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Model diagnostics for normal and non-normal state space models are based on recursive residuals which are 
defined from the one-step ahead predictive distribution. Routine calculation of these residuals is discussed in 
detail. Various diagnostic tools are suggested to check, for example, for wrong observation distributions 
and for autocorrelation. The paper also discusses such topics as model diagnostics for discrete time series 
and model discrimination via Bayes factors. The case studies cover environmental applications such as analys- 
ing a time series of the number of daily rainfall occurrences and a time series of daily sulfur dioxide emissions. 
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1. Introduction 

Model diagnostics is understood as a more or less formal check of properties that certain residuals 
should have under the assumption that the data were generated by the model under investigation. 
Although the statistical literature on diagnostics for more specific models such as regression models 
or generalized linear models is vast, this issue is somewhat neglected for state space models. 

For  normal state space models some useful material may be found in the books of  
Schneider (1986) and Harvey (t989). They both derive appropriate statistics from the recursive 
residuals 

Yt - E(yt]Y t-l) 
rt -- v/var( Ytlyt_l) (1) 

where E(yt ly  t -  1) and var(ytly t-l) are the expectation and the variance of  the one-step-ahead pre- 
dictive distribution of  a future value Yt of  a time series given observations yt-1 = { Yl , . . . ,  Yt-1 } up 
to t - 1. As the residuals rl , . . . ,  r t , . . ,  are i.i.d, standard normal, if the model is correct, it is easy to 
develop significance tests to decide whether to reject the model. 

Harvey (1989) also deals with diagnostics for non-normal state space models, where he sticks to diag- 
nostics based on the recursive residuals (I). These 'Pearson residuals' unfortunately lose their normality 
within non-normal models, and significance tests based on them are somewhat doubtful. Smith (1985), 
following Dawid (1984), defines recursive residuals for time series of  continuous observations by 

ut = Pr(Yt < YtlY t-l) (2) 
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and 

vt = ~-l(u,) (3) 

where Pr( Yt <- Yt]Y t-l) is the one-step-ahead predictive distribution of a future value Yt of a time 
series given observations up to t - 1 and • is the standard normal distribution, ut will be called the 
P-score and vt will be called the transformed P-score in this paper. What makes the P-scores and 
their transformed version so useful is the following property: if Yt is a continous random variable 
and if the model is correct, the P-scores are i.i.d, uniform on [0, 1] and therefore the transformed P- 
scores are i.i.d, standard normal (Rosenblatt, 1952). Furthermore for normal state space models the 
transformed P-scores coincide with the recursive residuals (1). Thus the P-scores and their trans- 
formed version seem to be the appropriate extension of recursive residuals to non-normal state 
space models. 

A general method of routine calculation of P-scores for non-normal state space models is still 
missing - only some special cases have been treated in Smith (1985). In the present paper we discuss 
computation of P-scores for a rather general class of non-normal state space models, namely the 
dynamic generalized linear model (DGLM). The DGLM combines the linear Gaussian transition 
equation for the state vector xt, 

x ,  = F t  " x , - i  + w,,  w t ,... N(0, Q t )  (4) 

with the usually non-normal observation density p(ytlxt) = p(ytlAt) which depends on the state 
vector xt only through the linear predictor )~t = Htxt (by 'density' we mean the density of the dis- 
tribution P(ytl)~t) either with respect to the Lebesgue measure for Yt continuous or with respect to 
the counting measure for Yt discrete). The observation density need not belong to an exponential 
family. For more details the reader is referred to Fahrmeir (1992). For the sake of simplicity we 
confine ourselves to univariate time series. 

Although we adopt a Bayesian approach to derive the predictive distributions through which the 
P-scores are defined, we do not hesitate to use sampling theory methods to derive diagnostic tools 
from the P-scores and to interpret them. From a dogmatic Bayesian viewpoint sampling theory 
methods in diagnostic checking are thought inappropriate (O'Hagan, 1980). Box (1980), however, 
in a rather convincing paper, has suggested accepting a Bayes/non-Bayes interplay in the dual pro- 
cesses of model estimation and model criticism. It is the intention of the present paper to illustrate 
how very useful such a Bayes/non-Bayes marriage turns out to be when dealing with state space 
models. 

The outline of the paper is as follows: Section 2 shows how to supplement routine methods of 
filtering for DGLM (West et al., 1985; Fahrmeir, 1992; Frtihwirth-Schnatter, 1994) by a systematic 
calculation of P-scores. In Section 3 we derive various diagnostic tools from the P-scores. Section 4 
deals with model diagnostics for time series of binary and count data. Section 5 discusses the dif- 
ference between model choice via Bayes factors and model diagnostics. Finally, in Section 6 we 
illustrate iterative model building based on residual diagnostics for a time series of daily sulfur 
dioxide emissions. 

2. Approximate computation of recursive residuals for DGLM 

The recursive residuals (2) and (3) are defined through the one-step-ahead predictive distribution 
P r (~  _< y t l j  -1). This distribution is known analytically only if the observation density p(ytl)~t) 
happens to be N(,kt, Rt) with Rz independent of ,kt and if all hyperparameters are known. In this 
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section we discuss how to approximate the one-step-ahead predictive distribution for D G L M  with 
possibly unknown hyperparameters. Yt may be continuous or discrete. 

