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A Maximal Coupling for Markov Chains 

David Griffeath 

O. Introduction 

A homogeneous Markov chain X, with denumerable state space S and n-step 
transition matrix ~"-~(")~ is called weakly ergodic if 1 J - -  ~lJ ik  l i ,  k ~ S  

lim ~ [P!~,)-P}~,)] = 0  for all i,j~S. 
n~oo k 

This property expresses asymptotic "loss of memory", a notion with various 
equivalent formulations: trivial tail field, absence of non-constant s p a c e - t i m e  
harmonic functions, and mixing, in particular. Over recent years, a "coupling 
method" for proving ergodicity results has been developed by Vasershtein [-12], 
and many others. The technique involves constructing two copies of X, which 
start from different states and evolve simultaneously in such a way that if they 
ever reach the same state, then they are "pasted together" from that time on. 
More precisely, a coupling is a bivariate process 2 ,  = (X, l, X 2) on the state space 

= S x S such that if X, = (k, k) for some N, then X, remains on the diagonal 
D = {(s, s); s e S} of S for all n > N. The basic coupling result states that if 2 ,  reaches 
the diagonal, starting from any (i,j)~S, in a finite time with probability one (in this 
case we call 2 ,  successful), then the original chain X, is weakly ergodic. Coupling 
has been used most extensively in the study of Markovian lattice interactions 
[3, 7, 12], but may also be used to derive ergodicity criteria for homogeneous and 
nonhomogeneous Markov chains [-6, 11]. In this paper we will briefly survey some 
of the known applications of couplings to Markov chains, and then prove a new 
theorem which states that any weakly ergodic chain has a successful "maximal" 
coupling 2 , .  Using this maximal coupling, it is possible to obtain a necessary 
and sufficient condition for weak ergodicity of an arbitrary Markov chain. Our 
construction also gives additional insight into the original proof of the weak 
ergodic theorem for irreducible aperiodic recurrent chains, due to Orey [8], as 
well as the corresponding theorem for aperiodic random walk. 

1. Preliminaries 

Let X, be a (homogeneous) Markov chain with time parameter set N = {0, 1, ...} 
and denumerable state space S. Let '~2=S ~, and let co=((Oo, col, ...) be the coor- 
dinate process on f2 for X,. Denote byp=(pik)i,k~s the 1-step transition matrix 
for 3;-,, and let P~ be the measure induced on (g2, ~)  when X, starts in state i. Here 
~=o-[(co,),~N] is the a-algebra generated by the coordinate functions. Also, 
write p!~)=P~ (co,=k). Similarly, let P~ be the measure on (f2, ~)  when X, has 
starting probability measure v. 
7 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 31 
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Denote a/x b =min  {a, b}, a v b =max  {a, b}, a + = a  v 0; a, belR. Now define 

u - ~  Z [P}~)-P}~)[, al~ )= ~, (p!~)Ap}g)); i,j~S, heN.  
k~S k~S 

Recalling that for any reals a, b we have a/x b = �89  - l a - b l ) ,  it is easy to check 
that a!y) -- 1 - 5!~ ). The Markov chain X, is weakly ergodic iff 

!im 6!y)=0 for all i,j~S. (1) 

One can verify that 6!~)=sup IPi(~o.eE)-Pj(o).eE)l . Roughly, then, condition (1) 
E = S  

asserts that X, has a long-range tendency to lose track of its initial state. 
Write N(') = a[(o,,); ' > n = n], and recall that the tail a-algebra Ntco) for a Markov 

chain is given by Ntcoh = ~.~NNt,). We say that N(co) is trivial if 

P/(B)=Pj(B)=0 or 1 for all i, j eS ,  B s ~  (co). 

