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Abstract. We define the complete problem of a two-stage linear programming under uncer- 
tainty, to be: 

Minimize z(x) = E~(cx ~ q+y+ ~ q-y-} 
subject to A x = b 

Tx  + I y  + ~- I y -  = 
x~O,y+ ~=O,y-~O 

where x is the first-stage decision variable, the pair (y+, y-) represents the second-stage decision 
variables. In order to solve this class of problem, we derive a convex programming problem, 
whose set of optimal solutions is identical to the set of optimal solutions of our original 
problem. This problem is called the effuivalent convex programming. If the random variable 
has a continuous distribution, we give an algorithm to solve the equivalent convex program. 
Moreover, we derive explicitly the equivalent convex program for a few common distributions. 

1. Introduction 

The standard/orm for the two-stage l inear program under  unce r t a in ty  is : 

(1) Minimize z(x) = E~{cx -~ q y} 
subject  to A x =- b 

T x - ~  M y = - ~  ~ ( ~ , Y , F )  
x~=O y>=O 

where A is a mat r ix  m • n, T is n5 • n, M is ~ • ~, ~ is a r andom vector whose 

probabi l i ty  space is (~, ~ ,  F).  This problem (1) belongs to the class of stochastic 
l inear programming problems for which one seeks a here-and-now 8olution. One 
interprets  problem (1) as follows: the decision maker  selects the ac t iv i ty  levels for 

x, say x --~ ~, he then  observes the r andom event  $ ~ ~ and  he is finally allowed a 

corrective act ion y, such t h a t  y ~_ O, M y  ~ ~ --  T~  and  qy is m in imum.  This 
second stage decision y, is t aken  when no "uncertaint ies , ,  are left in  the problem. 

The decision maker  wants  to minimize the sum of his fixed costs (cx) a nd  of the 
pena l ty  costs he m a y  expect when he has selected given ac t iv i ty  levels (x). I t  is 
clear from this in te rpre ta t ion  t ha t  we could also write the objective funct ion of (1) 

(2) z(x) ~-- cx  -~ E ~ ( m i n q y [ x } .  

All quant i t ies  considered here belong to the reals, denoted R. Vectors will 
belong to f ini te-dimensional  real vector spaces R n and  whether  they  are to be 
regarded as row vectors or column vectors will always be dea r  from the context  in  

* Parts of this material was written while the author was at the Operations Research 
Center at the University of California (Berkeley), where this research was partially supported 
by the Office of Naval Research under Contract Number 222 (83) with the University of Cali- 
fornia and by a research grant from the National Science Foundation. 
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which they appear. Thus, for example, the expressions 

Z = (Zl, .-. ,  Zi, -. . ,  Z~) 

T x =  Z 
~a 

y+v- = v2 y7 
i=1 

are easily understood. No special provisions will be made for transposing vectors. 
The random vector ~ : (~l . . . . .  ~i, . . . ,  ~ )  is a "numerical" random vector, 

i.e. E c R ~, ~ is a ~-algebra and F is a probabili ty distribution function from 
which could be obtained a probabili ty measure. (31, ~-l ,  F/) is the probabili ty 
space of the random variable ~ .  We only need independence of ~ and x : our first- 
stage decision has no effect on (~, ~ ,  F). 

I f  for every finite interval, Fi (~) has a finite number of discontinuity points, 
then we can always integrate by parts  ]gl(~i)dFt(~i), where g~($i) is a linear 
function of $i. I f  it exists, we denote the density function of ~i by / i  (~i) i = 1 . . . . .  
and ff they exist, let ~ / a n d  fli be respectively the greatest lower bound and least 
upper bound of $/. We assume tha t  E~,{~i} exists for all i ---- 1, . . . ,  ~ .  

We say tha t  problem (1) is Complete when the matr ix  M (after an appropriate 
rearrangement of rows and columns) can be partit ioned in two parts, whose first 
part  is an identity matr ix  and the second par t  is the negative of an identi ty matrix,  
M = (I,  - -  I) .  

The standard form of the problem to be studied in this article is then 

(3) Minimize z(x) = E~ {cx + q+ y+ + q-y-} 
subject to A x = b 

T x +  I y + - -  I y - = ~ ,  ~ e ( S , , ~ , Y )  
x>=O, y+>=O, y->=O 

where we parti t ioned the vectors q and y of the standard form (1) in (q+, q-) and 
(y+, y-), respectively. I f  m = 0 (i. e. there are no constraints of type A x  -= b) the 
characteristics of our problem remain the same. 

Among all classes of special cases of the two-stage linear programs under 
uncertainty, the "complete,, case seems to cover the largest class of possible 
applications. One can think of the vector x as representing the activity levels of a 
production plant, constrained by  A x = b, x ~ 0. T is the " transformation" of 
these act ivi ty levels into sellable goods. Z = Tx, is then the amount  of goods the 
producer decides to place on a market  where the demand, ~, is only known in 
probability, y+ and y -  represent the "errors" the producer made in estimating the 
demand; q+ and q- are penalty costs for making these "errors". For instance, an 
inventory type problem has T = I ,  q+ represents the unit shortage cost, and q- 
the unit  holding cost, and A x = b the capacity, budget, technology . . . .  con- 
strMnts. I t  can be shown tha t  the correlations between the $~ do not enter the 
problem; we do not need the independence of the ~.  We denote the marginal 
distribution functions by  Fi (~i)i = ] . . . . .  ~ .  

The first section of this report  shows the existence of an equivalent separable 
convex program to (3). Iu  the second section we let the random variable $ assume 
different distributions, and we derive the corresponding equivalent convex 
programs. Finally, we suggest an algorithm for solving (3) when ~ has a continuous 
distribution. 
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2. The equivalent separable convex program 

We say tha t  a programming problem is equivalent to  another  programming 
problem if their set of  optimal solutions is identical. Let  us consider 

(4) Minimize z (x) ~- c x -k Q (x) 
subject to A x ~ b 

x ~ 0  
where 

(5) 
and 

(6) 

Q (x) = E~(z ,  j ,~) {Q (x, ~)} 

Q (x, ~) = {Min q+ y+ ~- q-  y -  ] y+ - -  y -  = ~ - -  T x, y+ ~ 0, y -  ~ 0}. 

(7) Proposition: (4) is equivalent to (3). 

B y  (5), definition of  Q(x) and (2), the objective functions of  (3) and (4) are 
identical. I t  suffices to show t h a t  (3) and (4) have the same set of feasible solutions. 

