
Ingenieur-Archiv 66 (1986) 254 -- 264 Ingenieur-Archiv 
�9 Springer-Verlag 1986 

A theory of rotating elasto.plastie shrink fits 

U. Garner, Wien and F. G. Kollmann, Darms tad t  

Summary: The paper gives a rigorous theory of rotating elasto-plastic shrink fits under the assumptions of 
infinitesimal strain, ideal plasticity and validity of Tresca's yield condition. The plastic strain increments are 
computed by the associated flow rule. Furthermore, it is assumed that the shaft remains purely elastic 
during the entire loading history. I t  is shown that, below a limit speed, the plastic deformation is governed 
by one side of the Tresca hexagon only. Beyond this speed, a second face of Tresca's hexagon becomes in- 
volved. In this case plastic prestrains accumulated below the limit speed have to be considered. For both 
speed regimes, solutions comprising stresses and radial displacement are obtained. Finally a numerical 
example is given. 

Elne Theorie rotierender elastisch-plastischer Prel~verbiinde 

~bersicht: Der Aufsatz gibt eine exakte Theorie des rotierenden elasto-plastischen Prel~verbandes unter den 
Voraussetzungen infinitesimaler Verzerrungen, idealer Plastizitgt und der Giiltigkeit der Treseaschen FlielL 
bedingung. Die plastischen Dehnungsinkremente werden nach der zugeordneten Flie$regel bereehnet. Ferner 
wird vorausgesetzt, dal~ die Welle w~hrend der vollst~ndigen Belastungsgesehichte rein elastiseh bleibt. Es 
wird gezeigt, dab unterhalb einer Grenzdrehzahl die plastisehe Deformation yon nur einer Seite des Tresea- 
sehen Sechsecks bestimmt wird. Oberhalb dieser Drehzahl wird eine zweite Seite des Trescaschen Sechsecks 
beteiligt. In diesem Fall miissen plastisehe Vordehnungen berfieksichtigt werden, die unterhalb tier Grenz- 
drehzahl entstanden. Fiir beide Drehzahlbereiehe wcrden L5sungen abgeleitet, welehe Spannungen und 
l~adialverschiebung umfassen. Sehlieglieh wird ein aumerisches Beispiel angegeben. 

1 Introduction 

Shrink fits are widely used in mechanical engineering as they offer high transferable loads at 
favourable production costs. Usually a purely elastic design is applied. The clearance between 
hub and shaft is chosen in such a way that  the stresses in all regions of the fit lie below a limit 
given by  a suitably selected yield criterion. Furthermore, the influence of the centrifugal body 
force is neglected in the elementary design criteria for shrink fits [1]. They are based on Lam6's  
solution for the thick-walled elastic pipe assuming a state of plane stress in shaft and hub. The 
decrease of contact pressure between hub and shaft with angular velocity has been investigated 
by Biezeno and Grammel [2]. 

A simple computation reveals that  by  a purely elastic design the strength of especially the 
hub material is utilized poorly. This can be improved by  an elasto-plastic design. The first so- 
lution for a non-rotating elasto-plastic shrink fit was given by Lundberg [3]. He assumed a 
state of plane stress, infinitesimal strain and an elastic-idealplastic material following v. Mises' 
yield criterion. Furthermore he applied Hencky 's  deformation theory. Despite this lack of rigo- 
rousness, Lundberg's solution is rather complicated and not very suitable for practical compu- 
tations. 

A solution based on the modern concepts of the theory of plasticity has been derived by  
Kollmann [4]. He also presupposed plane stress and an elastic-idealplastic material. But  he used 
Tresca's yield criterion and the associated flow rule according to Melan, Prager and Koiter [5]. 
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An extension of Kolhnann's theory for workhardening materials has been given by Garner and 
Lance [6]. 

