Z. Wahrscheinlichkeitstheorie verw. Geb. 4, 316—339 (1966)

Programming under Uncertainty: The Complete Problem *
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Absiraet. We define the complete problem of a two-stage linear programming under uncer-
tainty, to be:
Minimize z(x) = Es{cx -+ gyt + ¢y}
subject to Az =b
To+ Iyt+ Iy =¢
2= 0,y =0,y =0

where z is the first-stage decision variable, the pair (y+, y~) represents the second-stage decision
variables. In order to solve this class of problem, we derive a convex programming problem,
whose set of optimal solutions is identical to the set of optimal solutions of our original
problem. This problem is called the eguivalent convex programming. If the random variable &
has a continuous distribution, we give an algorithm to solve the equivalent convex program.
Moreover, we derive explicitly the equivalent convex program for a few common distributions.

1. Introduction

The standard form for the two-stage linear program under uncertainty is:

(1) Minimize z(x) = Ee{cx + ¢ y}
subject to Az =b
Te+-My=§& fe(B, F,F)
x=0 y=0

where A is a matrix m X n, T is @ X n, M is % X @1, £ is a random vector whose
probability space is (=, %, F). This problem (1) belongs to the class of stochastic
linear programming problems for which one seeks a here-and-now solution. One
interprets problem (1) as follows: the decision maker selects the activity levels for
Z, 84y = #, he then observes the random event & = EA and he is finally allowed a
corrective action g, such that y >0, My = E — Tz and gy is minimum. This
second stage decision ¥, is taken when no “uncertainties: are left in the problem.

The decision maker wants to minimize the sum of his fixed costs (cx) and of the
penalty costs he may expect when he has selected given activity levels (z). It is
clear from this interpretation that we could also write the objective function of (1)

2) 2(x) =cx 4 Es{mingy|x}.
All quantities considered here belong to the reals, denoted RB. Vectors will

belong to finite-dimensional real vector spaces B* and whether they are to be
regarded as row vectors or column vectors will always be clear from the context in

* Parts of this material was written while the author was at the Operations Research
Center at the University of California (Berkeley), where this research was partially supported
by the Office of Naval Research under Contract Number 222(83) with the University of Cali-
fornia and by a research grant from the National Science Foundation.
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which they appear. Thus, for example, the expressions

x: (xl;---;xi:-uaxﬁ)
Te=y

m
yry-= >yt yy
1=1

are easily understood. No special provisions will be made for transposing vectors.

The random vector & = (&1, ..., &, ..., &) is a “numerical” random vector,
i.e. Ec R™ F is a g-algebra and F is a probability distribution function from
which could be obtained a probability measure. (Z;, %, F;) is the probability
space of the random variable &;. We only need independence of £ and x: our first-
stage decision has no effect on (Z, #, F).

If for every finite interval, F;(&;) has a finite number of discontinuity points,
then we can always integrate by parts fg@ (&) dF; (&), where g;(&;) is a linear
function of &;. If it exists, we denote the density function of & by f;(&))¢ = 1, ..., 7.
and if they exist, let o; and 5; be respectively the greatest lower bound and least
upper bound of &;. We assume that E{&;} exists for alli =1, ..., 7.

We say that problem (1) is complete when the matrix M (after an appropriate
rearrangement of rows and columns) can be partitioned in two parts, whose first
part is an identity matrix and the second part is the negative of an identity matrix,
M= —-1.

The standard form of the problem to be studied in this article is then
(8) Minimize z2(x)=E.{cx+ g¢ty*4 q¢y}

subject to 4 x =b
Te+ ITyt— Ty-=§&, tc(E, Z,F)
220, y*=0, y=0
where we partitioned the vectors ¢ and y of the standard form (1) in (g+, g~) and
(y*+, y7), respectively. If m = O (i. e. there are no constraints of type Az = b) the
characteristics of our problem remain the same.

Among all classes of special cases of the two-stage linear programs under
uncertainty, the “complete case seems to cover the largest class of possible
applications. One can think of the vector  as representing the activity levels of a
production plant, constrained by 4« = b, x = 0. T is the “transformation of
these activity levels into sellable goods. ¥y = T'w, is then the amount of goods the
producer decides to place on a market where the demand, &, is only known in
probability. y+ and y— represent the “errors the producer made in estimating the
demand ; ¢+ and ¢~ are penalty costs for making these “‘errors*. For instance, an
inventory type problem has 7' = I, g% represents the unit shortage cost, and ¢—
the unit holding cost, and Ax == b the capacity, budget, technology, ... con-
straints. It can be shown that the correlations between the & do not enter the
problem; we do not need the independence of the &;. We denote the marginal
distribution functions by F; (&) =1, ..., 7.

The first section of this report shows the existence of an equivalent separable
convex program to (3). In the second section we let the random variable £ assume
different distributions, and we derive the corresponding equivalent convex
programs. Finally, we suggest an algorithm for solving (3) when £ has a continuous
distribution.
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2. The equivalent separable convex program

We say that a programming problem is equivalent to another programming
problem if their set of optimal solutions is identical. Let us consider

(4) Minimize z(z) = cx + @ (%)
subject to Ax =5
z=0
where
(5) Qx) = Ese(s, f,F){Q(x: 5)}
and
(6) Qx, &) = {Ming*y* + ¢y |yt —y =& — T, y" =0,y = 0}.

(7) Proposition: (4) is equivalent to (3).

By (5), definition of @(x) and (2), the objective functions of (3) and (4) are
identical. It suffices to show that (3) and (4) have the same set of feasible solutions.

Since we seek a here-and-now solution, a solution to (3) is not a pair (x, ¥), but
a vector z. Our decision y is taken when the random event has occurred.