Using simple martingale arguments, one can show 

Proposition 1. Let X,  be a Markov chain. The following are equivalent: 

(i) X,  has trivial tail field ; 
(ii) For any initial v, and A e Y3, 

lim sup IP~(AnB)-P~(A)P~(B)I=O; 
n ~  co B e . ~ ( ~ )  

(iii) X.  is weakly ergodic; 
(iv) All bounded f:  S x N ~ IR such that 

f( i ,  n)= ~, P~k f (k ,  n + 1) 
ke S  are constant. 

(Condition (ii) is called "mixing"; f as in (iv) are "space-time harmonic".) For 
rapid proof that (i) =,- (ii) ~ (iii) ~ (iv) :0 (i), see [9]. These equivalences illustrate 
the usefulness of weak ergodicity as an expression of asymptotic loss of memory. 

The next well-known result is due to Blackwell and Freedman (cf. [1] or [5]). 

Theorem 1. I f  X ,  is an aperiodic random walk, or an aperiodic irreducible 
recurrent Markov chain, then ~(co) is trivial. 

Combining Proposition 1 and Theorem 1 one derives 

Theorem 2. Any aperiodic random walk is weakly ergodic. 

Theorem 3 (Orey). Any aperiodic irreducible recurrent Markov chain is weakly 
ergodic. 

Remarks. The original proof [8] of Theorem 3 relied on an early version of 
Theorem 1, but not on (i)=*-(ii)=~(iii) of Proposition 1; we will return to this 
point later in the discussion. Blackwell and Freedman [1] initiated a more detailed 
study of the atomic structure of ~(co) by partitioning S into so-called "cyclically 
moving subclasses". For i and j in the same class, ~im 6!~)= 0 if X, is any random 
walk or recurrent chain. 
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We now introduce notation necessary for the definition of a Markov chain 
coupling. Let S = S x S, and let X, = (X, 1, X 2) be a bivariate stochastic process with 
coordinate representation 05 =(C~o, 051, ...)=((colo, COo2), (co~, co2), ...) on f)=S~. It 
will sometimes be convenient to think of f2 as SNx S N, and write &=(0)~, ~2), 
where 0) 1 =(0)10 ,  s  . . . )  and 2 2 2 co =(COo, COl .. . .  ). Let ~i,j) be the measure on (~), ~ )  
for Jr. started in (i,j), with ~=a[(05. ) ;  n~N].  The diagonal D of S is given by 

D={(s, s): s~S}. 

For 6 ~ ,  we define the hitting time to the diagonal, zD, by 

zo=min  {neN: 05~D} 
(=  oe if (79,~D for all n). 

The following partition of ~) will be used throughout the discussion: 

~=f2*  :={(5: zo(05)<o�9 and cS, eD for all n>zD} 
+~o~= {05: ~(05)= oo} 
+~o .. =~_( f ) ,  +~)~). 

Let X, be a Markov chain. In the context of the last paragraph, a coupling 
for X, is a bivariate stochastic process X. such that for each (i,j)~S, 

~i,~)(" x t2)=P/ ( . )  and ~i,j)(f2x ")=P~( ' ) ,  (2a) 
and 

~,, j) (~). + f)o~)= i. (2b) 

Condition (2a) states that when f(, starts in (i,j), the marginal processes X, ~ and 
X 2 are copies of the given Markov chain X. starting from i and j respectively; 
thus we may think of X, as two simultaneously evolving copies of X,. Condition 
(2b) requires that ~', remain on the diagonal D at all times after zD; we do not, 
however, rule out the possibility that zo might be infinite. 

2. The Coupling Method 

We now give a coupling criterion for weak ergodicity which has been known 
for many years in one form or another. The existence of useful couplings will be 
shown in later sections. 

Proposition 2. Let Xn be a Markov chain, and let X, be a coupling for iv;,. I f  
~i, j)(zo < o0)= i for every (i, j)~ S, then X, is weakly ergodic. 