The problem of rotating elasto-plastic shrink fits has been investigated by  Kollmann [7]. 
To avoid complicated ease distinctions he confined his work to full shafts remaining purely elastic 
during the entire deformation history. He further assumed that  u  modulus, Poisson's 
ratio and the density of the shaft and hub material are equal. He showed that  below a limit 
angular speed cot the plastic deformation of the hub material is governed by one of Tresca's 
yield functions only. For angular velocities beyond rot a second side of the Tresea hexagon is 
involved. Kollmann's solution is correct only for angular velocities up to ~ot. For larger values of 
the angular velocity he did not consider the plastic predeformation. 

I t  is the aim of the present paper to give a rigorous theory of rotating elasto-plas- 
tic shrink fits. A related thermoplastic problem has been solved by Garner and Mack [8]. Our 
work is based on the following assumptions: We confine ourselves to full shafts which remain 
purely elastic during the entire loading history. We presuppose that  the elastic moduli E and v 
as well as the density ~ of the shaft and hub material are equal. But the yield stresses ars  and 
~ryn of the shaft and hub material can be different. We consider a state of plane stress and assume 
infinitesimal deformation. As in our prior work we use Tresca's yield criterion and the associated 
flow rule for the elastic-idealplastic material of the hub. 

2 General theory 

I t  is useful to formulate the entire theory in nondimensional form [7]. The state of the system 
after fitting but before first rotational loading is denoted as the initial state. We consider a 
shrink fit shown in Fig. 1 with the effective radial clearance Z. I t  can be shown [7] that, for 

T . - -  E Z < 3 + v  (1) 
arm a = 3 + v + ( 1 - v )  Q~' 

the initial state is purely elastic and the entire hub remains elastic until take-off. With the inner 
radius a and outer radius b of the hub the parameter Q is defined as 

a (2) 
b 

Next we define a nondimensional angular speed 

/ ~  
/2 : =  aro _ ~ (~YH" (3) 

The purely elastic take-off speed is given by 

-Qr = 2Q + v 

Where no ambiguity can arise we will omit the index H for the hub material in the sequel. :For 

3 §  < 7~' < ~ (5) 
3 - ~ v ~ - ( 1 - - v ) @  

cO 

Fig. 1. Cross section of rotating elasto-plastic shrink fit 
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the initial state is still purely elastic but plastic deformation can occur during rotational loading. 
In  this case first plastic flow sets on at the bore of the hub (r = a) for 

19p = 2 -1 - -  ~ "  (6) 

I t  has t o  be observed that  Dv is independent of the radii ratio Q. For T > 1 the initial state is 
elasto-plastic. 

Next  we define nondimensional stresses in the hub 

~rr:~-- Grr ~ ~ 0  "--.-- ff~%0 ~ (7) 
{YYH GyH 

where ~ and %~ are the radial and circumferential stresses. I t  can be shown [7] that,  for ~ purely 
elastic as well as an elasto-plastic initial state for limited values of D, the plastic deformation of 
the hub is governed by Tresca's yield function/(1) only (Fig. 2) : 

I(~) = - x .  + & ~  - 1. (8) 

The meaning of limited D will be made precise later. 
Let us assume that  condition (5) holds and that  the angular speed is increased monotonically. 

Then D ~ can be considered as a loading parameter. In  Fig. 3 the development of plastic zones in 
the hub with D e is shown. The quanti ty ~ : =  r/a is a nondimensional radius. The hub covers the 
interval 1 --< ~ ~ liQ. Up to 19v the entire hub remains purely elastic. For 19 ---- 19v the hub 
becomes plastic a t  the bore. For increased velocity a plastic zone spreads outward radially and 
extends between 1 =< ~ ~< ~i, where ~i : =  rvUa is the nondimensional plasticity radius. We 
denote this plastic zone as inner plastic region ( IPR) for reasons which will become obvious 
later. 