Our second stage problem
(8) Minimize g¢*y*+-g¢~y~

subject to Iyt — Iy~ =§&6— T
y*=0, y==0

is always feasible, because whatever be the values assumed by & and «; it is always
possible to express any number as the difference of two non-negative numbers.
The constraints limiting the here-and-now decision are: Az =b, x = 0,1i. e. (3)
and (4) have the same set of feasible solutions. If (3) is (in)feasible so is (4) and
vice versa.

The word complete, which was used to define the class of linear programs under
uncertainty of the form (3), can now be justified intuitively by the properties of
the solution set, viz.: every x satisfying the “fixed** constraints: (Az =6,z = 0)
is automatically a feasible solution to problem (3) *. This is not the case in general
for linear programs under uncertainty. Let

9) K={x|Az="0,2=0}.
If K = 0 we define Minz(x) = + oo.
re K

(10) Proposition: (4) is @ convex program.

Since K is a convex set and ¢z is a linear function of z, it suffices to show that
Q (x) is convex in x. It is easy to verify that @ (=, ) is convex in x (see (6)). The
operator E¢ applied to @ (x, &), £ € Z, forms a positive weighted linear combination
of convex functions in x. The resulting function @ (x) is thus convex.

In what follows, we assume that (3) is solvable, i.e.z(z) attains its minimum
on K. We also assume that K has a non-empty interior. We now show that the

* We did define the “complete” problem by M = (I, — I). Every matrix M satisfying
the intuitive justification for the use of the word “complete”, does not yield a “complete”
problem. In our later work, we define this class of problems as the simple recourse model
for stochastic programming.
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Equivalent Convex Programming problem (4) is a Separable Convex Programming
Problem [2, p. 482] and this, contrary to the assertion found in the Appendix to
(4, p. 216].

The second part of this section describes some useful characteristics of the
objective function of (4). The last part is devoted to show how the existing solution
methods for separable convex programs could be used.

A. Q(x) is separable
Let
yi = Tix where T} is the ith row of T'

and

Q(x)=Qx) when y=Tz.

None the less, we should not confuse ¢ (y) and @ (x). Their domains being subsets
of R™ and R#, respectively.
If the function @(y) can be written in the form

Q) =2 Qi)
i=1

where
Qi (y:) is a convex function
and
X - (Xl: RS} xyﬁ)
then @ (yx) is called convex-separable.
For a selected x (i. e. ) and given &, the problem to be solved in the second
stage is:
m m
(11) P(y, £) = Minimum > ¢ 5 + > ¢; 47
i=1 i=1
subject to v~y =& — oy, i=1,...,7m
¥y 20, y; =0.
The dual to the linear program (11) is:

(12) QU & = Maximum > 7 &1, 71) (G — 70.

t=1
subject to — ¢;7 = 7 (&, x0) < ¢, t=1,...,m.

We have already seen that for any given pair (y, &), problem (11) is always
feasible; problem (12) is feasible iff Vi the interval [— g;7, ¢;"] + 0. These last
conditions are completely independent of the values assumed by y and £. Using
the Existence Theorem (duality theory in linear programming), we establish the
following:

(13) Proposition: (11) is solvable iff ¢+ + ¢~ = q = 0.
The permanent (V y, V&) feasibility of (11) and the proposition we just estab-
lished implies that if the assumption ¢+ 4 ¢- = 0 was not satisfied, then

P(y,&)= —oo V& Vi)
Ee{P(y.6)y=—00 Vg
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and
2{x) = — oo VeekK.
Let
(14) Qi (y1, &) = Maximum z; (&;, x:) (& — x1)

subject to — ¢;” =< 7 (&, ya) = ¢

(15) Proposition: -
Qz: ) = Qilyi, &)
i=1

The optimal solution to (14), and so to (12) can be obtained as follows:

If (& — y1) < 0, set g5;(&, yi) = — ¢;” i.e. the coefficient of the objective
function is negative, we set 7, (&;, y;) at its lowest possible value because we are
maximizing.

If (& — 35) > 0, seb i (&, o) = ¢

If (& — w:) = 0, take form; (&, i) any value of the interval [— ¢;7, ¢;"]. Let

7 (ys) = Eg{optimal 7; (&, x1)}

be the expected value of the optimal solution to (14). If &; has a continuous density
function, then 7;(y;) is unique, but not if Prob {&; = y;} > 0. By definition we set

7w (&, i) = — q; when (& — xi) = 0, but we come back to this problem in the
last section (IV).
In what follows we assume that g+ - ¢~ = g = 0 otherwise our problem would

be without interest. If we assume that the second stage problem is solvable, then
the optimal solution to (11) must satisfy the condition yty— =0 (i.e. y:7 >0
~y; = 0and y; > 0=y} =0). One could then show that @(y) is convex iff
g > 0, using e. g. the property that a function @;(y;) is convex iff it has non-
decreasing first differences and that @(y) is a convex combination of convex
functions.
Let
75(%) = (:’Tl (xl)7 cees TG (X’ﬂ)’ s ﬂ?ﬁ(%%))
Qi(x:) = Be {Qi(xs, €0)}
Qx) = Be{Q(x: 9}

Tt is trivial to show that @;(&;, y:) is convex and so is Q;(y:), because by definition
it is a positive linear combination of convex functions. Moreover the expectation
of a sum of random variables equals the sum of the expectation of these random
variables and using (15) we get

(16) Proposition: ¢ (y) = g Qi (1)

i=1
Since the different @;(y;) are convex, we have now proved the separability of @ (y).
From the duality theory for linear programming, we also get

Py, &)= Q(x,€) VY given pair y and §,

then
P(y)=Ee{P(y,8)} = Be{Q2,6)} = Q)
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B. A Study of Q;(y:)

We point out some of the characteristics of the functions @;(y;), which are
useful to simplify the computation procedures when seeking an optimal solution
and also to obtain explicit forms for the equivalent convex programming problem
when the &;s have some specific distribution functions.