Proof By (2a) we have, for every i,j, k~S, 

fi(i, j) (05, = (k, k)) < p!~,'/x p}7, ). (3 a) 

Sum these inequalities over k e S to get 

~i, j)(05, e D) < c~!7). (3 b) 

But (2 b) implies that {0),~D} = {vo-< n}, so using the hypothesis of the proposi- 
tion, it follows that 

lira inf ~,~".) > lira P(i.j)(zo<n)=~i,j)(zv< oo)= 1 

for all i,j~S. Since ~!~)--1- ~.) v , ,  we conclude that X, is weakly ergodic. 
7* 
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In light of Proposition 2, we call a coupling X, such that ~ , j ) (O*)=l  for 
every (i,j)~S successful, and say that ff,  fails if ~i,j)(~)*)< 1 for some (i,j)~S. 

3. Examples of Couplings 

We now discuss briefly a few examples of couplings for Markov chains, and 
some of their applications. 

Example 1. The classical coupling. Let ~'. be a Markov chain on S with tran- 
sition matrix b = ~(i, y)(k, ~))<i, j), (k, 0~,  given in terms of the matrix p for X. by 

2. 

(i, i) ~ (k, k) Pik; (i,j, k, l~S, i#-j). 

(i,j) --+ (k,l) PikPjl; 

It is a simple matter to check that p determines a well-defined coupling. The 
process X, evolves as two independent copies of the chain X, until these copies 
reach a common state; thereafter the marginal processes use the same transition 
mechanism. This was surely the first known coupling, dating back at least as far 
as a 1937 paper of Doeblin [4] - we will call it the classical coupling. Now suppose 
that X, is irreducible and aperiodic. One can check that if X, is positive rexurrent 
then X, is successful, while if X, is transient then X, fails. In the null recurrent 
case, 2 ,  may either succeed or fail. An example of the latter type, described by 
Freedman [5, p. 45], with S =  {0, 1, ...}, has transition matrix p of the form 

Pok=Ck>O, Pii_l=l; i, kES, i#O,  (4) 

for suitably chosen Ck. Thus, in general, the classical coupling yields weak ergodi- 
city only for the positive recurrent case. In this setting Pitman [11] has noticed 
that E(i,j)(zD)<~; (i,j)e~S (where /~ is the expectation operator corresponding 
to/5), which implies that we in fact have 

~im n6!y)=O. (5) 

Pitman's paper contains a good deal of additional information relating to the 
classical coupling and its application to rate of convergence problems for positive 
recurrent chains. 

Example 2. The Vasershtein coupling. For this example, let X. be a Markov 
chain on ;~ with p of the form 

(i, i) (k, 1,) 
(i, j) (k, k) 

(i,j) ~ (k, l) 

Pik 
pikAPjk; (i,j,k, 16S, i:l=j, k~:l) 

(pik--Pjk) + (pjt--pil) + 
l-od) 

It is not hard to verify that p gives a coupling, the version for Markov chains of a 
more general construction due to Vasershtein [12]. Call this process ~(, the 
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Vasershtein coupling. Letting 

6 (") = sup 6}~ ), 
L J  

we call a Markov chain S-uniformly ergodic if 

lim 6 (") = 0. 
n ~ o o  

The Vasershtein coupling turns out to be appropriate for the study of this property, 
providing results such as 

Proposition 3 (Markov-Dobrushin-Hajnal). Let X ,  be a Markov chain. The 
following are equivalent: 

(i) X,  is S-uniformly ergodic; 
(ii) e(")= infer!7 ) > 0 for some n s N ;  

(iii) There are non-negative constants C and p < 1 such that 6(")< C p" for all 
n~N.  