The stresses in the I P I t  are governed by the Eq. of equilibrium 

~- ---- - -  19er] (9) 
d~ 

and Tresca's yield condition ](1) = 0 (compare (8)). The general solution is 

192 f22 
Z , ~ = l n v - y v  ~ + C 1 ,  r ~ = l  + l n v - ~ - V  ~ + C ~ ,  (10) 

where C1 is an "integration constant" which depends on the loading parameter  D 2. 
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The associated flow rule [9] leads to the plastic strain increments 

den = --d2, ,  dePo., = d2~, de~zz = O. (11) 

Here d21 is a nonnegative parameter. From (11) there follows 

deVr + deg~o = O. (12) 

Therefore the sum of the total radial and circumferential strain increments is purely elastic: 

(1 - ~) (rr 
de~ + de~, - -  E (dX~r + dZ'~). (13) 

Eq. (13) leads in a natural way to the definition of scaled strains 

E E 
~rr : =  - -  err, g~0~ : =  - -  %~- (14) 

(7y (Yy 

Integration of (13) with respect to the loading parameter f22 under consideration of (10) gives 

err @ e,f ~-= (1 - -  ~) (1 -}- 2 In V --  D2~ 2 + 2C1) @ ~(~]). (15) 

Here, F(~]) is an undetermined function depending on the nondimensional radius ~? but not on 
the loading parameter D e. Physically it represents the sum of plastic prestrains in radial and 
circumferential direction. But  since the hub has not undergone any plastic prestraining, these 
plastic prestrains vanish in the entire IPR  and therefore f(ry) = 0. 

Next we define a nondimensional radial displacement 

E u 
:~----- - - ,  (16) 

O'y 6b 

where u is the radial displacement. Then the strain-displacement-relations and (15) lead to a 
differential Eq. for g with the general solution 

g = ( l - - v )  ~ l n ~ l - - ~ - ~ a - b -  C1~ -{ - - - .  (17) 

Here C2 again is an "integration constant" depending on D e. 
The stresses and the displacement in the elastic region ~1 ~ ~] ~ 1/Q are given by 

s . . . .  K , + K s  3+v(g2~)2 ' 
~]z 8 

X~  --  K ( +  Ks 1 + 3v ( ~ ) 2 ,  (i8) 
~ 8 

= ( l + v )  K~ + ( 1  ~ ' ) K  7 1 - -v ~  
8 

where K 1 and K 2 are "integration constants" depending on ~2 e. The solution for the purely 
elastic shaft can be derived from (18) by setting K1 ~ 0 and substituting K s by K s 

The unknowns C1, C2, K1, K2, Ka and the plasticity radius (i have to be computed from the 
following boundary and transition conditions, where the superscript E denotes the elastic, I the 
inner plastic region and S the shaft: 

~ ( 1 )  - ~s(1) = ~ ,  (19) zsA1) = MA1), (20) 

s ~ ( ~ )  = z ~ ( ~ ) ,  (21) s ~ ( ~ )  = E Z~(~) ,  (22) 

~ ( ~ )  --  ~ ( ~ ) ,  (23) ~ ( 1 / Q )  = o. (2~) 

The radial displacement of the surface of the shaft is given by [7] 

~ ( 1 ) = ( 1 - ~ )  - l n ~ + ~  Z -  �9 (25) 

17 
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After some algebra the following expressions for the stresses and the displacement in the hub 
are found. 
Inner plastic region (1 ~ ~ ~ ~i) 

~ = - - - f f  i + 2 In ~ - (Q:~I ~ - 
2 (~)~ 

~- ~ (s 2 + ~ -  [3 ~- v - -  (1 - -  v) (Q~i)a], (26) 

1 [_ l+21n~ .A~_(Q$1)2]  1 ~ = - ~  ~ - -~ (~)~ 

+ - - - i - -  ( ~ / ~  + -ff t3 + ~ - (~ - ~/(Qr 

: (1 - -  ~) ~ --7~- 1 -~ 2 In - -  - -  (Q~i)2 

+ ---if-- (~r [2 - (Q:~/~] + ~ - -i- ( ~ / ~  + - 

Elastic region (~ <~ ~ <= l/Q) 