By definition

wi(ye) = — qi7 [ dFi(&) -+ ¢ [ dFs(&)

&= &>
(17) =q;" — qi | dF (&)
Sy
where
G=q" +4q
F; (&) is the distribution function of &;.
Also
Qi) = — g7 [ Ee— ) AFi (&) + 4 | (G — o) dF:(&r)
597 >
=g [ (& — g) dFs (&) — i | (& — yo) dFe (&)
&el; &=
=4q; Ez_QzIEzdF 51 [q;—%l“ézj‘}{zsz(&)]
5w &=
We write
(18) Qi () = 45" & — i () — 7 (3 g
where -
& = Efi{Si}
(19) i) = qi § EidFi(&)
[T 7]
then

m

= z Qi (x1) Z ql §z Z [wi (o) + 7w () ya] -

t=1 i=1

In order to obtain a more explicit form of §;(y;) we divide the range of y; in three
parts, (— oo, a5} [0, Bl (Bis -+ o0) and we express @;(y;) for these intervals.
If & has no lower bound, we set «; = — oo and consider the first interval empty,
if £; has no upper bound we set §; = -+ oo and the third interval is then empty.
Case 1. yx; < oy then {&]& < yi} = 0.
In this region:
() = 9i+
i) =0
Qi) =a; & —aq;
and
d
ag Qi) =~ 4 on (— o0, o)
= —mi{y:) on (— oo, ).
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Thus, the function @;(y;) is linear on the interval (— oo, a;). As mentioned above,
this interval may be empty. (See Appendix IL.)
Case 2. o; < y; < P then {&|& < g} = {&i]ou = & = 34}
In this region _
xi
mi(ye) = ¢ — @ [dFs(&),
Xi
Vi) = @ [EcdFi(&i),
ot
— x
Qi(xe) = ¢ & — ai 1 — @i [ (& — ) AF3 (&)
The “form of the function @;(y;) on this interval [u;, ;] depends on dF;(&;). In
Section 3 of this paper, we give examples for a few common distributions. If
Q; (y:) is differentiable on this interval, we have:
d L X
Tin(X@) = —q;" + ¢ [dF (&), on (o, B)
43
=—mi(x),  on (s, Pi).
Case 3. x> P; then {&|& < 3} = 5.
In this region
i (i) = %‘i* %= ,
i () 227153, - -
Q) =¢" & —@éi+ 0 pi=—a &i+a g
and
d _
T Gl =a on (8, + oo),
= — (), on (i, + o0).
The function Q;{y;) is thus linear on the interval (8;, + o).
(20) Proposition: Q;(x:) s continuous.

If F;(£;) is a continuous distribution function, it is obvious to remark that
Qi(y:) is continuous at all interior points of the intervals (— oo, a;], [a, Bil,
[Bi, + o0). Since Prob{&; = oy} = Prob{£; = f;} = 0, Qi(y:) is also continuous
at a; and B;. It suffices to show that @;(y;) is continuous for y; equal to a discon-
tinuity point of F; (£;). Without loss of generality, we can assume that Prob {&; = «;}
=f>0.

When y; converges to o; from the left, we have:

lim Q; () = i & — ¢iF os.
Ki—>0

When y; converges to o; from the right, we have:
43

lim Q; () = limq;" & — ¢i" 30 — @i | (5 — ya) AFi (&)

Xi—>r%e Ai—>0i [+ 23
_ on

=q; & — qit oy — limg; [ (& — ya) dFs(&s)
Xi—>0 O

=q & —q .

Since the two limits are equal, @;(y:) is continuous at «;.
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The following figure gives the general form of @;(y;) where we assumed that
F;(&,) has discontinuities for &; equal to o, B, k

Q; (X3)

)
_-.°+|——

X

Fig. 1

(21) Proposition: If F;(&;) is a continuous distribution function, then @;(y:) is
differentiable and
d
TﬁQz’(xi)z —mi{y:) onR.
Since F;(&;) is continuous, then the derivative is well determined at all interior
points of (— oo, o], [os, fe], [Pi, + o0). Moreover. @;(y;) is continuous and at oy
and f;, the left and the right hand derlvamves are equal. This determmes — Q2 (i)

at a; and §; uniquely.
The figure below indicates the general form of @;{y;) when F;(&;) is a continuous
distribution function.

Qi (Xi)

[la7

a- IBi xi
Fig. 2

In what follows, we assume that a; > — co. (In the Appendix I, we give the
necessary modifications when o; does not exist.)
Let

yi =& — yo1+ iz + i3
with

0<& —o < yn,
0= yio = i — ou,
0= ys.
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This yields:
Tﬂ+ﬁ1—-x¢z——xi3=§¢, t=1,...,M.

We set
Qi (xi1, yaz, yi3) = Qi (x0)
then
(22) Qi(yis yiz» yi3) = gy + g iz + 0i(a2)
subject to & — oy = yu1
0=y pfi—o
0=y
where
xi2 ~
(23) Oi (i) = — @i o + @i [ Gz — &) dF: (5,
0
and

Fi(&) = Fi (& + ).
X2 ~
Since the first term (— g;" ys2) of 0; (ys0) is linear, ¢; = 0 and. | (yi2 — &)dF (&) is
0

convex, so is 0 (y2) (over its domain). The two first terms of @;(yi1, sz, xi3)
represents the linear sections of Q;(y:), see Figure 1. The term @ (j:2) gives to the
function its particular character, which depends on dF;(&;). As we shall see in 3,
0; (xi2) may be a piece-wise linear function, a quadratic function, and so on. Let us
also remark that the function Q;(y:1, yi2, ¥i3) is convex-separable, the equivalent
convex programming problem to (3), in terms of x;, i1, yi2, i3 is thus a separable
convex programming problem, linear in ;, y;1, yi3. It reads:

(24) Minimize 2= ¢; 27 + 2 (67" zn + ¢ zis] + 2, 0i(xi2)

i=1 i=1 i=1
f?
subject to Zaijxj =b;,i=1,...,m
j=1
n —
Ztijwj 41 — xes — e ==E;, i=1,...,m
j=1

02, E—w =y, 0= ju3, O=Z pie=fi—ou.