Since we seek a here-and-now solution, a solution to (3) is not  a pair  (x, y), but  
a vector  x. Our decision y is taken when the random event  has occurred. 

Our second stage problem 

(8) Minimize q+y§ 4- q - y -  
subject to I y + -  I y -  ~ ~ - -  T x 

y+>=O, y - ~ O  

is always feasible, because whatever  be the values assumed by  ~ and x; it is always 
possible to express any  number  as the difference of  two non-negat ive numbers.  
The constraints limiting the here-and-now decision are:  A x ---- b, x ~ 0, i. e. (3) 
and (4) have the same set of  feasible solutions. I f  (3) is (in)feasible so is (4) and 
vice versa. 

The word complete, which was used to define the class of linear programs under 
uncertainty of the form (3), can now be justified intuitively by the properties of 
the solution set, viz. : every x satisfying the "fixed" constraints : (A x ---- b, x ~ 0) 
is automatically a feasible solution to problem (3) *. This is not the case in general 

for linear programs under uncertainty. Let 

(9) K ~- {xIAx----- b, x ~ 0} .  

I f  K : 0 we define Min z (x) : -  Jr oo. 
x ~ K  

(10) Proposition: (4) is a convex program. 

Since K is a convex set and c x  is a linear function of  x, it suffices to show tha t  
Q (x) is convex in x. I t  is easy to verify tha t  Q (x, ~) is convex in x (see (6)). The 
operator  E~ applied to Q (x, ~), ~ e ~ ,  forms a positive weighted linear combinat ion 
of  convex functions in x. The resulting funct ion Q (x) is thus convex. 

I n  what  follows, we assume tha t  (3) is solvable, i. e. z (x) a t ta ins  its min imum 
on K. We also assume t h a t  K has a non-empty  interior. We now show tha t  the 

* We did define the "complete" problem by M : (/, -- I). Every matrix M satisfying 
the intuitive justification for the use of the word "complete", does not yield a "complete" 
problem. In our later work, we define this class of problems as the simple recourse model 
for stochastic programming. 
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Equivalent Convex Programming problem (4) is a Separable Convex Programming 
Problem [2, p. 482] and this, contrary to the assertion found in the Appendix to 
[4, p. 216]. 

The second part of this section describes some useful characteristics of the 
objective function of (4). The last part is devoted to show how the existing solution 
methods for separable convex programs could be used. 

Let 

and 

A. Q (Z) is separable 

Zi = Ti x where Ti is the i th row of T 

Q(Z)--Q(x) when z = T x "  

None the less, we should not confuse Q (Z) and Q (x). Their domains being subsets 
of R m and/~n, respectively. 

I f  the function Q (Z) can be written in the form 

Q (Z) : ~ Qi (Z~) 
i = l  

where 

and 
Qi (Zi) is a convex function 

Z = (Zl . . . . .  Z~) 

then Q (Z) is called convex-separable. 

For a selected x (i. e. Z) and given ~, the problem to be solved in the second 
stage is : 

(11) P (g, ~) : Minimum ~ q+ y+ + ~ q~- y~- 
i = 1  i = 1  

subject to  Y~ - -  Yi- = ~ - -  Zi, i = 1 . . . . .  
y + ~ O ,  y i ~ O .  

The dual to the linear program (11) is: 

(12) Q (Z, ~) = Maximum ~ ~i (~, Zf) (~i -- Z~). 
i = 1  

subject to -- q~- ~ ~ (~i, Z~) g q+, i : 1 , . . . ,  ~ .  

We have already seen that  for any given pair (Z, ~), problem (11) is always 
feasible; problem (12) is feasible iff Vi the interval [-- q~-, q+] ~: 0. These last 
conditions are completely independent of the values assumed by X and $. Using 
the Existence Theorem (duality theory in linear programming), we establish the 
following : 

(13) Proposition: (11) is solvable i~  q+ + q-  = ~t ~ O. 

The permanent (VZ, V~) feasibility of (11) and the proposition we just estab- 
lished implies that  ff the assumption q+ + q- ~ 0 was not satisfied, then 

P (X, ~) = -- ~ V ~, V~ (u x) 
Ee{P(z,  }) } ---- -- oo VZ 
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and 

Le t  

(14) 

(15) Proposition: 

z (x )  = - -  ~ V x e K .  

Qi (z~, ~i) = Max imum ~ (~i, Zd (~ - -  Zd 
subject  to - -  q~- < ~ ($~, Z~) < q+ 

m 

Q (Z, ~) = ~ Q~ (Z~, $i). 
i=1  

The opt imal  solution to (14), and so to (12) can be obta ined  as follows: 
I f  (~l - -  Z~) < 0, set  ~i (~l, X~) = - -  qi- i . e .  the  coefficient of  the  object ive 

funct ion is negative,  we set  z i (~ i ,  Zi) at  its lowest  possible value because  we are 
maximizing.  

I f  ($t - -  Xi) > 0, set  ~ ($1, Z~) = q+- 
I f  (~i - -  Z~) = 0, t ake  for  z~(~ ,  g~) any  value of the  in terval  [ - -  q~-, q/+]. Le t  

~ (Zd ----- E~ (opt imal  ~ ($t, Z~)} 

be the expected  value of the opt imal  solution to (14). I f  ~i has a cont inuous densi ty  
function,  then  m (Zi) is unique, but  not  ff Prob  {~i = Zi} > 0. B y  definition we set  
gi  ($1, Z~) = - -  qi- when (~i - -  Zi) = 0, bu t  we come back  to this problem in the  
last  section (IV). 

I n  wha t  follows we assume t h a t  q+ -~ q -  = ~ ~ 0 otherwise our problem would 
be wi thout  interest .  I f  we assume t h a t  the second stage prob lem is solvable, then  
the op t imal  solution to (11) mus t  sat isfy the  condition y + y -  ---- 0 (i. e. y+ > 0 
-> y/- ---- 0 and  y~- > 0 -->y+ - -  0). One could then  show t h a t  Q(Z) is convex iff 

> 0, using e. g. the  p rope r ty  t h a t  a funct ion Qi (Zi) is convex iff i t  has non- 
decreasing first differences and t h a t  Q(Z) is a convex combinat ion  of convex 
functions.  

Le t  
z (x) = (~1 (zl) . . . . .  ~ (zd, -. . ,  ~,~(z~)) 

Q~ (z~) = E~, {@ (Z~, &)} 
Q (z) = E~ {Q (z, ~)}. 