Let us assume for the moment that the hyperparameters are known. We represent the one-step- 
ahead predictive distribution as an infinite mixture: 

Pr(Yt < ytly t-l) -- P(ytlAt)p(Atly t-l) dAt (5) 
--OO 

where P(ytlAt) is the distribution function ofp(yt[At) and p(A t[/-1) is the one-step-ahead predictive 
density of the linear predictor At = Ht "xt. p(Atly t-l) as well as the posterior p ( x t _  1 ly t-l) are not 
known analytically. Routine filtering methods such as the WHM algorithm (West et al., 1985), pos- 
terior mode filtering (Fahrmeir, 1992) or integration-based Kalman filtering (Frfihwirth-Schnatter, 
1994) lead to estimates 2t_ lit-1 and Pt-11t-1 of the first two moments of the posterior p (x t_ l lyt-l). It 
is obvious from the linear transition Equation (4) and the linear relationship between state vector 
and predictor that the first two moments f~tlt-1 and fktlt_ 1 ofp(Atly t-l) are given by: 

f~tlt_ 1 = H t • F t " 2gt- l l t -  1 £tlt--I = I-It(F t • Pt_llt_l FT + Qt)H T 

To approximate the infinite mixture distribution (5) by a finite mixture distribution we substitute the 
exact, but unknown mixing density p(Atly t-l) by a normal density with the same first two moments 
and use Gauss-Hermite integration after applying the transformation z t =  (2"fitt}t-1) -1/2 
( A  t - -  , ~ , l , _ l ) :  

M . . 

Pr(Yt -< Yt l / - '  ) "~ --~ ~-'~" P( Yt[A}' ))w~~--1-- 

with 

(6) 

AI i) = fktlt-1 ~- V ~ "  ntlt- 1 • T(~ ( 7 )  

where w(~ and r(~ ) are the grid points and the weights of univariate Gauss-Hermite integration of 
order M as tabulated for example in Abramowitz and Stegun (1970). Although the approximation 
of the predictive distribution by means of (6) may be combined with any filtering method which 
computes the first two posterior moments, we use integration-based Kalman filtering for the rest of 
the paper (with the exception of Case Study 1). 

The finite mixture distribution (6) is approximate in two senses. First, it approximates an analy- 
tical integral by a numerical one. The corresponding error can be kept small by choosing M suffi- 
ciently large, e.g. M = 10. Second, it substitutes the exact mixing density by a normal density. This 
error will be small if the posterior p ( x t _  1 ]yt-1) is close to a normal density. Experimental results 
reported in Schnatter (1992) and Fahrmeir (1992) indicate that with t increasing the posterior in 
fact tends to be normal even in cases where the observation density is extremely non-normal. 

If  hyperparameters 0 are unknown, one may proceed in two ways (Dawid, 1984). The first 
method is to assume that 0 is unknown but fixed (0 = 00) and to use the plug-in approach of esti- 
mating 00, e.g. by the ML estimate/9. An approximation of the likelihood function results automa- 
tically as a by-product of integration-based Kalman filtering - see Frfihwirth-Schnatter (1994). 

The second method is to assume that 0 is a random variable and to use a hierarchical model with 
prior p(OI yO). The exact P-scores ut which are given by the infinite mixture 

ut = [ Pr( Yt <- YtIY ̀ -! , O)P(OI/-I) d 0 (8) 
d 
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are approximated via multiprocess-filtering by a finite mixture: 

G 
ut ,-~ ~ Pr( Yt < Yt [yr-1 0 (j))p(O (j)lyt-l) (9) 

j= l  

The posterior weights of the grid points 00) , . . . ,  0 (6) are determined from Bayes' theorem: 

p(O(j) [yt) cx p(yt[y t-1 , o(J))p(O (j) ly t-l) (10) 

An approximation of the 'likelihood' p(Ytlyt-l,o (j)) is directly available from the approximation 
(6) of the predictive distribution Pr(Yt < Yt[Y t-l,O(j)): 

M 

where Ali)is the same as in (7). It should be kept in mind that the notation in (11) does not reflect the 
fact that/~tl t_ I a n d  ~ktl t_ 1 in (7) depend on the grid point 0 (j). For further details on estimating 
hyperparameters via multiprocess filtering the reader is referred to Harrison and Stevens (1976) for 
normal state models and to Friihwirth-Schnatter (1994) for non-normal state space models. 

The statistical properties of the P-scores under the assumption of a correct model differ for both 
methods. Given a consistent estimate 0 of 00 the 'plug-in' P-scores approximated from 
Pr(Yt < Ytl y t - l ,  ~) rather than from Pr(Yt < yrlS -1, 00) are i.i.d, uniform only asymptotically, 
even if the model is correct (Dawid, 1984). Advantageously, the exact 'hierarchical' P-scores (8) 
are i.i.d, uniform, if the model is correct. The approximate 'hierarchical' P-scores (9) will be close 
to an i.i.d, uniform sequence, if G is large. In contrast to the plug-in-approach, however, not only the 
model structure given by Ft, Ot, Ht and the conditional observation density p(ytl~t) but also the 
prior p(OI yO) define the hierarchical model. A model with correct model structure and correct con- 
ditional observation density may be rejected simply because this prior has been poorly chosen. 

A last remark concerns 0 the influence of the prior p(xot y ) of the state vector x0. The first d P- 
scores ul , . . . ,  Ud, with d = 0 dim(x0), are well defined only ifp(xo[y ) is a proper density. If the prior 
of the state vector is improper, the first d observations are needed to build up a proper prior for all 
components of the state vector. It is at no = d + 1 that computation of the P-scores starts. 

3. Basic tools of diagnostic checking for state space models 

From our practical experience with analysing numerous time series by state space models we have 
learnt that the following diagnostic tools are 'standard tools' which should be plotted and computed 
in any case. Some of them are well-known diagnostic tools for regression models, generalized linear 
models, and normal state space models. 