C. Separable convex programming algorithms

Two basic references in this area are [2, pp. 482—490] and [5, pp. 89—100].
In his book [2], DANTZIG suggests two approaches to these problems: the bounded-
variable method (or broken line fit) and the variable-coefficient method. A broken
line fit to the @;(y:2)'s would reduce our problem (24) to a large linear program
(the number of variables with bounds would increase). This is equivalent to the
assumption that the distribution of & can be approximated by, or is, a discrete
distribution, &; taking on positive probability at the points where there is & change
in the slope of the broken line fit. See 3, A.

If one uses the variable coefficient approach one should take advantage of the
fact that (24) is linear in all the variables, except yi2, ¢ = 1, ..., 7. The problem
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then becomes:

(25) Minimize 2 = > ;27 + > g7 yir + g7 yis) + 2, Mg
=1

i=1 i=1
n
subject to Zaﬁxj =b;,i=1,...,m
i=1
XL +oxin — s — e =&, i=1,...,m
i=1
wiz— Adifi=0,4i=1,...,m
A =1,i=1,...,7

0=<2,& — i = 11,0 < 53, 0 < a2 < B — i,
and

I ~
Ai=0, i =0 (f;) = —foz'—%@iof(fi-&)dﬁ’i(fi), t=1,...,m.

The solution method to this class of problems as well as the convergence properties
are fully discussed in [2, pp. 486—490, pp. 433—438].

3. The probability space: (=5, #, F)
In this section we derive the equivalent convex programming problem to (3),

for some specific distribution functions F. Up to now, the assumption made on the
distribution of &; were limited to: E {&;} exists and one can compute the value of

iz ~
| Griz — &)dF: (&), Yyizel0, fi — o] if 5 > — oo, (more generally one can
0

xi

integrate [ (£ — y)dFs(&), Vyi€loy, fi] ie. the formulas of the Rieman-
Stieltjes integration by parts apply). We did not require the independence of the &;.

A. F s finite
The notations used in this paragraph differ slightly from the previous section.
Let & < &, ..., < & be the values assumed by & with probabilities f},
{7, ..., f¥ respectively.
Let

s—1
= > fi=Prob{& < &},

=1
Fhtl=1 = Prob{{ < oo}, F}=Prob {&i<ai} =0,

ks
&= =EB{&}).

I=1
It is easy to see that

8

E¢{Min g;" y;" +q{yfl§§§xi§5§“}—ql Z E—wlf+a > —Ef.

=8+1 =1
Then
kel

Qi) =a & — 2l — Flgalyl
=1
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ket
where > A= i
1=1

n=E&=4d,
0 y<8 - E1l=dl=2, ...k,
0 < yhtt,
Since ¢q; = 0 (the second stage problem is bounded by assumption) and
FL< FiF1 for 1=1,....k
it is readily seen that @; (xy;) is a piece-wise linear convex function. This last property

allows us to formulate our original problem as a linear program [2, pp. 484—485],
viz.:

n m kit1 B m _
(26) Minimize z = > ;2 — > > (g — FLq0) 7t + 2. 47" &
i=1 i=11=1 i=1
n
subject to Zaijxj = by, i=1,...,m
i=1

n ks
Dty — > =0,

i=1 1=1
=0, j=1..,n
yn=di, 0=yi=d, 0=y
for 2=1,....m and 1=2,..., k-1

m
where > g; &; is a constant.
i=1

— 1 in (24) corresponds to y; and y;3in (24) corresponds to y%+1. The variab-
les yi,1=2, ..., k; in (26) correspond to the unique variable y;s in (24).

This problem can now be solved using a linear programming code with upper-
bound variable option.

1. Allocation of asrcraft to routes under wncerfain demand. The approach
indicated above could be attributed to Frrevusox and Dantzic where it was
underlying their work: “Allocation of Aircraft to Routes under Uncertain
Demand.» [2, pp. 568 —591]. Using their notation, the problem written in standard
form (3) is:

m—1n—1 n—1 n~1
Minimize Bz {> > (cij — Pig k) @is -+ 2, omi®Tmg + 2, k3 95}
t=14=1 j=1 j=1

n
subject to Zxﬁzai, 1=1,...,m—1

j=1
m—1
pijxij+xmj—yj=§j, j=1,...,n—1
i=1
2520, =0, 3,20, i=1,....m—1;5=1,...,m,

where y; is the number of seats remaining available and &; here is their d;. The
interpretation of the other symbols is given in [2, pp. 574]. This problem has the
following features:

cmj =0 forallj.
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In our formulation this means ¢+ = 0 i.e. ¢;" — Fiq; = — Flq; . In their terms
= Figi = —y(F) = — k(L — y3)-
m—1
Ppi; = 0 implies Zpi,-xi,- =0, 1ie. /671 = 0 for all j. The random variable &;
i=1
takes on values S} < E?, ey < 5;-“7‘ and it is assumed that:

m—1
> piwiy <& forallj
f=1
i. e. %1 is fixed at value zero. Taking these modifications into account, the linear
program, corresponding to our general form (26) follows:

m—1n—1 n—1 ks
(27 Min z ZC“IEW—-{—Z]CJEF:%){g—}— Ry
i=1j=1 j=1 I=1
subject to z Zij =y, 1=1,...,m—1
i=1
m—1 ks
2 Py — 2,750,
i=1 I=1
xijg(), i=1,...,m——1,j=1,...,n
0<4<d, j=1,...,nandl=1,..%
where éij = Cij — Pij kj )
i. e. cost (negative profit) of flying aircraft type ¢ on route j at full capacity.
n—1
Ro=2 &k
and d! is defined as above. j=1