For a coupling proof of Proposition 3, and a discussion of uniform ergodicity 
for nonstationary chains, see [6]. We note in passing that (iii) of Proposition 3 
expresses geometric ergodicity, a more rapid rate of convergence than (5). Now 
the classical coupling is "weaker" than the Vasershtein coupling in the sense that 
under the former we go from (i,j) to (k, k)eD with probability PikPjk, while under 
the latter the probability of this transition is pig/x Pig, and Pig Pjk < Pik/~ Pig for all 
i,j, keS.  Thus the second coupling may be successful for chains where the first 
fails, and so we might hope to get more general weak ergodicity results by using 
Vasershtein's process. Unfortunately the two couplings agree for chains of the 
form (4), since off the diagonal at least one of the two processes X, ~ and X 2 is 
always moving deterministically. Thus, this coupling also fails for some null 
recurrent chains. Moreover, one can check that the present process sends us to 
the diagonal as efficiently as any Markovian coupling can, so that in order to 
prove Theorem 3 by coupling it is necessary to introduce a non-Markovian 2".  

Example 3. Ornstein's coupling. An ingenious coupling for random walk X, 
on the integers 2g has been given by Ornstein [10]; we will sketch his idea. Let 
(Pk)ke~ be the transition function for X, (i.e. Pli+k~Pk; i, k~;g), and let N be a 
large positive integer to be chosen later. Roughly, to determine the progress of 
X, from time n to n +  1, we observe the difference in the displacement of two 
independent copies of our random walk at this step. If the absolute value of this 
difference does not exceed N we let the copies move to their new states, while if 
the difference exceeds N we instead translate both processes by the same inde- 
pendently determined value k according to the distribution {Pk}. These heuristics 
lead to the Ornstein coupling, a Markov chain on S = Z x ~ with transitions 

2. 2.+1 

(i,i) ~ ( i + k , i + k )  Pk; 

(i,j) ~ ( i+k , j+I )  PkpIA(Jk-tI<=NI+[P~--ZN(k)] A(k=ti; 
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where 

SN(s)= ~ p~p~,, A ~ = t l 0  if zc h~ 
s': It- s'l _-< N otherwise. 

Until "co, X, ~ - X  2 is a random walk with transition probabilities q~+  r = qr such 
that qr=q_y and q r=0  for y>N. We therefore clearly have 

]ylqr<oe and ~ y q r = 0 .  
yeZ y~2g 

By choosing N large enough we can also ensure that q is an aperiodic transition 
function, and for such an N, a classical random walk result by Chung and Fuchs 
[cf. 2, p. 270] states that q is recurrent. We conclude that ~ ,  j)(XX. - X, 2 = 0 for some 
n) = 1, and hence the Ornstein coupling is successful. This is a second proof of 
Theorem 2. If we apply a variant on the above idea to the sojourn times of two 
copies of an irreducible aperiodic recurrent Markov chain from a reference state 
so e S, it is possible to construct a coupling for the chain which is always successful, 
yielding Theorem 3. Since this construction is based on the time space rather than 
the state space, the resulting process Xn will be non-Markovian. Here, then, is 
one route to a coupling which succeeds in the null recurrent case, where Exam- 
ples 1 and 2 fail. Another approach, of more general applicability, is the subject 
of the remainder of this paper. 

4. A Maximal Coupling 

In the proof of Proposition 2 we noted that (3 a) and (3 b) hold for an arbitrary 
coupling. Our objective now is to construct, for any given Markov chain X,, 
a coupling )~, such that these relations hold with equality, i.e. such that 

~,j~(~=(k,k))=p!"k) ^pJ~); i,j,k~S, neN, (6) 
and hence 

<__ 

For this coupling, it follows that 

~i,j)('co < oc)= 1 - lim 5!7 ), 

whence 2 ,  is successful if and only if X, is weakly ergodic. The process 2~ will 
be called a maximal coupling for Xn; for the remainder of this paper 2n will always 
denote such a coupling. The construction of 2 ,  is tedious, since the process is 
necessarily non-Markovian. Once we have shown its existence, though, the simple 
properties (2) and (6) can be used to advantage. 

The main result of this paper is 

Theorem 4. Any Markov chain X, has a maximal coupling X. satisfying (6). 
Thus X, is successful if and only if X, is weakly ergodic. 

