAk)<= �89 

for those k's for which P(Ak)>n -(t+p). For every p>  1 we have 

P(IIS,-- Sk][ > 20anl/2]Ak)< P(HXk+ ~ + ... + Xk+p]l > lO~rnl/Z[Ag) 

+ P(HXk+p+ a + "" +X,[I > 10 Gnl/ZlAk). 

Using Minkowski's inequality the first probability is bounded from above by 

nl+Pn-(a+a/2) a-(2+a) 10-(2+a) p2+O sup E ]IXj]12+5.~ CnO-a/Zp 2+~. 
j > l  

The second probability is bounded by 

P(liXk+p+l +'" +X,]L>_10anl/2)q c~(p) 
�9 - P ( A k )  

=< 10 - 2  (7 -2  n -  1 E l iNk+p+ 1 Ay . . .  -it-Xnll 2 + p - (2  + e)(1 +2/a)nl +p 

< 1 0 -  2_.}_p-(2+e)(1+215) nl  +p 

Take a fi >0  such that 

3(2+a)-*(2+g) -*<f l< �89  -~. 

Then we can find a p > 0 such that 

(2 +g~)fl<fi/2-p and l + p<fl(2 +e)(l + 2fiS). 
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Take  p = [nP]. Then 

P(IIS,--Sk]I >20~nl/2[Ak)< CnP(2+~)+p -~/2 + 10-2 + nl+o-P(2+e)(1 +2/0) 

<=�89 

for n big enough. [ ]  

Our  next step is to prove  a bounded  law of the i terated logari thm. By 
Fernique 's  theorem there exists a constant  c which depends only on the space 
B such that  for all Gauss ian  measures  v we have 

~exp Ilxll2 dr(x) <= 1 

where o-2=S IFxl[2dv(x). 

Proposit ion9.1.  Let {Xj,j>= 1} be a weakly stationary strong mixing sequence of 
B-valued random variables, centered at expectations and with finite (2+6)-th 
moments for some 0 < c 5 <  2. Suppose that the mixing coefficients satisfy (1.23). 
Moreover suppose that there exists a Gaussian measure # and a constant ~>1 
such that 

zt(5~(n -~/2 ~ Xj); # ) ~ ( l o g  n) -~. 
j < n  

Then, if a 2 is defined as in Lemma9.2 and a.=(2nloglogn)  1/2 

l i m s u p a ,  a ~ X j < 4 c a .  
n~cx3 j ~ n  

Proof By a wel l -known theorem we have: ~l]x[12dl2<=cr 2. Define nk=e k, 
S~ = ~ X~ 

v<=n 

< P {  sup IJS.Ir>4caa.k i.o. in k}. 
n~nk+ 1 

For  k so large that  n k ~ no, where n o is as in L e m m a  9.2, we obtain  

P{ sup [IS.Ip>4c~ra.k } 
? l ~ n k +  1 

- -  - - P  <2P{]rS . . . .  If >4caa,k- -2Oal /nk+l}+nk+l  

~ P  (Irn2[2 x.~+ ,rl > 2ccr l /21ogk  } + k - 2 

~ # { x [  IlxH > 2 c cr ] /21og k - c(log k) -~} + k  -~ 

/~ {xl Jrx H > 2 c a ( l o g  k) 1/2 } + k - ~  

exp - ((2 e a( log k) 1/2)2 c -  2 (7- 2) -I- k -  ~ 

~ k  -~. 

Since e > 1, the Borel-Cantel l i  L e m m a  shows that  l im a21 ItS. [I < 4 c a. 
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Proof of Theorem4. Following Theorem2 of [-6] all we have to show is a 
compact law of the iterated logarithm. By the law of the iterated logarithm for 
finite-dimensional spaces we know that {a; -1 ~ PNX~,n>I} is relatively com- 

y ~ n  

pact almost surely for each N. Since ( I - P  a) is a bounded linear map, the 
estimation for the n-distance (9.1) holds also for the sequence {Xv 
-PNX~, v> 1}. If o-~ is defined by 

d,=supE I/n y, (X -PNX )H 

then by the previous proposition 

l ima  21 ~ (X, - PN Xv) < 4 a N C. 
v__<n 

n 
Since aN--*0 as N--* o% we conclude by standard arguments that a21 ~ X~ is 
a.s. relatively compact. ~= 

10. Proof of Theorem 5 

We define a sequence (e,)n>=l in C[0, 1] by 

( c o s 2 n k t  if n = 2 k - 1  
e"(t)=~sin2nkt if n=2k. 

Note that e' ,=(2nn)-le,  eA~. As usual, an inner product on C[0,1] is given 
by (f, g ) = l ~ f ( t )  g(t) dr. 