Since the first » X m columns of the constraints matrix (matrices 4 and 7 in
our standard form (3) have the structure of a weighted distribution problem,
Fercuson and Dantzic specialized the upper-bound algorithm for linear programs
to this class of problems which lead to an elegant solution technique, taking full
advantage of the nature of the problem. We would like to point out a slight con-
ceptual difference between FrrRoUsON and Danrziess formulation [2, p. 577} and
ours, reflected in the objective functions. The FERGUSON-DANTZIG objective form
can be interpreted as follows: only the costs of flying airplane type ¢ on route j are
certain (c;) and one expects a certain revenue obtained when filling up the seat
capacities made available; where our objective reads as follows: profit (¢y) of
flying aircraft type ¢ on route j are certain and one expects only a lost revenue
resulting from not filling the seat-capacity made available. Obviously, both
objectives yield the same values for the optimal x;;»s and we can derive one from
the other.

2. Elmaghrabys approack. The problem studied by ErLMAGHRABY in “An
Approach to Linear Programming under Uncertainty*, [4], written in standard
form, is as follows:

Minimize z = Es{cx + ¢tyt + gy}
@yt y7)
subject to Ax <b
I+ Iyt —Iy—=§&
zz0, yr=0, y==0
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then y; = #; (i =1, ..., M = n) and one can speak of the objective function

n n
z=cx+ Qy) =cx+ Q) =2 ¢ya; + > Qi(x;)
j=1 i=1
as a separable convex function in z, rather than « and y as before (24), but this
does not lead to noticeable computational simplifications.

In what follows we present ELMAGHRABYs version of the linear program used
to solve his problem which will obtain its solution by a “sequence” of linear
programs (by this he means that @;(x;) can be broken up in linear sections and the
simplex method will examine these different linear sections in “sequence*).

n ki+1
Minimize z = > > [¢; — ¢f — Fqj1%}
i=11=1
n ki+1
subject to Za@-]-(Z@):bi, i=1,...,m
=1 =1

51
Zmﬁéfﬁf forj=1,....,n;8=1,...k%

1=1
xggO, j=1,..,nl=1..,k+1
ki+1
where 2= .
1=1
ki
If & is the optimal solution to this problem, then z; — Z #!is optimal for his original

j=1
81
problem. It is obvious that the inequalities zxﬁ =< &7 could have been used to
=1
obtain upper-bounds for z} as was done for xtin (26). This reduces the size of the
problem considerably.

3. El-Agizys approach. An alternate method to reduce problem (3) to the
linear programming problem (26) is given in Er-Ac1zy [3]. This derivation gives
also an alternative proof that the assumption of independence of the &;s is
superfluous.

B. &; is uniform, Y1

Let
1 .
fi@) =pg— - i &ielu, fil,
=0 otherwise
then
N 1 .
fil&) = — if £el0, B — ol
=0 otherwise
and by (23)

212 ~

Of(xm — &) dEi = — i iz + qul_a—z) X%

Bi(ji2) = — @ qaz -+ Bi ﬁ o
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(24) becomes:

12 g
(28)  Minimize z = Zlc] x; + Z @ g — @ 2+ 0 ) + 5 Eﬁ Lk
j= i=
subject to Zaﬁx; = by, t=1,...,m
i=1

> b+ e — iz — iz = & t1=1,...,m

i=1
0=z, &—u=yg1, 0=ye<fi—w, O0=yps
(28) is easily recognizable as a Quadratic Programming Problem for which many

algorithms exist in the literature, e. g. see [2, pp. 490—497]. Beale was the first
one to point out this property for uniform distribution [7].

C. &; is exponential, V1

Let fol€) = e ™ if £ €[0, + 0]
= () otherwise
then
Fo(&) = fi(&), & = 717
and by (23)

xiz
Gi(yiz) = — @i iz + Qo e [ (oo — Ei)e™ "5 dE;
0

=4 fiz— % (L — =)
using Taylor:s expansion
q K AZ 2 22 ;
=q; xiz — (1—1+%azlz s + > (—1)» Z )

n=3
o0

=—q g2+ q@ Lah b 2 (— et

n=3

we approximate to 0-(;@2) by

— 4 fi2+ qz;% PR
The value of this approximation depends on the relative value of ¢; and the
proximity of the optimal value of y;2 to & = ZLZ If we introduce the approximation

of (;(y:2) in the objective function of (24), the resulting equivalent convex pro-
gramming problem is:

(29) Minimize z = z ¢jx; + z (4" gin — @& a2l + Z qi ki 42

7"1 j=1 Z—«l
subject to zai]-xj = by, t=1,....,m
7'—1
1 . _
thJxJ+le—}(zz—_ v=1,...,m
j=1

0=uy, Tiéxip 0= qi2.

Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 4 23
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So as (28) this is a Quadratic Programming Problem (¥4, ¢;4; = 0). Remark that
we did not introduce y;3, because f§; = -} o0, i. e. £; has no upper bound.

D. &; has a continuous distribution function, V4

In our last paragraph (3. C) we “accepted’ an approximation to the objective
function in order to reduce (24) — the equivalent convex programming to (3) —
to a quadratic programming problem for which algorithms have been developed.
The purpose of this paragraph is to suggest approximation for the distribution
functions and then show that the so obtained “‘equivalent* convex programming
problem is in a form for which efficient computational methods exist.

We have already pointed out in Section 2.C (on Separable Convex Program-
ming) that replacing @; (y;2) by a broken line fit is equivalent to finding a discrete
distribution which would “approximate, in some sense, the distribution of the
random variable &. Here, we approximate continuous distribution by step-
functions. In other words, we replace the random variable &; by a weighted sum
of random variables having uniform distributions.

Set I3
= > P&
I=1
where T
opi=1
1=1
&) I=1,..., ks are uniform density functions.