The most simple graphic device is a plot of the transformed P-scores vt as a function of t. Some 
types of departure from the assumed model such as the presence of outliers, autocorrelation or 
heterogeneity might be obvious from a visual inspection of this graph. A rough check of the dis- 
tribution of the P-scores is provided by the empirical distribution function of ut. It is often more 
instructive to produce a normal plot of the transformed P-scores: a plot of the ordered v(0's against 
normal order statistics should be close to a straight line. Such a plot, however based on the deviance 
residuals 0~regibon, 1981), has been discussed by Davison and Gigli (1989) to check outliers and 
distributional assumptions in generalized linear models. 

A difficulty in the inspection of normal plots is sometimes to decide whether the variation in the 
plot is too far from a straight line. Simulation envelopes (Atkinson, 1981, 1982) could be generated 
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to provide a statistical test. In the present paper we use the following indices derived from the first 
four moments of these residuals about their mean: 

n 

m~= Z(vt-ml)r/N, 
t = n  0 

m I = £ vJN,  

r>_2 

N = n - n o +  l 
t = n o  

where n is equal to the number of observations and no is equal to 1, if the prior of the state vector x0 
is a proper density. For improper priors see the remark at the end of Section 2. 

These moments are used to construct four indices which are asymptotically standard normal. The 
bias index BN is defined by 

B u = x/Nml 

the dispersion index D u by 

Nm 2 - N +  1 
D N - -  2(x/TWz-1) 

the skewness index S~¢ by 

/ ( N +  1)(N+ 3) m3 
SN = V -~(~Z--~ (mE)3~2 

and the tail index TN by 

(N + 1)v/(N + 3)(N + 5) (m 4 3(N- 1)~ 
T N = -V/-2 4-(-N = -2 ~( ~ - -  3 -~  -~2 ( N + 1) ) 

BN obviously is standard normal, if the model is correct. DN, SN and TN are standard normal 
asymptotically, if the model is correct (see Appendix). 

We refer to these four indices as the first four moment indices. We use these indices in a more or 
less explorative way by looking for 'surprising values'. As 'surprisingly low' and 'surprisingly high' 
we qualify indices which, for N not too small, are smaller than say - 2  and bigger than say 2, 
respectively. For N small we compare these indices with the lower and upper quantiles of 
their exact distribution under a correct model to get an idea of what 'surprisingly low' and 
'surprisingly high' means. These quantiles may be also used to reject the model at a given 
significance level. 

The quantiles DN,~ of the exact distribution of the dispersion index D~v under the assumption of a 
2 correct model may be derived for each N from Dlv,~ = (X~v-l,~- ( N - 1 ) ) / X / 2 ( N - 1 )  where 

the quantile X 2_ 1,~ of the X 2_ l-distribution is computed by the approximation of Wilson and 
Hilferty. The quantiles SN,~ and Tlv,~ of the exact distribution of SN and T~v may be estimated 
by empirical quantiles obtained from Monte Carlo simulation. Such simulation experiments can 
be carried out by the algorithm suggested in Hatzinger and Panny (1993). In Table 1 we report 
the results from such a simulation experiment. As the quantiles are insensitive to minor changes 
of the sample size N, we report the quantiles for typical sample sizes only. 

If the bias index BN is surprisingly high or low, the observations tend to be bigger or smaller than 
predicted. If the dispersion index DN is surprisingly high or low, the observations are overdispersed 
and underdispersed, respectively. The skewness and the tail index are valuable tools when checking 
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Table 1. Quantiles of the exact distribution of the various indices under the assumption of a correct 
model (SN,~, TN,~, JN,~, and AN,~ are empirical quantiles from a Monte Carlo sample of size 3 x 106) 

o¢ 

Quantiles N 0.01 0.02 0.025 0.05 0.95 0.975 0.98 0.99 

B~ 
DN, a 

aN, ot 

TN,~ 

JN, c~ 

AN, a 

-2.33 -2.05 - 1.96 - 1.65 1.65 1.96 2.05 2.33 
60 -2.06 -1.85 -1.78 -1.53 1.74 2.13 2.25 2.59 
80 -2.09 -1.88 -1.81 -1.55 1.73 2.11 2.22 2.56 

100 -2.12 -1 .90 -1.82 -1.56 1.72 2.09 2.20 2.53 
120 -2.14 -1.91 -1.84 -1.57 1.72 2.08 2.19 2.52 
150 -2.16 -1.93 -1.85 -1.58 1.71 2.07 2.18 2.50 
200 -2.18 -1.95 -1.86 -1.59 1.70 2.05 2.16 2.47 
400 -2.22 - 1.98 - 1.89 - 1.60 1.68 2.03 2.13 2.43 

60 -2.40 -2.08 - 1.98 - 1.64 1.64 1.98 2.08 2.40 
80 -2.39 -2.08 -1.97 -1.64 1.64 1.98 2.08 2.39 

100 -2.38 -2.08 -1.97 -1.64 1.64 1.97 2.08 2.38 
120 -2.37 -2.07 -1.97 -1.64 1.64 1.97 2.07 2.37 
150 -2.37 -2.07 -1.97 -1.64 1.64 1.97 2.07 2.37 
200 -2.36 -2.07 -1.97 -1.64 1.64 1.97 2.07 2.36 
400 -2.34 -2.06 - 1.97 - 1.64 1.64 1.96 2.06 2.35 

60 -1.56 -1.44 -1.40 -1.25 1.84 2.44 2.64 3.29 
80 -1.61 -1.48 -1.44 -1.28 1.83 2.41 2.60 3.22 