Lemma 10.1. There exists a sequence (;~,) = (2~) and a constant C = C~ such that 

Y' 222<00,  (10.1) 
n > l  

y, 22((f, ez,)Z +(fez ,_1)2)<CN ~-~ for all feA~, (10.2) 
n > N  

I(f, e,)l < C for all fsA~. (10.3) 
.=>1 

Proof The proof of (10.3) can be found in Zygmund (1935), p. 135. For the 
proof of (10.1) and (10.2) let ~=1 /2 (e+1 /2 )  and 2 , = n  p. Since e > l / 2  we have 
that (10.1) holds. From Zygmund (1935), p. 136 (3) we get that 

((f  e : ,_  1) 2 + (f, e2,) 2) < C 2-  2 v~ 
2 v - l < n < 2 V  

for some constant C depending only on ~. Hence 

22((f ez,_ l)Z + (f, ez,)2) < C 22~v 2- z~v= C2 ~ ~)~. 
2 v - 1 < . ~ 2  v 
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If N e N  choose k such that 2 k-~ <N<_2 k and then 

2 2 2 n ((f  2,,) + ( f  e2.-  1) 2) 2 , ( ( fezn  ) +(fe2,_1)2)=< ~ 22 e 2 
n>N n > 2  k - 1  

<C ~ 2~(~-~)<CN~-L [] 
v>k 

Recall that in order to prove Theorem5 all we have to do is 
mappings PN with the properties (1.19) and (1.20). 

For xe C(A,) define P2N(x) by 

P Z N X ( f )  = 2 2rcnx(e')(fe,) 
n< 2N 

so that we have: 

to find the 

PzuXj ( f )=  Y, e,(~j)(f, e,). 
n<2N 

It is easily seen that it is not necessary to define PzN-~. 

i) P2N(C(A~)) is spanned by the 2 N  mappings f--+ ( f  G), n = 1,..., 2N, hence 
dim Pzu( C(A~)) < 2 N. 

ii) First note that Theorem2 remains valid if (1.20) is replaced by the 
following weaker statement: 

tlP2NXjrl ~ CN r I[Xjll a.s. for some constant C. (10.4) 

Now (10.4) can be proved as follows: 

[IPzNXjrl = sup [ ~ e,({j)(f e,)] < sup y,[(f  e,)[ ~ 1. 
f~A= n ~ 2 N  f e A ~  n 

n 2 n 2 

i i i )  ~=1(Xj-P2NXj) = s u p  ~=I(XJ(f)--P2NXj(f)) 
j f~A~ j =  

< sup f (~) - ~ (f, G) ek(~) 
f ~ Ao, k = 1 

_-< sup ) ek(~j) 
f eA~, k 

n 2 

= < s u p  >~2 ~1 (fek) G(~) 
f~A~ k N j  

n 2 

<2sup ~>N ~=1 ( f ~ e 2 k - - l ) e 2 k - l ( ~ j )  
f eA~  k j 

+ 2 s u p  Z ~,(fe2k)ezk(~)2" 
f e A ~  k > N j = l  

Now we estimate the first and the second summand separately. 
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The first summand is bounded by: 

l(~j) 2 
_-<sup ~>N(f~e2k_l),~ k ~k le2k_ 

f~A~ k j= 1 

< s u p ( ~  2 2 (>~N ( ~  ~ ):)  = (f, e2k- 1) 2k) 2k 2 e2k- I(W) 
feA~ k>N k j= l  

~N~-a  ~ )~2 e2k_l(~i . 
k>N j= l  

A similar estimate holds for the second summand, hence 

2 2 

E i~I(Xj-PNXj)~N~-~k~>N )~;2E~ ~j=t ~ e2k_l(~j)) 

k>N 
~N~-~.n. 

+ E (j~le2k(~J)) 2) 

The second step follows from calculations similar to those in Lemma3.2 and 
Lemma 3.5. 

11. Proof of Theorem 6. 

First we need some facts from topology. 

Definition. a) Let X be a topological space. A set  {q~i, isI} of real-valued 
functions on S is called a partition of unity if 

i) The supports of the qh form a neighborhood-finite closed covering of X. 
ii) 0<q~i(x)<l for all x~X, all ieI. 

iii) ~(p/(x) = 1. 
ieI 

b) If {Ui, isI  } is an open covering of Y,, we say that a partition {(pi, ieI} of 
unity is subordinated to {U~, ieI} if the support of qh lies in the corresponding 
u,. 

The following lemma is a special case of Theorem 4.2 in Dugundji (1966). 

Lemma 11.1. I f  S is a compact space and {Ui,i~I } a finite open covering of S, 
then there exists a partition of unity subordinated to { Ui,iEI}. 

Of course to prove Theorem6 we want to apply Theorem2 and 3. Hence 
again we have to define operators PN: C(S)~ C(S). Let N >  1 be given. Then we 
can cover S with N balls of radius g(N) by assumption. Let {si, I_<iNN} be 
the centers of these balls and let {~0~, 1__<iNn} be a partition of unity sub- 
ordinated to this covering. 

Define for x~ C(S) 
N 

PNx = 
i=1 
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Clearly the range of PN has dimension N and using the fact that ~ (Pi= 1 we 
iNN 

get that [rPNI[-----1. Moreover (x-PNx)(s)= ~,(x(s)-x(si))(pi. If s~S, then (Pi(s) 
iNN 

= 0 unless d(s, sl) < g(N). Hence we see that 

[Ix- PNxlP <sup{jx(s)-  x(s')[:d(s,s') < g(N)}. 

This together with (1.30) and (1.31) shows that PN satisfies (1.19) which finishes 
the proof of Theorem 6. 
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