In (24), replace the constraint

L —
ztz‘jxj -y — yiz — xiz3 =&
j=1
by k; equations of the form

ztzaxy‘}‘ln xﬁr—xﬁs:% I=1,... k.

j=1
The objective function of (24) becomes

n m ke m ki
e=2 a2 2o gt o as) + 2 2,00 (i)
j=1 i=11=1 i=11=1
We have already shown. (3. C) that if & is uniform then 0! (y%,) has a linear and a
quadratic term. See (28). Then

m ki m ki

Z—ZC;IL)%—Z ZZ%[QL le_% XL2+Q1, X%S]‘[" z sz Zzz)

j=1 1=11=1 7,——11—-1
This approximation of random variables having continuous distribution by the
sum of random variables having uniform distributions led also to a Quadratic

Programming Problem. It is clear that the increase in size 3mz (k; — 1) new
i=1
variables of which 2mz ; — 1) are bounded and (k; — 1) additional con-
i=1
straints) depends on the desired quality of the approximation. To find the o} and
B%, lower and upper bounds for &, see the Appendix to [1].
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E. Summary

This section has shown that either directly or by approximation it was some-
times possible to reduce the equivalent convex programming to (3), to program-
ming problems for which we possess efficient algorithms. For simplicity we have
assumed in each paragraph that the marginal density function f;(&;) was of the
same nature V. This is not necessarily the case. It should be clear by now that
each 0; (y;2) can be treated independently. For instance, if &1 has a discrete distri-
bution, and say & a uniform distribution it is not difficult to show that the
equivalent convex programming problem is a quadratic programming problem.

4, An algorithm for eontinuous distribution functions

We now give an algorithm to solve problem (3) when V;, ¥; (&) is a continuous
distribution function. We assume that the distribution functions F;(&;) allow
Rieman-Stieltjes integration of linear functions of &. We also assume that (3) is
solvable which implies among other conditions that ¢ = 0. We have shown (4) that
the equivalent convex programming to (3) can be written

(30) Minimize z(x) = cx + Q(z)
subject to Az =1b
=0
or
(30%) Minimize z(z, y) = cx 4 @{y)
Azx =b
Te—y =0
=0
where _

Q) =2 Qi(x) = 2 [ai" & — vi (o) — 7 (3e) x4l
=1 t=1

then

w

Q@) = St Ei— S Iyu(Tha) + mi(T2) o).

i=1 i=1

mn
Since z q;" & is a constant, we may delete this term from the objective function
i=1 ’

M

of our problems. We also write y{y) = z’/’i (1)

i=1
Problem (30) becomes
n i
(31) Minimize 2 (x) = > ¢j; — > [yi(Tiz) + 7 (Tix) Ti]
i=1 i=1
subject to Zaijxj:b, t=1,...,m
i=1
=0, j=1...,n

We should note that:
If ¥;(&;) is continuous at & = y;, then
mi(ps) = ¢ — @i [dF (&) = ¢ — qi [dF;i(&).
Si<o {94

23%
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If F;(&;) has a non-zero jump at & = y; then
[dF; (&) = [dF(&)

Er<<yi &=y
and

¢t — qi [AF(E) S () S g — g [AFi(&).
&Zw <<y
In this case a complete range of values exist for the expected values of optimal
solutions to (14). Identical relations hold for ; (y;).
In what follows, we assume that F;(£;) is a continuous distribution, Vi =1, ..., 7.
The following propositions enable us to derive an algorithm to solve problem (31),
and consequently problem (3).

39) P ition: 4 ~ T (i 02(w) T
(32) Proposition: T z2@)=c—m(pT (i.e T =T [z (%) T15).
The result is immediate if we remark that (21) yields ;X— Q)= — 7zl

and also that y = Tx.

(33) Proposition: [¢ — x () T'le — w(x) is a supporting hyperplane of z(x) at
x = & where y = T'&.

In view of (32), it suffices to show that z(Z) = [¢ — @ () T']& — w(y) which
is obvious by the definitions of z ().

(34) Proposition: If £c K and [¢c — w(x)T] (x — %) =0, Yo e K then z(x)
has @ minimum at &.

Since z (z) is convex, then the following inequality holds [7]:

@) — 2@ = [c—a(y) T](x — 7).

Moreover, by hypothesis the second term of this inequality is non-negative

for all # € K. This implies
2@) = 2(F), Vaek.

(35) Proposition: Let =, e K and such that [¢c — = (y)T]x > [¢ — w(x) T
then 20 € (x, &] such that 2 (x0) < 2(x).

Since [¢ — 7z (y) Tlx > [¢ — w(y) T]%, we have

[ce—zm(p)Tle>[c—m(x) T1(Axe+ (1 —A)x), Vie[0,1).
If 2 (x) < 2(Ax 4+ (1 — W)&) Y2 €10, 1], consider
A =z2(Ax+ (1 —A% where Ae]0,1].

Since z (%) is differentiable, so is £ (4) [6]. Then

A LW = e — 7)) T) (2 — 5) > 0.

This implies that 310 € [0, 1) such that

£ < ().
Let
20 = A0z 4 (1 — A9) % we have z(x0) < Z(x) which contradicts
3@) 3w+ (1—N)F), Yie[o,1].
(36) Proposition: Let x € K and z(x) > 2z(x0) = Minimum 2z (x), then 3% such
that [c — () Tz > [c — w(y) 1] Z. ©eK
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Since z(#) is convex and by our hypothesis we have
0> 2@ — () = o — a(x) T) (&0 — ).

This last two propositions suggest an iterative procedure, the next proposition
gives us a test of optimality.
(37) Proposition: z(x%) = Minimum 2 (z) if and only if
zcK
[c — 7(x%) T2 = Minimum [¢ — 7 {y%) Tl where »°= Ta".
zeK

Let e —m(y9)T]20 < [c — n ()0 T]w, Ve e K then by (34) 20 is optimal.
Let z(2%) < z(x), Yz € K and asume that Iz € K such that

e =a(x") T12° > [c —m(y®) T

then by proposition (35), 3% € (x9, x] such that z(£) < z(x9), which contradicts the
assumption: 3z € K such that [c — 7 (y0) T]x0 > [c — 7 (y0) T]x.
Let us now consider the following linear programming problem.