100 -1.66 -1.52 -1.47 -1.31 1.83 2.39 2.57 3.16 
120 -1.69 -1.55 -1.50 -1.33 1.82 2.37 2.55 3.12 
150 -1.73 -1.59 -1.53 -1.35 1.81 2.34 2.52 3.06 
200 -1.79 -1.63 -1.57 -1.38 1.80 2.31 2.47 2.99 
400 -1.91 -1.73 -1.66 -1.45 1.78 2.24 2.39 2.83 

60 . . . .  6.49 9.92 11.24 16.12 
80 . . . .  6.39 9.60 10.83 15.32 

100 . . . .  6.32 9.36 10.51 14.75 
120 . . . .  6.26 9.14 10.25 14.26 
150 . . . .  6.20 8.94 9.97 13.68 
200 . . . .  6.14 8.66 9.61 13.00 
400 . . . .  6.06 8.13 8.90 11.60 

60 -2.34 -2.04 - 1.94 - 1.60 1.60 1.93 2.03 2.33 
80 -2.34 -2.04 -1.94 -1.61 1.61 1.94 2.04 2.33 

100 -2.34 -2.04 -1.94 -1.62 1.62 1.94 2.04 2.33 
120 -2.33 -2.04 -1.95 -1.62 1.62 1.95 2.04 2.33 
150 -2.33 -2.04 - 1.95 - 1.63 1.63 1.95 2.04 2.33 
200 -2.33 -2.05 - 1.95 - 1.63 1.63 1.95 2.05 2.33 
400 -2.33 -2.05 -1.95 -1.64 1.64 1.96 2.05 2.33 

the observa t ion  dis t r ibut ion.  The observat ions tend to be skewer to the right or skewer to the left 
than  assumed by the model,  if the skewness index SN is either surprisingly high or surprisingly low. 
The  observat ions  have longer tails than  assumed by the model,  if the tail index TN is surprisingly 
high, and  the observat ions  have shorter  tails than  assumed by the model,  i f  TN is surprisingly low. 
The higher m o m e n t  indices, however,  should be interpreted only together with the no rma l  plot  since 
they are sensitive to outliers which are easy to recognize in the no rma l  plot. 

Ins tead  of  judg ing  the skewness a n d  the tail index individual ly  one could construct  a joint index .IN 
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by summing their squares: 

JN = 82 + T2  (12) 

and look for 'surprisingly high' values. JU is asympotically equivalent to well-known tests for nor- 
mality (Bowman and Shenton, 1975; Pearson et al., 1977; Harvey, 1989, p. 260) which similarly 
make joint use of the sample moment ratio statistics and are known to have an asymptotic x2-dis - 
tribution with two degrees of freedom. For N small Ju is compared with empirical upper quantiles 
(see Table 1). 

For a check for serial correlation we use the empirical autocorrelogram of the transformed P-scores 
which is compared with the asymptotic confidence band [ - 1 / ( N - 1 ) -  2/x/-N, - 1 / ( N - 1 ) +  
2/x/N] (see for example Chatfield, 1989). Diagnostic statistics may be defined for example by the 
AC(1)-index As,  

where Pl is the first-order empirical autocorrelation coefficient or by some portmanteau statistic 
comparable to the Box-Pierce statistic. As is known to be standard normal asymptotically. AN 
is used in the same explorative way as the first four moment indices. 

4. Diagnostics for time series of binary and count data 

Time series of binary or count data are such that p(yt[At) is a discrete distribution on the integers 
(sometimes including 0). It is quite common to use the Pearson residuals for diagnostics even of 
binary data (see for example Harvey and Fernandez, 1989; Aitkin et al., 1989, p. 171). As the dis- 
tribution of the Pearson residuals is highly non-normal for binary and small count data they can not 
be used to check the correctness of the observation distribution. This drawback is avoided by the use 
of P-scores. 

For discrete distributions the residuals ut defined by (2) directly are not i.i.d, uniform but follow a 
discrete distribution on [0,1]. Residuals which are distributed uniformly on [0,1] are obtained from 
the predictive distribution via randomization (see also Smith, 1985). Let at be a sequence of i.i.d. 
uniform random variables and let Yt be the actual observation. For discrete observations the P-score 
ut is then defined by the random interpolation 

ut := (1 - a t ) P r ( Y  t < ( Y t -  I)]Y t - l )  + atPr(Yt < Yt]Y t-l) (13) 

These P-scores actually are i.i.d, uniform on [0,1]. 
If the hyperparameters 0 are unknown then again the predictive distribution Pr(Yt <-Yt]Y t -  1) 

may be substituted either by the conditional distribution Pr(Yt < Yt ]yt-1, O) or by a finite mixture 
as in (9): 