(27) 

(28) 

Z'rr ~ [1 -- (Q~)2] - 1  + ~ ( ~ i )  2 -~ ~ [I -- (Q~I)2], 
2v ~ 

2~ 2 

(29) 

[1 -t- (Qv)~] - 1  § ~ ( ~ ) ~  -t- ~ 1 - _. (Qv)2 
3 §  

(30) 

2 4 (s 1 + ~) + (1 -- ~) (Q~)2 

+ - - 7 -  1 - ~  3~- ;  (Q~/~ " (31) 

The stresses and displacement in the shaft are omitted here for the sake of brevity. 
The nondimensional plasticity radius ~ is determined from (19). This leads to the following 

equation 

_ ~ + 1 - - v ~ 2 ~  = 0  (32) 
4 

with the root 

1 Y 2 
; ~ = ~  v | /  ~ (1 - -  1/1 - -  (1 - -  v) ~ 2 ~ )  (33) 

I t  is remarkable that the plasticity radius depends only on the parameter T and on the non- 
dimensional angular speed ~ but  not on the radii ratio Q. For a given hub material and a given 
clearance Z, ~ is a function of ~ only for all possible geometrical configurations of hub and 
shaft. 

The solution (26) to (33) is valid as long as all material points of the hub have images on 
Tresca's yield surface ](~) =- 0 in stress space. If Xrr > 0 the image can not lie on/(1) = 0 any- 
more. Therefore from 2:[~($~, ~t) = 0 a limit condition for the validity of the solution derived 
can be obtained. Here ~t denotes the nondimensional limit plasticity radius which is reached at 
the limit speed ~l (Fig. 3). For ~ = Q~ the image of the material point ~ ~ ~l lies in stress space 
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in the corner I of Tresca's hexagon. A straightforward computation leads to the equations 

r = 1 /  ~ (35) g 1 - - - - 1  -- ~Q2T. 
3 + ~  

Next  let us consider the case D > Dr. Then we have to distinguish three plastic zones. In  the 
inner plastic region (IPR) 1 ~ ~i the yield function /(1) governs the plastic deformation. For 
~i =< T =< ~o the yield function/(2) has to be considered. But careful attention has to be paid to 
the plastic deformation. In  the region gi ~< T ~< ~, which we denote as special plastic region 
(SPI~), prior plastic deformations governed by/(1) have to be taken into account. The material 
points in the SPI~ have undergone plastic deformations for speeds @ < .(2 ~ X2t. Only the in- 
crease of the plastic deformation beyond the predeformation is governed by Tresca's yield func- 
tion/(3). Finally in the outer plastic region (OPI~) ~t ~ T ~ ~o, material is becoming plastic 
which for D ~ 9l  no previous plastic deformation has seen. The outer plasticity radius ~o marks 
the boundary between the plastic and elastic region. 

For  the I P R  the stresses (10) and the displacement (17) can be maintained if new "integration 
constants", C1 -+ Ca and U2 --~ Ua, are introduced. Next let us inspect the SPR and determine the 
stresses in it. They can be computed from the equilibrium condition (9) and the yield condition 

/(3) = & ~  _ 1 = o .  (36) 

The solution further has to meet the condition 

~ . ( ~ i )  = o .  (37) 

The adjusted solution is 

Z .  = 1 r + ~- (~i)~ - , ~ = 1. (as) 
T 

The boundary between the IPI~ and the SPR is T = ~i where ~i is a function ~'i(f2) of the 
angular speed sO. Due to (37) the image of the material point T = ~'i lies in stress space at the 
corner I (Fig. 2). Let  us denote by ~'2c(T) the angular velocity at which the image of a material 
point situated at the radius T reaches the corner I in stress space. The function %2~(T) is the inverse 
of the function ~i(s As for ,(2 = De(T) the image of the material point at T reaches the corner I 
in stress space, the following conditions for the stresses hold 