(38) Minimize [¢ — 7w (x%) T %
subject to Ax=1"
£=0
where

yf=Tak, zFeckK.

Since problem (31) is solvable, so is problem (38) Ya* € K ; (proposition (20) and
the linearity of the term cx proves the continuity of z(z) over K). By (37), if 2 is
an optimal solution to (38), then x* is optimal for (31). If z* is not an optimal
solution, then by (36) the optimal solution to (38), say &*, is such that

[c —z(y*) T} (x% — FF) >0
then by (35), Jak+1 e (&%, Z¥] such that
2(Ak+1y < Z(xk).
Since z%+1 € K, we can find 7 (%+1) and solve a new linear program of the form (38)

where we introduce the new values for the row vector 7 (y). To find z#*+1 consider
the function:

(39) LAy =z(Axk 4 (1 — 2) TF), XE[O 1]
=lZcf(x§”-' +EG; sz A0~ 1) + 15

9*1 j=1 i=1

—Zm(l — W+ AE— D+ .
t=1
Since z(x) is differentiable, so is £(4) [6]. The derivative of (1) with respect to A

for s < A < Asq1, is
k=)t 7k

(40) m) = ¢ (wh — Fk) — qu w—a+2aGE— [ dF(&)
f=1 ielg o
+ EQl X — X?,

ielf
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where
: i 7

I;:{@ X ik _)»s<7~5+1< f}p_%f}

I§={ fj = :zs}
and

w—xt Bi—a . —
{AS}: {O: 1, 7?—5&’?’ Xf—% :7/:1,---:m}m[071]

and i

As <lAsi1, Vs={1,2,...,r =2m+ 2}.
We assumed here that % — x¥ > 0, this is not the case V;, we develop the
derivation of _=-{(4) in more detail in Appendix II. To find the minimum of

£ (1) we successively compute the value of % £ (A) at the points A; (at most 277 - 2,)

fors=1,...,7.
If— £(0) = 0 then {(A) attains its minimum on [0, 1] at 4 = 0.

If —cﬁ {(4s) =0 and % {(As+1) = 0 then (1) attains its minimum at some
;s, S [/13, ZS—H]-
If—(j( ) < 0 then {(4) attains its minimum on [0, 17 at 1 = L.

If (1) attains its minimum at 4 = 1, then
2(xk) < z2(x), Vwelak, 7],

This implies that «* was an optimal solution to (38), otherwise we contradict (36),
thus 2% is an optimal solution to (31). Let A* be the minimum of { (1) = z(1z*
+ (1 — A)Z*) on [0, 1), we set

bl = JE gk + (1 — Ak} EF,

A flow chart of this algorithm is given at the end. We now show the convergence
of this process. Propositions (35) and (36) assure us that if 2% is not an optimal
solution for (31), then z(x*) > z(x*¥+1) since z(x) attains its minimum value on
[z, £%] at ak+1, Moreover, problem (31) being solvable implies that the series
{z(«*)} is Cauchy convergent.

(41) Proposition: [¢ — 7 (%) T] (8% — 2%) < 2(20) — z(xF) where 20 is an
optimal solution of (31).

Since z(x) is convex and by (21)

2(@0) — 2(2%) = [o — 7w (y*) T] (2° — aF)
and since ¥ is optimal for (38), we have
[e — 7 (x¥) T2 = [o — m(x¥) T) 2.
Adding up these two inequalities gives the desired result. A
From this last proposition, we have obtained a lower bound for z(x9) and
(42) 2(@k) + [c — a(xF) T] (#F — 2F) < 2(20) = 2(aF).
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At each cycle of the algorithm, we could compute z (z%) + [c — 7 (y¥) T] (#F — k)
and use for lower bound of z(x9):

Ly = Max {z(a} F[e—nm(hT] (@ — 1)},
1=1,,
We obtain

Ly — 2(xk) < 2(20) —

=

2(x
then z(z%) — Ly is an upper bound on z(z*) — z (z9). This upper bound could be
used for stopping the computation, e. g. when z(x*) — Ly is less than a predeter-
mined number.
To show that z(x*) — z(x0) it suffices to show that [c — s (y¥) T] (8% — aF)
has a subsequence such that lim[c — m(y%) 7] (#* — #*) — 0. If the process

ki—> o0

is finite, we have &% = x%, Vk = ko. Let us assume that z(z%) > 2z(«0)V k, then

(43) Proposition: There exists no D > 0 such that [¢ — m(x*)T] (x* — T*)
is strictly larger than D V£,
To the contrary, let us assume that 3.D > 0 such that [¢c — 7 (y*) T] (% — &¥)

— % £(1)> D,Vk = k. Then by continuity of 7(z) and & = ko, 3v & (0, 1]
such that
fo— (3% 2% + (1 — ¥8) 74 T o — 7¥) = 3 £ (%) = D[2.
Moreover, by convexity of z(x), we have
2(@F) = 2ok + (L — 99)38) 2 (1 — o#) [0 — mob g + (L — v¥) 75) T) (a — )

and we also have
z(vEak + (1 — v*) ) — 2 (xk+1) = 0.

Adding up these two inequalities, we obtain
2(oh) — 2(@FH) Z (1 — %) o — w0k 7 + (1 — ##) 14) 1) (@ — &) = 5 (L — v¥)
thus

(1 — k) = 5 [2(aF) — 2 (2+1)],

1= 9%

v
v
©| o b’ 0o

[2 (@#+1) — 2(2#)] + 1.