G 

ut ..~ (1 - s t ) ~ P r ( Y t  < (Yt - 1)]yt-I,o(Y))P(O(J)]Yt-1) 
j = l  

G 
+ s t  P r ( r ,  _< ytly t-1 , o(J))p(O(J)ly t - l )  

j = l  

Case Study 1: Rainfall occurrence in Tokyo. We consider model diagnostics for a time series Yt, 
t = 1 . . . .  ,366, where Yt takes the values 0, 1 and 2 depending on the number of rainfall occurrences 
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in Tokyo on the day t in the years 1983 and 1984 (Kitagawa, 1987). This time series has been mod- 
elled by Kitagawa (1987) and Fahrmeir (1992) by a dynamic binomial logit model: Yt "~ B(nt, 7rt), 
n t = 2 for t ~ 60 and n t = 1 for t = 60, 71" t = logit(at), a t = at_ 1 + wt, w t ~ N(0, o~). For the prior 
parameters and the process variance ~r~ we take the values estimated by Fahrmeir et al. (1992, p.85): 
~010 = -1.58, P010 = 0.1, ~ = 0.33 - thus N = 366. The upper and the middle part of Fig. 1 show 
diagnostics based on the P-scores ut defined by (13) and vt = ~ -1  (ut). The predictive distribution 
has been approximated from (6) with the posterior moments estimated by posterior mode filtering 
(Fahrmeir, 1992) in the upper and integration-based Kalman filtering (Frfihwirth-Schnatter, 1994) 
in the middle part. For both filtering methods diagnostics are satisfactory (compare the indices with 
the quantiles given in Table 1). There exists, however, a slight tendency toward bias for posterior 
mode filtering which vanishes for integration-based Kalman filtering. 

For illustration we include diagnostics based on Pearson residuals in the lower part of the figure. 
The indices BN and DN indicate that the first two moments do not differ significantly from 0 and 1. 
The normal plot as well as the indices SN and TN, however, show the extreme non-normality of 
the Pearson residuals. Therefore Pearson residuals cannot be used to check the observation 
distribution. 

5. Model diagnostics and Bayes factors 

The diagnostic methods discussed in Section 3 may be compared with other Bayesian methods of 
examining the adequacy of a model. O'Hagan (1980) in discussing Box (1980) argues that the correct 
Bayesian solution to model diagnostics is the use of Bayes factors which are the ratios of the overall 
predictive densities (model likelihood L(y"I~Cj)) given two different models J#l and ~gg2: 

B - -  L ( y n I J g l )  L(yn[~[~tj) = P ( Y m o , " "  ,YnlvCgj) = r I  P ( Y t l y t - I ' J i ( J  ) 
L(y"I 2)' t = m  0 

m 0 is the smallest integer such that all predictive densities p ( y t l y  t - I  , dgj)  are proper densities for 
t > m 0 for all models ~/¢'j. The Bayesian approach of selecting one of two models from the Bayes 
factor has been extensively discussed in the literature (see among many others: Smith and Spiegel- 
halter, 1980; Spiegelhalter and Smith, 1982; Berger and Delambady, 1987). To select one of 
more than two models one usually computes posterior probabilities from the model likelihood 
(e.g. Geisser and Eddy, 1979): e( jly n) L(y"l aj)P( as). 

The Bayes factor is a measure of the relative performance of one model compared to another. It 
has been already pointed out by Box (1980) in his reply to the discussion that a large Bayes factor 
alone does not guarantee that the preferred model is appropriate. Model diagnostics, for instance, 
may be extremely poor. On the other hand, in practical case studies it often turns out that more than 
one model passes the global diagnostic examination and model diagnostics alone is not sensitive 
enough for model discrimination. In such cases Bayes factors - or more general Bayesian model 
discrimination rules - turn out to be an appropriate method for model choice. In the two following 
case studies we demonstrate how such a combination of model diagnostics, Bayes factors and model 
discrimination works in practice. 

Computing Bayes factors is standard for linear models (see e.g. Smith and Spiegelhalter, 1980). If 
the model is non-linear in the parameter - as is the case for state space models with unknown 
hyperparameters or non-normal state space models - only approximate Bayes factors are available. 
Bayes factors for normal state space models with unknown hyperparameter may be computed by 
Markov chain Monte Carlo methods (Friihwirth-Schnatter, 1995). For non-normal state space such 
a Markov chain Monte Carlo approximation has not yet been derived. 
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P-scores (approx imate  posterior m o d e  filtering) 
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Fig. 1. Diagnostics for rainfall occurence in Tokyo. 
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.~lz: dynamic  model (Poisson distr ibution) 
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Fig. 2. Diagnostics for time series of purse snatching. 
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.M4: dynamic model (negative binomial distribution) 
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Fig. 2. Continued 

An approximation method for the model likelihood L(y"[..gj) follows immediately from the 
results of the previous section. If all hyperparameters 0 are known, p(yt [yt- 1, ~/j) is approximated 
simply by (11) with 0 (i) -- O. For unknown hyperparameters we use: 

P(Yt[ yt-], j l j )  = Jp(yt[ yt-I O, ~/j)p(O I yt-1, Jgj)dO 

G 
.~ Ep(yt[yt-l ,o(i),JCj)p(O(i)[yt-l , j l j) ,  m o < t < n 

i = 1  

where we compute p(yt]y t- 1 o( i )  .if[j) from (11) and p(O (i)[yt-I ~/[j) from (10). 
A final remark concerns diagnostics and discrimination of models where one or more of them are 

built up for the original time series Yt and others for a transformed version Yt =f(Yt)  of Yt. The 
predictive distribution which we need for computing the P-scores is invariant to invertible transfor- 
mations of the time series. Thus in contrast to other residuals such as the Pearson residuals which 
depend on the chosen scale, a direct comparison of models for original and transformed time series 
is possible with P-scores. When discriminating such models by a Bayes factor it should be kept in 
mind that the functional value of the predictive density which we need for the Bayes factor is not 
invariant to data transformations. Before carrying out model discrimination we have to compute 
the model likelihood L(yn l S/j) of the original time series from the model likelihood L*(( y*)" I~j) of 
the transformed time series by the following formula: 

n d f  
Z(ynl~j') = Z*((Y*)n]dcJ ) H -d-yy (yt) 

t = n  o 

This result follows directly from the law of transformation of densities. 