I t  is t r iv ia l  to show t h a t  Qi (~i, gi) is convex and  so is Ql (Zt), because b y  definition 
it  is a posit ive l inear combinat ion  of convex functions. Moreover  the expecta t ion  
of a sum of r andom variables  equals the sum of the  expecta t ion  of these r a n d o m  
var iables  and  using (15) we get 

(16) Proposit ion: Q (Z) = ~ Qt (Z~) 
i ~ 1  

Since the  different Q~ (Xt) are convex,  we have  now proved  the separabi l i ty  of  Q (X)" 
F r o m  the dual i ty  theory  for linear p rogramming ,  we also get 

P (Z, ~) = Q (Z, ~) V given pair  Z and ~, 

then  
P ( Z )  -~ E ~ { P ( z ,  ~)} ---- E ~ { Q ( z ,  ~)} =- Q(Z).  
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(17) 

where 

B. A Study o/Q~ (;/d 

We point  out  some of the characteris t ics  of the funct ions Q~ (Zt), which are 
useful to s implify the  computa t ion  procedures when seeking an op t imal  solution 
and also to obta in  explicit  forms for the equivalent  convex p rogramming  problem 
when the ~t,s have  some specific dis t r ibut ion functions. 

B y  definition 

~ (zd = - q/- j" d ~  (~) + q~+ ~ d ~  (~) 

= qi + - -  (t* f d f ( $ d  
& <= ;r 

Also 

We write 

(18) 

where 

(19) 

then  

F~ (~i) is the  dis tr ibut ion funct ion of ~i. 

& < Z~ $* < z* 

Q~ (zd = q+ ~ - Ft (Zd - ;r~ (Zd Z~ 

~o~ (Zi) = qi f $i dFi (~i) 

I n  order to obta in  a more  explicit  form of Q~ (Z~) we divide the  range of Z~ in three  
par ts ,  ( - -  oo, ei) [ei, fli], (fli, q- co) and we express Q~ (Zd for these intervals.  
I f  ~i has no lower bound,  we set el = - -  c~ and consider the first in terval  empty ,  
if  ~ has no uppe r  bound we set fi~ = q- oo and the th i rd  in terval  is then  empty .  

Case 1. Z~ < ~i then  {~i l~  =< Zi} = O. 
I n  this region: 

~o~ (Zd = 0 

Qi (Zd = q/+ ~ - q+ Z~ 

d 
dz~ q~ (Zd = - -  q~+ on ( - -  ~ ,  ~ )  

= - - a i ( X d  on ( - - o o , ~ d .  

i = 1  i = 1  i = 1  

and 
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Thus, the function Qi (gi) is linear on the interval (--  ~o, el)- As mentioned above, 
this interval may  be empty.  (See Appendix I.) 

Case 2. o~ <= Z~ <= fli then {$~ ]~  ~ Z~} = {~t]~i <= ~ <= ~}" 
In  this region 

Zt 

oft 
Zi 

Z~ 

The "form" of the function Qi (Zi) on this interval [~ ,  fi~] depends on dFt (~). In  
Section 3 of this paper, we give examples for a few common distributions. I f  
Qi (Zi) is differentiable on this interval, we have : 

d z~ 
dzr Q~ (Zd = -- q+ + qi .[dF~ (~),  on (~/, rid, 

= - ~ ( Z d ,  on ( ~ ,  ~ ) .  

Case 3. Zl > fii then {~i]~ ~ Zi} = ~i. 
In  this region 

~ ( zd  = q/+ - q~ = - q~-, 

~t  (;~) = ~ ~ ,  

Q~(z~) = q~+ ~i - ~ + q~ ~ = - q~ ~ + q~ xi 

and 
d 

dx~ Q i ( z d  = q~- ,  o n  (Oh, + ~ o ) ,  

= - ~ ( Z * ) ,  on (~,,  + ~ ) .  

The function Qi (Zi) is thus linear on the interval (fli, + c~). 

(20) Proposition: Q~ (Zi) is continuous. 

I f  Ft (~f) is a continuous distribution function, it is obvious to remark tha t  
Qi (Zd is continuous at  all interior points of the intervals (--  oo, ~i], [~,/~i], 
[/3i, + oo). Since Prob{~i = ei} = Prob{~i = fi~} = 0, Ql(zd is also continuous 
at  ~ / and  fli. I t  suffices to show tha t  Qi (Zd is continuous for Zi equal to a discon- 
t inui ty point of Fi (~i). Without  loss of generality, we can assume tha t  Prob {$/= el} 
= / > 0 .  

When Z/converges to 7i from the left, we have: 

l ~  Q~ (zi) = q ?  ~ - q~+ ~ .  
Zl--->ct~ 

When Z/converges to e~ from the right, we have: 
Zl 

Zi 

Since the two limits are equal, Qi (Zi) is continuous at  ~i. 
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The following figure gives the general form of Q~ (Zl) where we assumed that  
Fi ($i) has discontinuities for ~i equal to ~i,/~/, k. 

Q (X~) / 

I 
I 

a i k fli Xi 
Fig. 1 

I / F i  (~) is a continuous distribution/unction, then Qi (Zi) is ( 2 1 )  P r o p o s i t i o n :  
di~erentiable and 

d 
dz~ Q i ( z ~ )  = - z~i(Zi)  o n  R .  

Since Fi (~i) is continuous, then the derivative is well determined at all interior 
points of (-- oo, ei], [~,  ill], [fii, q- oo). Moreover. Qi (Zt) is continuous and at at 

and fit, the left End the right hand derivatives are equal. This determines ~ Qi (Z~) 

at at and fit uniquely. 
The figure below indicates the general form of Q~ (Z~) when Ft (~t) is a continuous 

distribution function. 

Qi(Xi) / 

I I 
I I I 
I I 

a i Bi Xi 
Fig. 2 

In what follows, we assume that  ~ / >  -- oo. (In the Appendix I, we give the 
necessary modifications when ~ does not exist.) 
Let 

Z~ = ~ -- Zil 4- Zi2 4- Zi3 
with 

0 ~__~i-- ~ti =~__ Zi l ,  

0 _-< Zi .  s fi~ - a~, 

0 ==_ 2:~3- 
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This yields: 