Since {z(x*)} is cauchy convergent, we have
lim Vi == 1.

k—c0

We also have:
5 <o — m(xH) T] — [o — m(v¥ g -+ (L — o) 8) ) ( (2 — 3%) <

[lo—a(x¥) T]— e —m(F gk + (L — k) ) T b — ] <
e = (") T] — [c — mw(¥® yF + (L — %) 7¥) T1| - M

where M = Sup || ¥ — ZF| .
%
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Such a M exists, because (38) is solvable Y &, and z* (¥ k) can be expressed as a
convex combination of all extreme points of K. Also,
Ie —a(x®) T] — [ — (vt yF + (1 — vk) y¥) ]|

tends to zero, as k — co. (v¥ converges to 1 and 7 (y) is continuous). That means
that at the limit we must have D/2 < 0, which contradicts our assumption that

fe —m ()Tl (2% — &%) >D >0, Vk.

Flow-Chart of the Algorithm

Initiate with

A =q¢" [ dF () —q [ dF(§)
gze0 £<e0

where £0 is the mode,
median or expectation

Set k=%t +1

Let Z* be an optimal
solution. Then

Min¢ (A) =2z (Aa% 4 (1 — Ay &*)
say ((AF) = {(4), v4e[0,1]

Compute ¥+l = Ak gk L (1 — Ak) &

an optimal
solution for
the linear

Yes No =

Terminate yh+l = T h+1
% is the _
B4+l — _
optimal solu- w(xFh) = Q+Eg{kjF(§) -
tion for (3 )
& —q~ [ dF (&)
Eéxhﬂ—l

Davip KoHLER wrote an experimental code for this algorithm. We used IBM 7094 and
solved a few examples for which the computing time wag very reasonable. An outline of this
code, its features, an intuitive justification and examples are given in [§].

Appendix 1

We derive here an explicit expression for @;(y:) when & has no lower bound (§ 2.C).
We recall B
Qi (i) = gf & — wi() — () 2
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where
Eg{t} =5
vi() = @ [ &dFi(8)
&=y
() = qf — @ § AFs (&)

=y

We divide the range of y; in two parts and derive explicit expressions for @;(y;) on those

intervals:
Case 1. y; = p; then {&;]& =< y;} is the set of integration for ;(y;) and 7; ().
In this region, we have

y 44
() = gf — Eh'_f dF;(&)
b4
wi(y) = C:h‘_f &dF; (&)

_ xi
Qi) = 9F & — qf i — i [ (& — ) dFs(&5).
If @;(x) is differentiable on the interval (— oo, f;), we have
d N X
T Qi) = —¢f + ¢ [ dFi(5) = — mi ().

Case 2. 5 << y; then {f,,! E=Zyut=25
In this region
wi(xi) = — 47
vilw) =qi&
Q) =—a &+ G0
and

d
d—in(Xi)Z%‘—:—ﬂi(xi) on (B, o).

The function Q;(y;) is linear on [§;, + ).
Let
gi= Y2+ s With xie =< f;, 0= y3 and Thx — e — i3 =0.
Let
Qi (%) = @i(yi2, xi3)
then
Xi2

Qi(xszs 2i3) = qi & — ¢ yue + @ § Cne — &) AP (&) + 4 -

In a similar manner we could have given an expression for Q;(y;) when &; has no upper bound
but this could be obtained immediately from (22), by letting §; = -+ oo and deleting the term
in y:3, see e. g. (29).

Appendix 2
From (39)
$(2) =Z(Aak 4 (L — ) 7F)

n m
= A2 0k —ah) — 2 viAl — 70 + 7

j=1 =1

— > mAE— 2+ A R =T+ .

=1
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In order to sunphfy our notations, we shall write y} for A(y% — %% + 7% Let us consider
vi (1)) and 7 (x)).

d d
If 4% — % =0, then —-- d 7 (xh = ar l i (x}) = 0, we delete those terms. In what follows,

let us assume that ¥¥ — %% > 0, if y¥ — %% < 0 the inequalities we obtain for the regions of i
should be reversed.
ok
Case 1. 3} < a; then 1 < —’J‘C
7i(xh) = ¢f

vi(xh =0 -

Q) =a} & —af 2}
and

d _
ar Qi(%?) =—gf (F—7D-

Case 2. a; < 4} < p; then ai——x.g 51

k wk =

Xi— Xi XI_'Xc
d
() =i — ¢ J dFu(&)
At
x}

vi(yD) =@ [ &dFi(&)
[ 43 xl
Q=g &—dirt—a f (& — 2D A Fi(&)
and
P
d - _ 0
7 Q) = —af (1 — 70 -+ @k — 70 JdFi(&).

Case 3. 3} = Pithen % <i

ﬂi(x;) - - Qz

vi(yh) = @i & ~

QG =—a & +a#
and

d s
Fi Q (Xf) =g (E— 9.

xz ﬂl _
- a x,
of each @ x,) with respect to 4. The derivative of {(4) with respect to A will also change at
those points (2 m at most). But we are only interested in those which belong to [0, 1].

Let us define

The pomts determme achange in the expressions we obtain for the derivative

-_._79 _
and let
o — gk
I§= { 2 i ﬁ% Ast1, Asy1 € {As}
n=li| S st <has BEL g s e )
Y
n={i| G2 =a).
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If i € IS, that means that on the interval [4;, As+1] the derivative of @;(y;) takes on the value
—T

0 (k — 79 if i€ I we have to use the third form of the derivative of i Qi(x}h). For
Ae[ls, Ass1] we get:

)= SoEi—d) — Sat (d— ) — Sat h— 71

da i=1 iel§ iel}
+ 20 G — 70 + 2 @ (xi — 7 [ dFu(&).
ielf iel§ o

A simple algebraic manipulation gives us (40). It is very easy to see how the construction of
the sets 15, I and I% have to be modified if x% — %% < 0.
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