Case Study 2: Purse snatchings in Chicago. Here we reanalyse a time series of reported purse snatch- 
ings over a period of 71 weeks in the Hyde Park neighbourhood of Chicago, taken from Harvey 
(1989, pp. 217, 516). The local level model a t = a t_ 1 -1- wt, wt "~ N(0, o~), At = at, is combined with 
various observation distributions such as the Poisson, the normal, the log-normal and the negative 
binomial distribution: 

"~/[1 : YtlAt ~ PI~,' ln#t = At 

J [ 2  : Y t l A t  ,.o N ( # t  , R ) ,  /zt = At 
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Table 2. Model discrimination for time series of purse 
snatching 

~¢j log L(y"l~j) P(~j) P(~slY") 

J/el -220.52 0.25 0.250 
d/z -227.72 0.25 4.8 × 10 -4  

Jl3 -22 t.42 0.25 0.102 
-/'/4 -219.57 0.25 0.647 

Friihwirth-Schnatter 

~/13 : lnytlAt ,,~ N(/zt, R), #t = At 

J#4: ytlAt ~ NB(v, ~rt), 7rt = logit(At) 

Estimation is carried out via integration-based Kalman filtering with improper priors (thus N = 
70). The unknown hyperparameters ~ ,  R and u are estimated via multi-process filtering. 

Figure 2 shows model diagnostics for each of these distributions (compare the indices with the 
quantiles given in Table 1). The Poisson distribution is not satisfactory because of a surprisingly 
high autocorrelation index AN at lag 1. The log-normal distribution has a surprisingly low skewness 
index Su and a surprisingly high joint index JN. Only the normal and the negative binomial dis- 
tribution pass the examination. From model diagnostics alone it is not possible to decide which of 
these two distributions explains the time series better. 

In Table 2 the various observation distributions are compared via model likelihoods and poster- 
ior probabilities based on equal prior weights for each model. The negative binomial distribution 
(~'4) is the observation distribution with the biggest posterior probability, the posterior probability 
of the normal distribution (~//2) is extremely low. The Bayes factor of model J12 v e r s u s  ,-,~4 is equal 
to 0.00029 and highly favours the negative binomial distribution. Surprisingly the Poisson distribu- 
tion (~¢/I) which has been rejected because of autocorrelation in the residuals has considerable pos- 
terior probability. It would have been highly favoured if compared with the normal distribution 
(J / l )  via the Bayes factor which is equal to 1339.4. 

6. Iterative model building based on model diagnostics 

Applied model building has often been viewed as an iterative process of acquisition of knowledge 
(e.g. Box, 1980; Sharefkin, 1983). A major problem with model building lies in the complex way 
different misspecifications may interact. As the methods suggested in this paper allow for diagnos- 
tics without the need to specify an alternative model, we start with some simple models. The 
question, whether a model is appropriate or whether and how it should be modified, in practice 
is investigated by inspecting residuals. It will be illustrated by the following case study that the 
results of  diagnostics might contain valuable hints how to design alternative and hopefully improved 
models. 

Case Study 3: Sulfur dioxide emissions. Here we reanalyse a time series of daily sulfur dioxide 
emission in Brotjachtriegel (FRG) over a period of 4 months (n = 122) which was published in 
Friihwirth-Schnatter (1991). Various questions have to be answered in order to build an appropriate 
state space model. What is the conditional observation distribution p(ytlAt) of the time series Yt 
given the predictor At? Which effects are present (choice of the components xt, Ft and Ht of the 
structural part of the model)? Are these effects static (fixed) or dynamic (random) (choice of Qt)? 
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.Mi:  g a m m a  distr ibut ion with mixed link; At = at; a~ > 0 
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.A43: g a m m a  distr ibut ion with  mixed link; At = at + st + It; a~ > 0, a 2 > 0 
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Fig. 3. Diagnostics for time series of sulfur dioxide emissions. 
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Table 3. Diagnostics for time 
= 0) 

Fri ihwir th-Schnat ter  

series of  sulfur dioxide emissions ( '+ '  indicates o -a > 0, '0' indicates 

2 2 
Effects P(Yt ]At) % cr~ B u Du S N T N JN A~ 

A t = a t N + 0.01 0.81 4.90 5.31 52.60 1.96 
log-N + 0.12 -0.97 -1.59 0.48 2.75 4.52 
"/-mixed + 0.48 -1.46 1.69 -0.14 2.86 4.28 
7-log + 0.64 -0.57 1.57 0.56 2.79 4.17 
t4 + 1.80 1.57 4.19 0.83 18.27 4.93 
log-t4 + -0.37 -1.65 -0.65 -1.46 2.55 4.76 

)~t = at '~ st log-N + + -0.14 -0.85 -1.47 0.89 2.94 4.72 
7-mixed + + 0.99 -0.08 1.18 -0.54 1.68 5.47 
7-log + + 0.46 -0.47 1.20 0.17 1.48 4.93 
log-t4 + + -0.38 - t . 55  -0.80 -0.34 0.75 5.04 

A t : a t q-S t q- l t log-N + + -0.03 0.40 -1.20 2.19 6.22 0.74 
7-mixed + + 1.13 -1.51 1.24 1.51 3.80 1.59 
7-mixed 0 + 0.89 -1.12 0.80 0.97 1.57 1.71 
7-mixed + 0 0.88 -1.13 1.70 2.17 7.62 1.33 
7-mixed 0 0 0.81 -0.75 1.20 1.43 3.48 1.65 
-y-log + + 0.03 -1.26 1.99 1.89 7.53 2.32 
log t4 + + -0.08 -2.28 -0.76 0.49 0.82 0.87 
log t 4 0 + 0.20 -1.96 -1.39 0.02 1.94 1.17 
log t 4 0 0 0.21 -1.84 -1.49 0.06 2.23 1.04 