We set 

then 

(22) Q~ (Z~i, Z~, X~) = q+ )/ii § q/- Xt~ § 0~ (Z~) 

subject to ~ -- ~i G Z~l 

0 ~ Zi~ 

where 

(231 O~ (Zi2) = -- q+ )/~2 -]- q~ f (Z~2 -- ~) d/~ (&), 
0 

and 

Z~2 

Since the first term (-- q+ Z~21 of 0~ (Z~2) is linear, ~ _>_ 0 and ] (Zt2 -- ~)d/~(&) is 
0 

convex, so is 01 (g~) (over its domain). The two first terms of Q~ (Zu, Z~, Z~a) 
represents the linear sections of Qi (Zi), see Figure 1. The term Q~ (Zi2) gives to the 
function its particular character, which depends on dF~ (&). As we shall see in 3, 
0~ (Z~2) may be a piece-wise linear function, a quadratic function, and so on. Let  us 
also remark that  the function Q~ (Z~l, %~u, Z~a) is convex-separable, the equivalent 
convex programming problem to (3), in terms of xj, Zii, Zi2, Zi~ is thus a separable 
convex programming problem, linear in x~-, Z~l, ~/f3- I t  reads: 

~ m 

(24) Minimize z ---- cj xj + ~ [q+ Zu + q~- Zi3] + ~ 0/(Z~2) 
j = l  i = 1  i = 1  

subject to ~ a~jxj : b~, i = 1 , . . . ,m  
] = 1  

j = l  

0 = xj., ~ - -  ~ _-< X~i, 0 ~ Xi3, 0 = Zi2 =< fi~ - -  ~ i .  

C. Separable convex programming algorithms 

Two basic references in this area are [2, pp. 482--490] and [5, pp. 89--100]. 
In his book [2], DAy,zIG suggests two approaches to these problems : the bounded- 
variable method (or broken line fit) and the variable-coefficient method. A broken 
line fit to the 0i (Z~2)'s would reduce our problem (24) to a large linear program 
(the number of variables with bounds would increase). This is equivalent to the 
assumption that  the distribution of ~ can be approximated by, or is, a discrete 
distribution, ~.~ taking on positive probability at the points where there is a change 
in the slope of the broken line fit. See 3, A. 

I f  one uses the variable coefficient approach one should take advantage of the 
fact tha t  (24) is linear in all the variables, except Zi2, i = 1 . . . . .  ~ .  The problem 
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then  becomes:  
n 

(25) Minimize z = ~ c~xl ~- ~. [q+ 
i = 1  i = 1  

subject  to ~a~x~ 
~'=: 

% 

m 

i = 1  

and 

bi, i =  1 , . . . , m  

-~-Z~: --Zia - - Z ~  : $ ~ ,  i : l  . . . . .  

0 < x~, & - -  ~ < ~/~, 0 < ~ ,  0 < 9~  < fl~ - -  ~ ,  

~t~ > O, g~ > O~ (l~) + = = = - q ~  ,~ + ~ ~ , , ~  - ~ ,  d~  ~ , . ~ , ,  
0 

i = l  . . . . .  ~ .  

The  solution me thod  to this class of  problems as well as the convergence propert ies  
are fully discussed in [2, pp. 486--490,  pp. 433--438].  

3. The probability space: (Z, ~', F) 

I n  this section we derive the equivalent  convex p rogramming  problem to (3), 
for some specific dis t r ibut ion functions F.  Up  to now, the assumpt ion  made  on the  
dis t r ibut ion of ~ /were  l imited to : E (~/} exists and  one can compute  the value of  
Zi2 

(Z~2 - -  ~i)dFi(~i), VZi2 G [0, fli - -  ~ ]  ff gl > - -  0% (more general ly one can 
0 

gt 

in tegra te  ] ($i  - -  zi)dF~(~i), VZ~ G [ ~ ,  fi~] i.e. the  formulas  of  the  Rieman-  

Stieltjes in tegra t ion b y  par t s  apply).  We did not  require the independence of the  ~i. 

A. ~ is finite 

The  nota t ions  used in this pa rag raph  differ sl ightly f rom the previous section. 
Le t  ~ < ~ ,  . . . ,  < ~.'~ be the values assumed by  ~ with probabil i t ies /1, 

1~ . . . . .  17' respectively.  
Le t  

8 - - 1  

l = l  

Fik,+:____ 1 : Prob {~i < oo}, Fi : 1  Prob  (~l < ~ }  : 0,  
k~ 

1 = 1  

I t  is easy to see t ha t  

E~{Minq+yi ' ~ - q i - Y ~ ] ~ i ~ Z i ~  "~+~ z _  z ~ ~ & } = q~+ ~ (~ x~)/~ + q~- (x~ - ~1I~. 
l = s §  1=1 

Then  
k ~ §  

l = 1  
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where ~ Z~ = Z*, 
l = 1  

l _ _  0 < z~ < ~ - ~i -1  = d, - -  2, . . . ,  k~, 
0 < ~ + 1  

Since ~ >_ 0 (the second stage prob lem is bounded  by  assumption)  and  

F ~ < F ~ + ~  for l = l  . . . . .  h 

i t  is readily seen t h a t  Q~ (Z~) is a piece-wise linear convex [unction. This last  p rope r ty  
allows us to formulate  our original problem as a linear p rogram [2, pp. 484--485],  
v i z .  : 

n ~ k~+ 1 ~, 

(26) Minimize z ~ ci xY - -  Z Z (q+ Fz : "  
j = l  , = ~ , = ~  , = 1  

n 

subject  to ~. a~ xj ---- b~, i = 1, . . . ,  m 
i = l  

n ki 

j = l  l=l 

xj_>0, j=L . . . , n  
z~ --< d~, o =< z~ --< 4 ,  o __< z ,  ~,+~ 

for i : l  . . . . .  m and 1 = 2  . . . . .  / c r  
~g 

where ~ q+ ~ is a constant .  
i = 1  

- -  %~I in (24) corresponds to Z~ and Z~3 in (24) corresponds to %~ '+1. The var iab-  
les Z~, 1 = 2, ...,/c~ in (26) correspond to the  unique var iable  g~2 in (24). 

This problem can now be solved using a linear p rogramming  code with upper-  
bound variable  option. 