Xr,,[T, D~(T)] = O, Z~[r], f2c(T) ] = 1. (39) 

After these preliminaries we now can investigate the deformation in the SPI~. For D = De(T) 
the total radial strain which a material point at the radius T has undergone can be expressed as 

= e,r (T). (40) 

The superscript E indicates elastic deformation. The quanti ty -vet, err tTJ is the permanent plastic 
strain which has developed for angular speed Dp(T) < D <= ~Q~(T) and has been governed by the 
yield function ](1). At the angular velocity Dp(~) plastic deformation sets on at the radius T. 
Therefore -per err (T) is the radial plastic strain of the material point at T accumulated until its image 
reaches the corner I in stress space. If  the angular velocity is increased (.Q > .(2~(T) ) the per- 
manent plastic strain g~er(T ) at the radius T is not increased, since all further plastic deformation 
is governed by the yield function/(~). The plastic strain increments for D > D~(T) are obtained 
by the associated flow rule and the yield function [(2) as 

d~Pr = 0, d~P~ = d2~, d~z = --d22, (41) 

where again d2~ is a nonnegative parameter. Since the radial plastic strain increment vanishes, 
the total radial strain increment is purely elastic. Therefore the increase of the radial strain in the 

17" 
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interval (sg~, D] is obtained as 

Gr(r], [2) - -  Gr[U, D~(~/)] = 2J~(~/, D) -- ~[2J~(~], D) -- 1], (42) 

where Eqs. (39) have been observed. From (39) there follows 

~[U, D~(~])] = --~. (43) 

Equations (42), (40) and (43) lead to 

~.(~, ~) = ~.(v ,  ~?) - ~GAv, ~) + -~or err (U)- (44) 

Considering the strain-displacement-relation, (44) can be interpreted as a differential equation 
for the radial displacement g which can be easily integrated after insertion of the stresses (38), 

= v  ~ - ~ +  ( 0 r  ~ - l n v  + ~e~(z)  d Z + G  (45) 

with a new "integration constant" Q.  
From (45) the total circumferential strain is obtained as 

The elastic circumferential strain follows from the stresses (38) and, after a straightforward 
computation, the plastic circumferential strain 

~Pq~(~' ~(~) - -  T (D~])2 dr_ (5(~r 2 - -  1 ~i (In U q- v) 

q_ _ ~er(;/) dz _}_ Q (47) 

is obtained. 
At the boundary r / =  ~i between the IPR  and the SPR the plastic strains also have to meet 

the integrated form of (11). Therefore 

eP~(r ~ )  ~- --gPrr(~i, D) (48) 

must hold. In (48) it has to be observed that ~i depends on ~2. Next we conclude that 

err ($i), (49) 

since at the interface between the IPR and the SPR the radial plastic strain is just equal to the 
permanent radial plastic strain accumulated in the interval [Dp(U), De(U)] by plastic deformation 
governed by the yield function ](1). From (47--49) the "integration constant" C5 can be deter- 
mined. After some algebra, the radial displacement in the SPI~ is obtained as 

g (1 v) V + v$i - -  ~i In v D2 

~ In ~/ -per -per - - -  r  (r + - e .  (z) dZ. 
u 

C~ 

(50) 

We recall that in the SPR the stresses are given by (38). Therefore the stresses and the radial 
displacement are determined as function of the radius ~], the angular speed ~2 and by the still 
unknown functions $i(f2) and -~er e ~  (~). 
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Next  the "integration constants" C3 and C4 for the I P R  can be determined. The "integration 
constant" C3 follows from (37) and C4 from the continuity of the radial displacement at  the 
interface U =- ~i between I P R  and SPR. We suppress the stresses and displacement here and 
rather collect the complete solution for t9 ~ / 2 t  later (59--67). 