)~t : at + It log-N + 0.40 1.29 -0.68 1.88 3.99 0.48 
7-mixed + 0.34 -1.88 2.41 2.48 11.97 0.73 
7-log + 0.53 -0.85 2.77 3.00 16.69 1.28 
log-t4 + 0.16 -1.87 -0.73 -0.15 0.55 0.46 
log-t4 0 0.62 -1.65 -1.40 -0.38 2.09 0.69 

Fo r  the present time series we start  with various distributions 

normal  distribution: ytlAt ,~ N(At, R) 

log-normal  distribution: logytlA1 ,-~ N(At, R) 

g a m m a  distr ibution with mixed link: ytlAt ~ ~ e~, 

At, At >__ 1 
#t(At )  = g- l (At)  --- exp(A t - 1), A t _< 1 

g a m m a  distr ibution with log-link: YtlAt ~ ~/ ~, 

#t(At) = g-1 (At) = exp(At) 

Student  t4-distribution: ytlAt ~ t4( At, R)  

log-Student  a-dis t r ibut ion:  log ytlAt ~ t4( At, R)  

and the mos t  simple structural  model ,  namely  a local level model  which is assumed to be dynamic:  
2 

At = at, at = at_l + wt, wt ~ N(0, a~) and a n > 0. 
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Diagnostics for these models (n = 121) are summarized in Table 3 (compare these indices with 
the quantiles in Table 1). The higher moment indices indicate objections against the normal and the 
t4-distribution and no objections against the gamma distribution (for both link functions), the log- 
normal and the log-t4 distribution. The later models are, however, rejected because of autocorrela- 
tion of the residuals at lag 1. Furthermore for each of these models the complete autocorrelogram 
exhibits a slight periodic behaviour - see for example the autocorrelogram of the residuals from the 
gamma distribution with mixed link in the upper part of Fig. 3. This might be due to autocorrelation 
only, but it might also be an indication of a weekly seasonal effect. 

First we refine the structural part by including a form-free weekly seasonal effect: 

• '~t = at q- St 

a t = a t _  1 q- wt,1, wt, 1 ~ N(0, 0 "2) 

6 

s t =  - E s t _ j + w t , 2 ,  wt,2NN(O, 0- 2) (14) 
j=l 

This effect is dynamic if ~ > 0. Model structure (14) is combined with both gamma distributions, 
the log-normal and the log-t 4 distribution. All models are rejected once more because short-term 
autocorrelation still is present (compare the indices in Table 3 - n = 115 - with the quantiles in 
Table 1; see also Fig. 3). Thus we decided to extend model structure (14) by introducing lagged 
values of the time series into the predictor )kt: 

A t = a t - q - s  t + l  t (15) 

l ,  = - a , - i  - s , - 1 )  

a t and st are modelled in the same way as in (14), g(.) is equal to the link function for the gamma 
distributions and equal to the identity for the log-normal and the log-t4 distribution./3 is treated as 
an unknown hyperparameter and is estimated from the data in the same way as ~ ,  a2~ and a by 
multiprocess filtering. Such Markov models where the linear predictor depends on past outcomes 
have been applied to generalized linear models by various authors (e.g. Cox, 1970; Fahrmeir and 
Kaufmann, 1987; Zeger and Qaqish, 1988) and are extended to dynamic generalized linear models 
by (15). 

Model (15) is combined with the various observation distributions. Only for the gamma distribu- 
tion with the log-link is autocorrelation still present; for the gamma distribution with the mixed link, 
the log-normal and the log-t4 distribution short-term autocorrelation of the residuals vanishes. 
However, model diagnostics from the other indices is satisfactory for the gamma distribution 
with the mixed link, only (compare the indices in Table 3 - N = 114 - with the quantiles in 
Table 1; see also Figure 3). 

To get an idea if it is really necessary to include the weekly seasons, we have dropped st from (15), 
but have kept the lagged observations in the predictor: 

At = at  + It (16) 

This model is rejected for both gamma distributions and is not rejected for the log-normal and the 
log-t4 distribution (compare the indices in Table 3 - n = 120 - with the quantiles in Table 1). 

For the moment we end up with three candidates for a suitable model, one of them with and two 
of them without a dynamic seasonal effect. It is not possible to decide whether a dynamic weekly 
effect is present or not by the standard tools of model diagnostics. If we compute Bayes factors from 
the model likelihoods given in Table 4 we would much prefer the gamma distribution with weekly 
seasonal effects. 
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Table 4. Model discrimination for time series of sulfur dioxide emissions (only reporting models with 
P(~61y") > 10-6) 

Effects P(YtIA') ~ az~ I°gL(y"ldlJ) P(~j) P(~jly") 

At=at+stq- ~ 

At=at+~ 

7-mixed + + -362.88 1/48 0.2069 
q-mixed 0 + -361.84 1/48 0.5877 
7-mixed + 0 -364.68 1/48 0.0342 
7-mixed 0 0 -363.28 1/48 0.1394 
log t4 + 0 -374.86 1/48 1.3 x 10 -6 
log t4 0 + -374.27 1/48 2.3 x 10 -6 
log t4 0 0 -373.35 1/48 5.8 x 10 -6 

log-N + -371.84 1/48 2.6 x 10 -s 
log-N 0 -372.41 1/48 1.5 x 10 -5 
7-mixed + - 366.18 1/48 0.0076 
7-mixed 0 -365.10 1/48 0.0225 
7-log + -369.33 1/48 3.2 x 10 -4 
7-log 0 -368.28 1/48 9.4 × 10 -4 
log-t4 + -370.79 1/48 7.6 x I0 -5 
log-t 4 0 -369.68 1/48 2.3 × 10 -4 