1. Allocation o] aircraft to routes under uncertain demand. The approach  
indicated above could be a t t r ibu ted  to F~RGUSO~ and DANTZm where it  was  
underlying their  work:  "Allocat ion of Aircraf t  to Routes  under  Uncer ta in  
Demand. , ,  [2, pp. 568--591 ]. Using their  notat ion,  the problem wri t ten  in s tandard  
fo rm (3) is: 

m - - l n - - 1  n - - 1  n - - 1  

i= l j= l  j = l  j = l  
n 

subject  to ~ x/j = a~, i = 1, . . . ,  m - -  1 
j = l  
m--1  

Pc" xtj + xmj - -  y;' ---- ~I, j = 1 . . . . .  u - -  1 
i=1 

x~i~O , Xmj>=O, y j ~ O ,  i = l , . . . , m - - 1 ; j = l , . . . , n ,  

where yj is the number  of  seats remaining available and  ~j here is their  d i. The  
in te rpre ta t ion  of the other  symbols  is given in [2, pp. 574]. This  problem has the 
following features:  

Cmj=O for a l l j .  
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I n  our formulat ion this means q+ = 0 i. e. q~' F ~  ~ - - -  =- - -  F~qi �9 In  their terms 
- kj(F ) * --  F @  . . . . .  7hj)" 

m--1 

Pii > 0 implies ~ p,jxij  > O, i. e. Z~ > 0 for all j .  The random variable ~j 
i = 1  

takes on values ~J < ~2 . . . . .  < ~J and it is assumed tha t :  
~7~--1 

p jx,j < @ for all j 
] = 1  

i. e. Z~ J+l is fixed at  value zero. Taking these modifications into account,  the linear 
program, corresponding to our general form (26) follows: 

m--1 n--1  n--1 k~ 

(27) Min Y JYP Z + R0 
i = 1 ] = 1  ] = 1  / = 1  

subject to ~ xo" = a i ,  i = l  . . . . .  m - - 1  
i = 1  
m - -  1 k~ 

Zj = O, 
i = 1  / = 1  

x i j > O ,  i = 1  . . . . .  m - - l , j = l  . . . . .  n 

0 < Z ~  < d ~ ,  j = l  . . . .  , n  and l = l  . . . . .  k i 

where c/j = %" -- Pij kj, 

i. e. cost (negative profit) of  flying aircraft type  i on route j at  full capacity.  
n--1 

R0 = 
and d~ is defined as above, j = 1 

Since the first n X m columns of the constraints mat r ix  (matrices A and T in 
our s tandard  form (3) have the s tructure of  a weighted distr ibution problem, 
F r R a u s o x  and DANTZm specialized the upper-bound algori thm for linear programs 
to this class of  problems which lead to an elegant solution technique,  taking full 
advantage  of the nature  of the problem. We would like to point  out  a slight con- 
ceptual  difference between F~Rauso~  and DANTZm'S formulat ion [2, p. 577] and 
ours, reflected in the objective functions. The F~GVSo~-DANTZm objective form 
can be interpreted as follows : only the costs of  flying airplane type  i on route j are 
certain (ci3") and one expects a certain revenue obtained when filling up the seat 
capacities made avMlable; where our  objective reads as follows: profit ( ~ )  of  
flying aircraft  type  i on route j are certain and one expects only a lost revenue 
resulting f rom not  filling the seat-capaci ty made avMlable. Obviously, bo th  
objectives yield the same values for the opt imal  x~,s and we can derive one from 
the other.  

2. Elmaghraby,s approach. The problem studied by  ELMAGHRABY in " A n  
Approach  to Linear Programming under  Uncer ta in ty" ,  [4], wri t ten in s tandard  
form, is as follows: 

Minimize z =- E~ {c x + q+ y+ + q - y - }  
(x, y+, y-)  
subject to A x < b 

I x  + Iy+ - -  I y -  =- 
x > 0 ,  y + > 0 ,  y - > 0  
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then Z~ = xi (i ---- 1 . . . . .  ~ = n) and one can speak of the objective function 

z = c x  + Q(x)  = c x  + Q(x)  = y c jx j  + Qj(xj)  
3"=1 i=1 

as a separable convex function in x, rather than x and Z as before (24), but  this 
does not lead to noticeable computational simplifications. 

In what follows we present ELMAG~ABY,S version of the linear program used 
to solve his problem which will obtain its solution by a "sequence" of linear 
programs (by this he means that  Qj (xj) can be broken up in linear sections and the 
simplex method will examine these different linear sections in "sequence"). 

n /c~+l 

Minimize z = Z s  
] = 1  l = 1  

/ c i + l  

subject to a/j ( ~ x}) = hi, i = 1 . . . . .  m 
y=l 1=1 

8t 

Zx~ ____< ~ '  f o r j  = 1 . . . . .  n ; s j =  1 . . . . .  /c 1 
/ = 1  

x} >= O, j =  l, . . . ,n ;  l =  l . . . . .  !cjq-1 
lcj+ l 

where x;. = ~, x}. 
/ = 1  

]cj 

I f  }~ is the optimal solution to this problem, then ~;. = ~ ~ is optimal for his original 
]=1 

sj 

problem. I t  is obvious that  the inequalities ~ x} G ~ '  could have been used to 
/ = 1  

obtain upper-bounds for x} as was done for X~ in (26). This reduces the size of the 
problem considerably. 

3. EI-Agizy,s approach. An alternate method to reduce problem (3) to the 
linear programming problem (26) is given in EL-AGIzu [3]. This derivation gives 
also an alternative proof tha t  the assumption of independence of the ~i's is 
superfluous. 

Let 

then 

B. ~i is uni/orm, V i 

1 
/ i (~i)--  fit--at if ~i~[ai ,f i i] ,  

= 0 otherwise 

i 

----- 0 otherwise 

and by (23) 

r (;/~2) = - -  q+  ;/42 q-  /h z ~ ~ ~ (Zi2 - -  &) d& = - -  q+  Zi2 q- 2 ( & - -  ~t) X~2 
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(24) becomes : 

(28) Minimize z = c~ x i + (q+ Z~I - -  q~ Z~2 + qi- Zta) + g N Z~  
j = l  / = 1  i =  

% 

subject to ~ at~ xl ---- be, i : 1 . . . .  , m 
i = l  

~ t # x ~ + Z i l - - Z ~ 2 - - Z i 3 : ~ {  , i : 1  . . . . .  ~ 
] = 1  

(28) is easily recognizable as a Quadratic Programming Problem for which many 
algorithms exist in the literature, e. g. see [2, pp. 490--491]. Beale was the first 
one to point out this property for uniform distribution [1]. 

C. ~ is exponential,  u i 

Let [i(&) = z~e~ -~'~' ff &e  [0, + co] 

----- 0 otherwise 
then 

1 

and by (23) 
Zr 

r + 
0 

~ (1 - e -;~xr 

using Taylor,s expansion 
,2  2 oo , n  ) n \  

.=3 ~.v ] 

~,h Z/22 ~ z~5 
= - -  q+ Xi2 § 2 ~ " § ~ "" ( - -  )~i)n-1 n! 