In  the OPR the stresses (38) are valid since for both the SPR and OPR the yield function/(8) 
is relevant. For the radial displacement the solution (45) can be adopted with ~per ~ 0, since in 
the OPR no plastic predeformation governed by/(1) is present. Of course, the "integration con- 
s tant"  C5 has to be substituted by a new one C5. This can be determined from the condition of 
continuity for the radial displacement at  the interface U = ~l between SPR and OPR. 

In  the elastic region $o ~ U ~ 1/Q the solution (18) is valid with new "integration constants", 
K1 -~ K 5 and Ke -+ K G. The solution for the shaft is obtained from (18) by setting K1 = 0 and 
substituting K2 by  K4. 

The not yet  determined unknowns are the "integration constants" K4, Ks, K~ and the func- 
tions ~'i(tg), $o(-(2), ~rer(U ). They can be determined from (19, 20) and the following continuity and 
boundary conditions: 

~~ = r~(~o) ,  (51) • = ~ ( ~ o ) ,  (52) 

~~ = ~ ( ~ o ) ,  (53) z ~ ( 1 / Q )  = o.  (54) 

Here the superscript 0 denotes the OPR. For the lengthy computations we used MACSYMA [10], 
a computer algebra system. I t  led to the following equations: 

$o ;~ 9 (Y2$o) u 1 - -  \ ~o] J 

' i  err (~i) -~ 1 f ~ r r ( z ) d Z  : 0 ,  (55)  __ __ -per 

$o ~o 3 

4 (p.~)2 e~  (g~) g~ - ~ ,  (561 

2 ~i 1 3- 3~ 2 - (Q~o) ~ 
+ (~o)~ 

1 3- (Q~o) ~ ~_o 12 1 3- (Q~o) 2 

3- "3 ~oo (Y2~i)2 4 1 3- (Qr ~ : o. (57) 

Equations (55--57) have to be solved numerically for the unknowns $i, ~o and ~,er(~.~rr ~,~ depend- 
ing on the load parameter  t9 which is the independent variable of the problem. But  this direct 
approach proved insufficient in so far as, due to numerical inaccuracies, small discontinuities of 
the displacement and the plastic strains at the boundary U --~ ~o between the plastic and elastic 
region occurred. Therefore the following approach was used. 

We consider $~ as independent variable and solve the system for Y2 ~, -per e~ (~'i) and ~o. First $2 ~ 
is computed from (57) and inserted into (55) and (56). Then (55), which is a Volterra integral 
equation of the second kind for the unknown -~er e~r (~i), is differentiated with respect to ~ and thus 
reduced to an ordinary differential equation of order one. I t  contains the unknowns $o and -ge~ 
and their first derivatives with respect to ~. Then, using (56), -P~ err (~i) and its derivative are elimi- 
nated. The result is a differential equation for $o of the form 

d~o / (~,  ~o) = 0. (58) 

Here/($i, $o) is a very lengthy nonlinear function of ~i and ~o- For its generation again MACSYMA 
has been used. The expression for/(~'i, ~o) has been transformed directly into FORTRAN by 
MACSYMA. Equation (58) then has been solved numerically by a standard Runge-Kut ta  

-per routine with ~o = $~ as initial value for ~i = $~. From this numerical solution, sets {$i, Co, .(2, e,r (~i)} 
in the solution space have been obtained. Once this solution is known the stresses and the radial 
displacement in the hub can be determined from the following equations. : 
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Inner plastic region (1 G ~ ~ ~i) 

_ _  ~Q2  

Z~ -= --In ~'; q- -~- (r -- r/2), 

~2 
G~ = ~ - l~ ~ + V (~ --~/, 

Special plastic region (~ <= ~ <= ~) 

[ ~7 3 
G~ = l ,  

r~ = (1  - ~)  ~ + ~r - -~  (~  -- ~)  - ~ - ~ 

- -  e .  (Z)  dz. 