Proof. It suffices to prescribe consistent values of ~i,j); (i,j)e ~S, for )2-~ on 
cylinder sets of the form 

{&:chl=(il,jl),  ~52 =(i2,j2), ...,69N=(iN,jN)}; N~N,  (7) 
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and check that they satisfy (2a,b) and (7). The Kolmogorov extension theorem 
then guarantees a measure on (~2, ~ )  as desired. For brevity's sake we adopt the 
following notational conventions throughout the proof. The symbol i, will be 
reserved for a generic value of 0).~,j, for 0)2, and k, for the case where 0),-~ _ 0)2 = k,. 
We abbreviate 

[s,, s,,] for s., s,+~, ... s,,; 

[(i,,j,),(i,,,j,,)] for (i.,j,),(i,+x,j,+~), ... (i,,,j,,); 

[(k,,k.),(k,,,k,,)] for (k,,k,),(k,+,,k,+a),. . .(k, , ,k. ,); 

all i,,.L,k.eS. Finally, any event of the form {&,~ =(i,~,j,~); { = 1, 2, ..., 1} will be 
written simply as {(i,,,j,~); ~ = 1, 2, ..., l} and similarly for events {o)1~ =i,~} and 

0)2  �9 { ,~ =j,~}. Thus, for example, the ~i,~ measure of the event (7) will be denoted as 

P(i,j,([(il ,jl), (iN,jN)]). 

We will now proceed to define (~,~))(i,i)~ in three steps. Parts (i) and (iii) are 
straightforward; part (ii), which contains the heart of the argument, requires some 
motivation. The idea is to construct ~,, i~ so that for N > 1, 

~i, j)([(il ,J~), (iN-l, jN- 1)] (kN, kN) ] (kN, kN), T,D = N) 
= ~ i , j ) ( [ i l ,  iN_Z] k~]0)~=kN, zD> N) fi(i,j)([jl,jN-,] kNI0)~=kN, ZD> N). 

Put q)l~})([s~, SN])=~,,j)([s~, su] x O10)~ =sN, zD > N), and 

(N) ~ 1 O(i. j)(s) = P,, j~(0)N = s, ZD >_-- N). 

The equation above, together with the desired properties (2 a, b) and (6), dictates 
the inductive prescription (9) for q), equation (10) for ~, and ultimately (14). 
However, a rigorous proof along these lines would be quite involved and not 
particularly enlightening, so we prefer to give the formal construction which 
follows. 

(i) For i=j, set 

O~,j)([i)={~(B)=Pj(B) i f / ) = ( B , B ) c D  N 
. else ' 

/ )aN.Then ~i,i)(zD = 0 ) =  1, and (2a, b) and (6) are all obvious. 

(ii) Henceforth, assume i +j, and define functions q){~): S {1 ..... N~ ~ IR inductively 
by taking 

(pll,)j)(st) = 1 for all sl e S, (8) 

and for N > 1, 
/ (r~{ N) __n{N) ' l+  \ 

N +  1) [ ~FlSN rJSN!  q~li.J) ([S~,SN+~])=\ ~pI,,j)u+I)(SN+~) p . . . . .  , @~})([Sl, SN]) (9) ) 
(N + 1) ( = 0  if~k(ij)(Su+l)=O), 

where 
~js" j ~,~, saS, N->I. (10) 

s" ES 
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These properties of the ~o1~,~ ) are easily verified for N > 1 by induction: 
If 

~0 (N) ,d-s~ (i,j,,~ , SN])=0, then ~o[~))([sl, SN,])=0 for all N'>_N. (11) 

N+I) N+I) Either 91ij) (Esa,su+l-])=0 or q)lJ.O ([Sl,SN+I])=0 (12) 

(since either (P!2 -,~J~,,,"~m ~+ or ,~j~,,(,,(N) - ~i,~,,'r is 0 in (9)). 