I t s 3  

we approximate to 0i(Z/2) by 

The value of this approximation depends on the relative value of {{ and the 
1 

proximity of the optimal value of ZiP to ~{ : ~ -  I f  we introduce the approximation 

of G: (X{2) in the objective function of (24), the resulting equivalent convex pro- 
gramming problem is: 

n Yn l ~-n_ 

(29) Minimize z = ~ c 3 x;. § Z [q+ Zil --  q+ Z{~] § ~ Z q *  2, Zi~.2 
j= l  i=I = 

subject to ~ a{j x~ = b{, i : 1 . . . . .  m 
] = 1  

n ] 

Qyxy § z l l - -  Z i P - - - -  i = l ,  . . . ,  
y=l ;ti ' 

1 
0 G x ~ ,  X~ G; /~ ,  0 G ; / ~ .  

Z. Wahrscheinlichkei~stheorie verw. Geb., Bd. 4 23 
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So as (28) this is a Quadratic Programming Problem (Vi, ql).i ~ 0). Remark  tha t  
we did not introduce Z,a, because fii = + c~, i. e. ~, has no upper bound. 

D. & has a continuous distribution/unction, V i 

In  our last paragraph (3. C) we "accepted" an approximation to the objective 
function in order to reduce (24) - -  the equivalent convex programming to (3) - -  
to a quadratic programming problem for which algorithms have been developed. 
The purpose of this paragraph is to suggest approximation for the distribution 
functions and then show tha t  the so obtained "equivalent" convex programming 
problem is in a form for which efficient computational methods exist. 

We have already pointed out in Section 2. C (on Separable Convex Program- 
ming) tha t  replacing 0~ (%*~) by  a broken line fit is equivalent to finding a discrete 
distribution which would "approximate", in some sense, the distribution of the 
random variable $~. Here, we approximate continuous distribution by  step- 
functions. In  other words, we replace the random variable & by  a weighted sum 
of random variables having uniform distributions. 

Set ~, 

where ~, 

1=1 

1~ (~) 1 = 1 . . . . .  k~ are unitbrm density functions. 

In  (24), replace the constraint 

n 
~ t~jxj  + g i l  - Xi~ - Z~a = ~ 

i = l  

by k, equations of the form 

i l l l l t~j xj + Za - -  %i2 - -  Zia = &, 
j = l  

The objective function of (24) becomes 

n r~ /r 

1 =  1 , . . . , k , .  

j = l  i = 1 / = 1  i = 1 1 = 1  

We have already shown (8. C) tha t  if  ~{ is uniform then 0{ (Z~2) has a linear and a 
quadratic term. See (28). Then 

j=l i=I/=i ii 

This approximation of random variables having continuous distribution by the 
sum of random variables having uniform distributions led also to a Quadratic 

Programming Problem. I t  is clear that  the increase in size ( 3 r ~  (/c~ --  1) new 
}-n i = 1  

variables of which 2 ~ . ( / ~ -  1) are bounded and ( / c i -  1 )~  additional con- 
i = 1  

straints) depends on the desired quality of the approximation. To find the ~.~ and 
/~, lower and upper bounds for $~, see the Appendix to [1]. 
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E. Summary 

This section has shown tha t  either directly or by approximation it was some- 
times possible to reduce the equivalent convex programming to (3), to program- 
ruing problems for which we possess efficient algorithms. For simplicity we have 
assumed in each paragraph tha t  the marginal density func t ion / i  ($i) was of the 
same nature V i. This is not Ilecessarily the case. I t  should be clear by now tha t  
each 0~ (Zi2) can be treated independently. For instance, if  ~1 has a discrete distri- 
bution, and say ~2 a uniform distribution it is not difficult to show tha t  the 
equivalent convex programming problem is a quadratic programming problem. 

4. An algorithm for continuous distribution functions 

We now give an algorithm to solve problem (3) when V~,/~i ($i) is a continuous 
distribution function. We assume tha t  the distribution functions F~(~) allow 
Rieman-Stieltjes integration of linear functions of $i. We also assume tha t  (3) is 
solvable which implies among other conditions tha t  q ~ 0. We have shown (4) tha t  
the equivalent convex programming to (3) can be written 

(30) Minimize z(x) = cx  + Q(x) 

subject to A x = b 

x > 0  
o r  

(30') 

where 

then 

Minimize z (x, Z) = c x -}- Q (Z) 

~ X  ~ b  

T x - -  Z = 0  

x=>0  

m 

i = 1  i = 1  

Q (x) = ~ q~+ ~i - ~ [~i (T~ x) + =~ (T~ x) T~ z]. 
i = 1  i = l  

Since ~. q~+ ~l is a constant, we may  delete this term from the objective function 
i = l  

m 

of our problems. We also write ~o(Z ) = ~ ~v~ (Zi). 
i = 1  

Problem (30) becomes 
n 4h 

(31) Minimize ~ (x) = ~ c j x j  -- ~ [~fi(Tix) + ~ ( T i x )  Tix] 
] = 1  i = 1  

subject to ~ aiix j = b, i = 1, . . . ,  m 
j= l  
xj >= 0, j = 1, . . . , n  

We should note tha t :  
I f  F/(~i) is continuous at  ~ = Zi, then 

23* 
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(36) 
that [c - -  ~ (Z) T] x ~ [c - -  ~ (Z) T] ~. 

I f  F~ (~i) has a non-zero j ump  a t  ~i = Z~ then  

and  

In  this case a complete  range of values exist  for the expected  values of  opt imal  
solutions to (14). Ident ica l  relat ions hold for ~ (Zi). 
I n  wha t  follows, we assume t h a t  f~  (~l) is a continuous distr ibution,  V i = 1 . . . . .  N. 
The  following proposit ions enable us to derive an a lgor i thm to solve problem (31), 
and  consequent ly  prob lem (3). 

(32) Proposition: d x  ( x )  = c - -  z ( 2  ) T ( i .  e .  S x j  - -  c~ - -  [z(Z ) T]t). 
d 

The result  is immedia te  if  we r emark  t h a t  (21) yields ~/~- Q(Z) = - ~ (Z)  

and also t h a t  g = T x .  

(33) Proposition: [c - -  u ( Z ) T ] x  - -  yJ(~) is  a suppor t ing  hyperplane o / ; ( x )  at 
x ~ 2 where g = T 2 .  

I n  view of (32), i t  suffices to show t h a t  ; (2) = [c - -  ~ (Z)T] 2 - -  ~ (Z) which 
is obvious by  the definitions of  ; (x). 

(34) Proposition: I /  2 ~ K and [c - ~(2)  T] (x - -  2) ~ 0, V x ~ K then ~ (x) 
has a m i n i m u m  at ~. 