It still remains to decide whether some of  the effects are static or dynamic. For  the most general 
model, namely model (15), four cases are possible: ~ > 0, o~ > 0 or a 2 = 0, ~r~ > 0 or ~ > 0, ~ = 
0 or a 2 = 0 , a  2 = 0. For  the gamma distribution with mixed link only the combination 
o~ = 0, a 2 > 0 can be rejected by the standard tools of  model diagnostics (compare the indices in 
Table 3 with the quantiles in Table 1). I f  we compute Bayes factors from the model likelihoods reported 
in Table 4, we would slightly prefer the model with the fixed level and dynamic seasonal effects. 

One might wonder if any other of  the 48 possible combinations of  observations distributions, 
effects and assumptions on the variances ~ and o~ would lead to a model which is not rejected 
or which is even preferable to the chosen model. For  completeness we would like to mention that 
by allowing for fixed effects we found three further models - all of  them based on the log-t4 dis- 
tribution - which could not be rejected, namely two seasonal models (15) with ~ > 0, a 2 = 0 and 

= 0, ~r~ = 0, respectively, and the seasonal free model (16) with ~ = 0 (compare the indices in 
Table 3 with the quantiles in Table 1). All other 42 models are rejected by model diagnostics. 

To select a possible candidate from this group of  various possible models we carried out Bayesian 
model discrimination among all 48 models with P ( J / / j ) =  1/48 and m 0 =  10. The results are 
summarized in Table 4. The model with the highest posterior probability is the gamma distribution 
with mixed link, fixed level and dynamic seasonal effects. It is highly preferred compared with each 
of  those models based on the log-t4 distributions which passed model diagnostics. This result is not 
surprising if we take into account that the estimated shape parameter a of  the gamma-distribution is 
very close to 1: E (a  [y") = 1.065, indicating an extremely skew observation distribution. It seems not 
to be possible to eliminate this skewness by taking the logarithm of  the data. 

7. Concluding remarks 

Although we have found the diagnostic tools defined in Section 3 of  this paper sufficient for a 
routine diagnostic check of  non-normal state space models, we would like to mention that more 
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specific tests are also easily extended to non-normal state space models, if they are based on the 
transformed P-scores. This is especially true of the CUSUM technique which has been discussed 
for normal state space models by Brown et al. (1975), as well as of the test for heteroscedasticity 
discussed for regression models in Hedayat and Robson (1970) and for normal state space model in 
Harvey (1989, p. 259). 

In the present paper we have confined ourselves to univariate time series. There are two ways of 
extending the methods of this paper to multivariate time series Yt. The first method is to define 
univariate P-scores ut and transformed P-scores vt from the joint predictive distribution: 
ut = Pr(Yt < Yt[Y t - l )  and vt = ~-l(u/) .  Computational methods for approximating the predictive 
distribution for multivariate time series are covered by Friihwirth-Schnatter (1994). {ut} and {vt} 
are i.i.d, uniform on [0,1] and standard normal, respectively, if the model is correct. Sometimes, for 
instance for longitudinal data, it is more interesting to check the model for each component {Yt,i}, 
t = 1, . . .  ,N  of  the multivariate time series individually. P-scores {uti} and {vt,i} defined from 
the marginal predictive distribution by ut, i = Pr(Yt,i < yt,ily t -  1) and' vt, i = ~ - 1  (Ut, i) should be 
i.i.d, uniform on [0,1] and standard normal, respectively, if the model is correct. For normal 
linear state space models vt = (Vt, l ""  vt,r) is equal to a multivariate version of  the Pearson residual. 
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Appendix 

S = Nm 2 obviously is )~2_ 1 with E(s) = N - 1 and var(s) = 2(N - 1), if the residuals %0, "'" , 
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v, are i.i.d, standard normal (as is the case for a correct model). Thus O N -~ (s - E ( s ) ) / ~  is 
standard normal asymptotically. 

The observed moment ratios ~ and b 2 are related to the observed ratios of cumulants k2, k 3 and 
k 4 in the following way (Stuart and Ord, 1987, pp. 410, 422): 

~ 1  - -  m 3  - -  N - 2 k 3 
(m2) 3/2 v /N(N - 1) (k2) 3/2 

m 4 ( g  - 2)(N - 3) k 4 3(N - 1) 
b2=  m22- N 2 - 1  k 2 + N + ~  

The ratio of cumulants from the standard normal sample Vno, . . . ,  v, have zero mean and variances 
given by Stuart and Ord (1987, p. 422): 

( ~  6 N ( N - 1 )  
v a r \ ( k 2 ) / ]  = ( U - 2 ) ( U +  1 ) (U+3)  

(k4)  2 4 N ( N -  1) 2 
var ~222 = ( N - 3 ) ( N - 2 ) ( N + 3 ) ( N + 5 )  

It is easy to verify that SN and T N are defined via: 

Su = ( x /~  - E( v/-~l ) ) / v/var( v/-~ ) 

TN = (b2 - E ( b 2 ) ) / ~  

Therefore SN and TN are standard normal asympotically, if the residuals v,0, . . . ,  v, are i.i.d, stan- 
dard normal. 
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