(N) f l ;  01~,~)(SN) > 0 
2 q?(i, j ) (E s 1 ,  SN])  = �9 (13) 

. . . . . .  /0; 0t   (sN)=0 

We now specify the measures ~i,j)(" c~t)*) on (t), @) for ( i , j )~S-D. To do so, 
first partition O* as 

~ * =  ~ t)*, with t)~ = {(5e~*: rD(cb)=N}. 
NMN 

For each N, determine a measure on S(a ..... N~ by giving each of its atoms 

{E(i, ,jr), (iN-1 , jN-1)]  (kN, kN)}, 

with i. W-j. for 1 -< n_< N - 1, the weight 

~,, j)(E(i~ ,jl), (iN_, ,jN-- ,)](kN, kN)) 
----- EO[~})(kN) A OI~Y~,(kN)] ~ot~,})(Ei,, iN_ ~3 kN) ~o}j,N)~)(EJ1," )N-~]" kN), (14) 

and all other atoms weight 0. Now, for N ' >  N, let 

~,, j)(E(h, jl), (iN_,, ju -  1)] [(kN, kN), (kN', kN.)]) 
N'-I (15) 

-~-J~(/,j)(r(il, j~), (iN-~, JN-,)] (kN, kN)) I-[ Pkeke+,. 

These cylinder values are surely consistent, and so determine a measure 

concentrated on t)~. Now, f o r / ) ~ ,  let 

N e N  

W e  claim that the following key properties are satisfied: 

0,, j)(aN = (k, k), (be t)*)= p[f) A p};), (16) 

~,, j)([h, iN], cSe t)*) < Pff[io, iN]), (17 a) 
=P~([io,i~]) if ,,(".)<-(0 (17b) 

for some n < N, 
and similarly for Oi, j)([J~, iN], c5e~2"). 
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To show (16), note that by (11) and (12), the right hand side of (14) is 0 if i ,=j ,  
for some n < N. Thus we have 

= Z [-I/.t{/N,~)(k) A ~t{N)k)(k)] (p{N~')([il, i N - , ]  k )  q)IN~')([jl, j N - , ]  k) 

it,-.., iN- leS 
j .... . .  jN : S  (18) 

(m k = [ @ ( i , j ) (  ) A 0{N)/)(k)], 

this last equality following from (13). Now for N =  1, (16) holds by (14), and a 
routine induction using (18) establishes (16) in general since 

~(N+ 1) ^ ~(N+ 1)__ (N+I) N+ [O(,,J) (k) A 0{:,,)')(k)3 - F~ (p!? A- : )~  p~.  iJik : \  iJjk - -  y j s  : 
sES 

The verification of (17) is slightly more involved. First, we show inductively that 
for all N_~ 1, 

N 

r (19) 
= P/([i,, iN]) -- ,v,~,('("~) -- r,,u,"(Nh + q0{~,})([h, iN]). 

For N = 1, this follows from (15). Assuming (19) for N, we have 

N+, ) 

~i,j) ([il, iN+,], &~ Z I)g 
\ g=l 

=P(i,,)([i,,iN+,],(Toe ~ (2*)+~id)([i,,iN+'],gO~f2*§ 
r 

= ~ ( [ i l  ' "' ,.(N) ,,(m~+ (p{N})([il ,iN])] Pi. ix+ ~N_]] - -  I,FiiN - -  IJdiN ! 1 

N+I) i 'I'(N+ I)[; 
[by (13)-(15)) 

1) q'l,,:) (I;~, iN,~]) q/l,,:) (tN+ (by (9)) =pi([ia,iN+,]) - N+t). •+11 �9 

q'l,,J) (I~1, iN+d) 4- N+,) i N+,) �9 N+I) �9 
[@l i ,  j) ( N + ' ) A @ I J ,  i) ( IN+I)]  

i (u+ .tAN+'). (Pli, J) ([h, ZN+X]) = P / ( [ i l ,  N + , ] ) - - ( t / l ( i , j ,  1 ) ( i N + , )  - tl*(j,i) U'N+ 1))+ N+,) ' " 