Since ; (x) is convex,  then  the following inequal i ty  holds [7] : 

~ ( x )  - ~(~) _> [c  - ~ ( ~ ) T ]  ( x  - ~).  

Moreover,  b y  hypothesis  the second t e rm  of this inequal i ty  is non-negat ive  
for  all x ~ K.  This implies 

; ( x )  ~ ; ( 2 ) ,  V x c K .  

(35) Proposition: Let  x,  ~ ~ K and such that [ c -  ~ ( Z ) T ] x  > [ c -  ~ ( z ) T ] 2  
then ~ x ~ ~ (x, ~] such that ~ (x ~ ~ ~ (x). 

Since [c - -  ~ (Z) T] x > [c - -  7r (Z) T] ~, we have  

[c - ~ (z) T]  x > [c - -  z (Z) T]  (;~ x + (1 - -  ~) ~) ,  V )~ c [0, 1).  

I f  ~ (x) ~ ~(~x ~- (1 - -  2~)2) V)~ e [O, 1], consider 

~ ( ~ ) = ~ ( ~ x ~ - ( 1 - - 2 ) ~ )  where ~ e [ O , l ] .  

Since z (x) is differentiable, so is ~ (~) [6]. Then  

d 

This implies t h a t  ~ ~0 e [0, 1) such t h a t  

~(~0) < ~(1) .  
Le t  

x ~ ---- ~0x -~ (1 - -  ~0)~ we have  ~(x ~ ~ ~(x) which contradicts  

~(x) g ~ ( ) ~ x ~ - ( 1 - - ~ ) 2 ) ,  u  

Proposition: Let  x ~ K and ~(x) ~ ~(x  ~ -~ Minimum ~(x), then ~ 2  such 
x e K  
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Since ; (x) is convex and b y  our hypothesis  we have  

0 > ; (x ~ - -  ; (x) ~ [c - -  ~ (Z) T] (x ~ - -  x) .  

This  Iast  two proposit ions suggest an i tera t ive  procedure,  the nex t  proposi t ion 
gives us a tes t  of  opt imal i ty .  

(3'7) Proposit ion:  ; ( x  ~ -----Minimum ~(x) i /  and only i /  
X~K 

[c - -  7~ (X ~ T] x ~ = Min immn [c - -  x~ (X ~ T] x where X ~ ~ T x ~ . 
x ~ K  

Let  [ c - -  ~ ( z 0 ) T ] x  ~ g [ c - -  z ( z ~  V x e K  then  b y  (34) x o is optima].  
Le t  ~(x ~ g ~(x), V x  e K and asume t h a t  ~x  ~ K such t h a t  

[c - -  ~ (Z ~ T] x ~ > [c - -  ~ (Z ~ T] x 

then  b y  proposi t ion (35), ~ 2 e (x ~ x] such t h a t  ~ (2) < ~ (x0), which contradicts  the 
assumpt ion :  ~x  e K such t h a t  [c - -  ~(Z ~ T J x  o > [c - -  ~ ( Z  ~ T]x .  

Let  us now consider the  following l inear p rogramming  problem.  

(38) Minimize [c - -  u (Z ~) T] 2 

subject  to A 2 ---- b 

2 > O  

X ~ ~ T x  k ,  x ~ ~ K .  

Since p rob lem (31) is solvable, so is problem (38) Vx ~ e K ;  (proposition (20) and 
the l inear i ty  of  the t e rm  cx  proves  the cont inui ty  of ~ (x) over  K).  B y  (37), if  x ~ is 
an op t imal  solution to (38), t hen  x ~ is op t imal  for  (31). I f  x ~ is not  an opt imal  
solution, then  b y  (36) the opt imal  solution to (38), say ~ ,  is such t ha t  

[c - ~ (Z ~) TJ (x~ - ~ )  > 0 

then  b y  (35), 3 x k+l e (x ~, ~k] such t h a t  

;(x~+t) < ~(z~). 

Since x ~+1 e K,  we can find ~ (Z ~+1) and  solve a new linear p rog ram of the fo rm (38) 
where we introduce the  new values for the  row vector  ~ (Z). To find x ~+1 consider 
the  fnnct ion:  

(39) ~(2) = ~(Px~ + (i - -  2)2k),  2 e  [0, 1] 
n n 

i = 1  j = l  i ~ 1  

i = 1  

Since z (x) is differentiable, so is ~ (2) [6]. The der ivat ive  of  ~ (2) wi th  respect  to 2 
for  2s --< 2 --< ~s+l, is 

(~0) ~ - - ~ ( 2 ) = c ( ~  ~ ) -  ~q~+ (z~ -~ ~ - - z ~ )  + ~ q~(z~ - z~) ~ dF~(&) d)~ 

i e lSa 

where 
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where 

and  

and  

I~ = {i 

= {i  - -  

{As) = {0, 

ks < As+~ 

Z~ -- Z~ l 

~ - ~ < AsK z~  - ~ = J 

1, z~ Z~ ' Z~"~ -- ~~z~ ' i = 1 . . . .  , r ~ / ~  [0, 1] 

, V s =  {1,2 . . . . .  r = < 2 ~ + 2 } .  

We assumed here t ha t  Z~ - -  Z~ > 0, this is not  the case Vi, we develop the 

der ivat ion of j z  ~ (4) in more  detail  in Appendix  I I .  To find the  m i n i m u m  of 

d 
(4) we successively compute  the  value o f ~ -  ~ (4) a t  the points  ks (at mos t  2 ~ - ~  2,) 

for s---- 1, . . . ,  r. 

I f  d-- ~ ~(0) >= 0 then  ~(A) a t ta ins  its m i n i m u m  on [0, 1] a t  A ---- 0. 

I f  ~ (ks) _--< 0 and ~ ~ (2s+1) => 0 then  ~ (A) a t ta ins  its m i n i m u m  a t  some 

A e [A~, As+l]. 

I f  d ~ ( 1  ) =< 0 then  ~(A) a t ta ins  i t s  m in imum on [0, 1] a t  A = 1. 

I f  ~ (4) a t ta ins  its m i n i m u m  a t  A ---- 1, then  

(x~) = ; (x ) ,  V x e [x~, ~k]. 

This implies t h a t  x ~ was an op t imal  solution to (38), otherwise we contradic t  (36), 
thus  x ~ is an opt imal  solution to (31). Le t  A ~ be the  m i n i m u m  of$(A) = ~(Ax ~ 
+ (1 - -  A)2 ~) on [0, 1), we set 

x ~+1 = A~x ~ + (1 - -  A~)2 ~. 