Outer plastic region (r <= ~7 G G) 

(59) 

4 

(6o) 

(61) 

3 ]  

(62) 

(63) 

( 6 4 )  

For the stresses Eqs. (62) and (63) are maintained. For computation of ~ replace in (64) in the 
integral over err-Por the upper boundary ~ by r 

Elastic region (~o ~ ~ ~ 1/Q) 

- - ~ ( O y )  2, (65) 

- -  (O~) ~, (66) 

(67) 

27~-- (~~ [1 3 + V ( Q ) 2  1 + 3 v  J 
i + (Qr -- T + T (OG)2 

3 + ~  (D/Q) 2 (QG)2 [ 1 + i - + 3  v ] 
+ T i + (QG) 2 + 1 + (Q(o) 2 ~ (~~ 8 

(G/~)~ [~ 3+~(Q) ~ ~+3~ ] 
G ,  = ~ + (Q,o)~ - T + T ( ~ 

3 +v (~/Q)~ ~ (QG)2 [ 1 + 1 +  3~ ] 
+ T a + (Q~o? ' ~ + (O~o) ~ T (~~ s 

+ ( 1 - v ) ( Q G ) ~ [ I +  3 + v  (Q) ~ 1+3v ] 
8(QGP + T (~G)2 

T (~)~ [i + (Q~o) ~][. 

3+v 

l + 3 v  

3 Numerical results 

As a test example we consider a shrink fit with Q = 0.3 and T = 1.2. According to (5) the initial 
state of the hub is elasto-plastic. Figure 4 shows the dependence of the pressure P on the angular 
speed s I t  resembles the wellknown parabolic distribution for the purely elastic case. Figure 5 
presents the development of the plasticity radii $i and G with D. Up to D = D, = 0.3265 only 
the I P g  has developed with the plasticity radius ~i which for this case marks the boundary be- 
tween the I P g  and the elastic region. For ~Q ~ ~, only a relatively weak dependence of ~i on D 
can be observed. For D > Dz the SPR and OPR develop. The I P g  decreases and so does ~i. 
The plasticity radius G indicating the boundary between the O P t  and the elastic region increases 
rapidly with D. 
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velocity/2 (Q = 0.3 ; ~ = 1.2) 

Fig. 5. Dependence of plasticity radii ~i and ~o on 
angular velocity ~Q (Q = 0.3; ~ = 1.2) 
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Fig.  6. D i s t r i bu t i on  of stresses -~rr and ~ over 
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F ig,  7. Distribution of radial displacement # over 
radius ~ (Q = 0.3; ~ ~ 1.2;/2 = 0.3400) 

Figure 6 gives the distr ibution of the stresses Z'rr and X~v over the radius ~ for ~ = 0.3400. 
The domain,  where Z '~ = 1, covers the S P R  and O P R  and the stresses meet  the yield condit ion 
/(2) = 0. Figure 7 shows the dependence of the radial displacement ~ on ~/ for ,(2 ~ 0.3400. 
Finally,  in Fig. 8 the plastic strains are shown. The Eqs. for the plastic strains can be easily 
computed  and are omi t ted  here for the  sake of brevity.  I n  the I P R  no axial plastic strain has 
developed, since the plastic deformation is governed by  the yield function/(1). I n  the S P R  plastic 
strains in all three principal  directions can be observed. The radial  plastic strain is err-~er which 
has developed for Q g/2c(~/) under  the yield funct ion/(1) .  Since the plastic deformation for a 
material  element at  radius ~/is governed by/(~) for ~2 > T2~(~), axial and circumferential  strains 
develop. At  the boundary  ~t between S P R  and O P R  the radial plastic strain vanishes. The plastic 
strains in the O P R  have developed only under  the yield function/(~). 
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