; q~ (~(N+ ,)'~ [r , (N+ ,)~+ N+ t) - 
=~/(1- i l ,  f ' N + l J l - - k l ~ t i N + t l - - k F J i N + l ]  @{i , j )  (D1, iN+X]), 

this last since 0(i, J)(N+ 1) (/-N+ 1 ) '  --~"//t iN + 1-(N+ I) - - ~  (]Jis'-(N) A ydsr){N)~J PSiN+~" 
S 

We have proved (19) for all N >  1, and hence 

~i~i,([il,iN],(5~ ~, ~ ) < P / ( [ h , i N ] )  for N ~ I .  
r 

But for N' > N, 
N, ) 

r iN+l,-.-,i~c'eS 

< ~ P~([il, iN,])--P~ ([it, iN]). 
iN + l , . . . .  iN '~S 
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Letting N ' ~ o e ,  we obtain (20a). Moreover, if ,,~-".)<,,(".) for some n<N, then Y ~ n - ~ - Y J l n  

~o/~) =0  by (11), and (19) shows that 

P(,,j) [il, is], ~ s  • ~)~)=Pi([il, iN]). 
~=1 / 

If ,~.N) <,,~.u) then this last equality again holds, also by (19). In either case, Y I | N  ~ f fJ  ~N'  

~=N+I 

since ~ol#j)([il, ir = 0 for r > N according to (9) and (11). Hence (17 b) holds. The 
same argument clearly applies to the second marginal, so the verification of (17) 
is complete. 

(iii) If ~ . j ) (~*)= 1, take ~.j)(~)~o +~)o)= 0 to finish the construction of P,,j). 
Then we must have equality in (17a), and similarly for the second marginal, so 
(2a) holds. Property (2b) is immediate, and (6) follows from (16). If P,,j)(f2*)= 1 
for every (i, j)r ~;, then 7(, is a successful maximal coupling, and X, is weakly ergo- 
dic. 

(iv) IfP,, j)(~*) < 1 for some (i,j)r 'S, then using (17) we may define P on cylinders 
[(il,jl)(iN,jN)]; i, 4:j, for 1 <n< N, o f ~  ~176 by 

P.. 
[P~([i,, is])-P(i,j)([i~, is], (5~ ~)*)] (20) 

= x [Pj(Ejl, ju])--P((i,j)(Ejl, JN'], G.)~*)]  
1 -P,,j)(f2*) 

According to (17b), the right hand side of (20) vanishes if i,=j, for some n<N, so 
(23) extends to events B c~ O ~ as 

~,, j)((B ~, B z) c~ ~oo) = [P~ (B~) - ~,, j)(B~ c~ ~*)] [Pj(B2) - ~ ,  j)(B2 c~ ~)*)3 . 
1 - ~i,  j) ( 0 " )  

(B a, Ba)e~.  Thus P,,j?( �9 c~ ~o)  is a product measure such that 

~,, j)((B ~, ~2)) = P/(B 1) - P(i, j)(( B1, Q) ~ Q*), 

and similarly for the second marginal. Setting ~ j)(~)o)= 0, we obtain a coupling, 
and again, (6) is a consequence of (16). Hence X, is a maximal coupling, but in 
this case ~7, fails and X, is not weakly ergodic. This completes the proof of the 
theorem. 

Remark.The construction just completed extends easily to nonhomogeneous 
Markov chains, and more general discrete time Markov processes such as lattice 
interactions. For such processes we have solved a problem suggested by 
Vasershtein [12]: 

If S is an abstract space, and PX and p2 are two measures over S ~, determine 
p = (p,),~, where 

#. =inf /5(6~.eS-  D), 
P 
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5 a measure on ~N with projections pX and p2. A more general study of this 
problem would be of interest. 

5. An Application 

In the last section we produced a maximal coupling X, for'any given Markov 
chain )(,,which is absorbed on the diagonal of S if and only if X, is weakly ergodic. 
Unfortunately, the process X, is extremely complicated; it is probably too much 
to hope that its sample path behavior will be tractable in most cases. We can, 
however, make use of (2) and (6) to obtain 

Theorem 5. Let  X ,  be a Markov  chain. X ,  is weakly ergodic f and only if  for  
every i , j~S ,  

pit,,!,) < ,(.,) c , ,  n~N)-- 1 w,~,, = vso, a ~- some 
or (21) 

Pj (P!2. > P}~n for  some n ~ N) = 1 
(or both). 

Proo f  If X, is weakly ergodic, then . ~ )  is trivial by Proposition 1. Let 

BI= {me~: ,,~") <,r for infinitely many n}, Vzoon ~ l ' j~o  n 

B 2 { c o ~ :  -~") >,,~) for infinitely many n}. ~-- l~ltDn = Y J O n  

Then B 1, B 2 ~  (~ with B1 wB2=Q, so 

Pi(B 1) =Pj(B 1) = 1 or P/(B2)=Pj(B2)= 1. 

Hence (21) holds. Conversely, suppose the first equality of (21) holds. Letting2, 
be the maximal coupling for X~, we have 

~i, j3(&e~: r'!")',~. =<'r for some n)= 1, 

so, in particular, if we write va (&)= rain t".~"" wo~-r =vjo~,~, < -~") ~ then ~,  j)(zx < oo)= 1. But 
for each N, using (2) and (6) we have 

~ 1 ~ < ~ (N) < (N) = N, r D) = = V,o , r D) 

= Z [~,,j,(eo}=iN)--~,j,(CSN=(i~v, iu))] 
i~v~S: 

p ( N )  < o t N  
i i N : - - j i  N 

--  ~ /n(N) r~(N) ~+ 
- -  ~,F i i N  - -  k ' j  i N ;  ~ -  O .  

i ~ ~ S: 
p ( N I  �9 tN) 

i i \  I j N 

Thus ZD<=zX<oe a.s., so that 2 ,  is successful, and X, is weakly ergodic. An 
analogous argument for the second possibility in (24) completes the proof. 

It is interesting to note that once the existence of a maximal coupling is 
shown, Orey's original proof [-8] of Theorem 3 may be interpreted as a coupling 
argument similar to the above. A proof along these lines is obtained by using 
Theorem 1 to claim that N(oo) is trivial, then considering the events B 1 and B 2 

introduced during the proof of the last theorem, in order to deduce that X, is 
successful. In this way we avoid the notion of mixing ((ii) of Proposition 1) and 
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a backward martingale argument required for the usual proof. Similar remarks 
apply to Theorem 2. 

We conclude the discussion with two examples illustrating Theorem 5: 

Example 1. S = 77. X ,  is a random walk such that 

1 1 
Pii+l =Pii-1 = ~ ,  Pi i=~;  i~77. 

Here P!7, )<"(")=ej~ if and only if l i - k ]>I j - k l .  Thus X, is weakly ergodic if 
P/(Ico,-jD<lco,-il for some n)=l .  This is clearly the case, since P/ (co, =j  for 
some n)= 1. 

Example 2. S={0,  1, ...}. X, has transitions 

Pio=C.i<l, Pii+t=l-ei; i~S, 

with ~e i<oo .  Consider N = ( i , i + I ,  ...); by hypothesis P~(N)>0, and for j + i ,  
p(."_) -,(.".) - n < p ! ~ ,  for all n. Thus /?(,,~") <,,~") for some n)<l .  For the same J O ) n  - -  F J I  + n - -  v l k U l O n  ~ .  ~ ' J o 2  n 

i ,j ,N=(j,j+l, ..) shows that also P,(,,~") >,r for some n)< l ,  so X, is not �9 J \ I f  l e O n  ~ V J O ~  n 

weakly ergodic. (In this example, it is also easy to see that N, c3eN(~).) 

Acknowledgements. Thanks to Professors F. Spitzer and R. Holley for their help. 
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