A flow char t  of  this  a lgor i thm is given a t  the  end. We now show the convergence 
of this process. Proposi t ions (35) and  (36) assure us t h a t  if  x ~ is not  an op t imal  
solution for (31), then  z (x  ~) > z(x ~+1) since z(x) a t ta ins  its m i n i m u m  value on 
[x ~, 2 ~] a t  x~+L Moreover,  p rob lem (31) being solvable implies t h a t  the  series 
{z (x~)} is Cauchy convergent .  

(41) Proposit ion: [c - -  z ( z ~ ) T ]  ( ~  - -  x ~) <= z ( x  ~ - -  z ( x  ~) where x ~ is an  

opt imal  solution o/ (31). 
Since ~ (x) is convex and  b y  (21) 

(x ~ - -  ~ (x ~) ~ Iv - -  zv (Z ~) T] (x ~ - -  x~) 

and  since 2~ is opt imal  for (38), we have  

[c -- ~ (g ~) T] x ~ => [c -- ~ (g ~) T] ~ .  

Adding up these two inequalities gives the desired result. 
F r o m  this last  proposit ion,  we have  obta ined  a lower bound for ~ (x ~ and 

(42) ~ (x~) -t- [c - -  ~ (Z k) T] (2~ - -  x~) =< ; (x 0) =< ~ (x~). 
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At  each cycle of  the  a lgori thm, we could compute  ~ (x k) § [c - -  7~ ( i f )  T] (2~ - -  x ~) 
and use for lower bound  of z (x ~ : 

L~ = Max{~ (x~) + [c - -  z(Zz) T] (~z _ x~)}. 
l = 1 ..... k 

We obtain  

L~ - -  ~ (x ~) ~ ~ (x o) - -  ~ (x ~) =< 0 

then  ~ (x k) - -  L~ is an upper  bound on ~ (x k) - -  ~ (xO). This upper  bound could be 
used for s topping the  computa t ion ,  e. g. when ~ (x ~) - -  Lk is less t han  a predeter-  
mined  number .  

To show t h a t  ~ (x ~) --> z (x ~ i t  suffices to show t h a t  [c - -  z ( i f )  T] ( ~  - -  x ~) 
has a subsequence such t h a t  l i m [ c -  7~(Z k~) T] ( 2 k ~  xk,)__> O. I f  the process 

is finite, we have  ~ ~-- x ~, V k ~ k0. Le t  us assume t h a t  ~ (x~) > z (x ~ V k, then  

(43) Proposit ion:  There exists no D > 0 such that [c - -  ~:(Z k) T] (x ~ - -  2 ~) 
is s t r ict ly larger  t han  D V k. 

To the  contrary ,  let us assume t h a t  3 D  > 0 such t h a t  [c - -  ~(Z ~) T] (x ~ - -  2 ~) 
d 

- -  d~ ~(1) > D, Vk _>__/Co. Then  b y  cont inui ty  of  ~(Z) and  /C ~ /Co, 3vk ~ (0, 1] 

such t h a t  

d 
[c - -  ~(v~Z ~ § (1 - -  v~) ~k) T] (x ~ - -  ~k) = ~ -  $(v ~) = D/2 .  

Moreover,  b y  convexi ty  of  z (x), we have  

z(x~) - z(~,~x~ § (1 - ~)  ~ )  => (1 - ~ )  [c - z ( ~ X  ~ + (1 - ~ )  ;r T ]  (x~ - -  ~ )  

and we also have  

z(~,~x ~ § (1 - -  ~ )  ~ )  - -  z (x  ~+~) ~= O. 

Adding up these two inequalities, we obta in  

D 
z (x  ~) - -  z(x ~+1) ~ (1 - -  ~ )  [c - -  7~(f~Z ~ § (1 - -  f~) ]~) T] (x/c - -  2 ~) = -2- (1 - -  v~) 

thus 
2 . 

(1 - ~)  =< ~ [ z (x~ )  - ~ ( x ~ + ~ ) ] ,  

l__~ ~ k ~  ~---Vz(x k + l ) - z ( x  ~)] § 1 .  

Since {z (x~)} is cauchy convergent ,  we have  

l im v~ = 1. 
~----> oo 

We also have :  

D 
< ([c - ~(Z~) T] -- [c -- ~(~Z ~ + (I -- ~) ~) T]) ( (x~ -- ~) _< 

]1 [c - -  7~(ff) T] - -  [c - -  ~(v~X ~ § (1 - -  ~ )  ~ )  T[] [Ix ~ - -  ~ [ !  

iI [c - -  = ( i f )  T] - -  [c - -  x ( ~ Z  ~ § (1 - -  ~)Z~)  T] ][. M 

where M ~ Sup II x~ - ~ Jl. 
k 
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Such a M exists, because (38) is solvable Vk, and xk(Yk) can be expressed as a 
convex combination of all extreme points of K. Also, 

l] [c -- x(Z k) T] -- [c -- 7~(v~ Z~ ~- (I -- ~) ~k) T] [I 

tends to zero, as/~ -+ oo. (v/~ converges to 1 and ~ (Z) is continuous). That means 
that  at the limit we must have D/2 --< 0, which contradicts our assumption that  

[c - ~(Z ~) T] (x~ --  ~ )  > D > O, V k. 

Flow-Chart o/the Algorithm 

Initiate with 

(Z ~  S d F ( ~ ) - - q -  S dF(~) 
~>~o ~<~o 

where ~o is the mode, 
median or expectation 

Min[c -- .~ (;g~) T]2 

A 2 = b  
2 > 0  

-<--Yes No ~ 

Terminate ] 
x k is the / 

optimal solu-] 
tion for (3) ] 

Set k = k q - 1  [ - -  

Let 2~ be an optimal 
solution. Then 

Min~(~) ---- ~(~z~ + (1 -- ~)2k) 

say~(~ k) G~()~), V ~ [ O , ] ]  

Compute )C k+ l  = )JC Z/c + ( l  - -  ~k)2/c  

Z k+l = TX ~+I 

~(Z k+l) =q+ ; dE(J)-- 

- q -  f dF($) 

DAVID ]:~OtlLER wrote an  experimental  code for this  algorithm. We used I B ~  7094 and 
solved a few examples for which the  computing t ime was very  reasonable. An outline of this 
code, its features, an  intui t ive justification and  examples are given in [8]. 

Appendix 1 

We derive here an  explicit expression for Q~(Z~) when ~ has no lower bound (w 2.C). 
We recall 

+ 
Q~(z~) = qi & - w~(z~) - ~(z~) z~ 
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where 

We divide the  range of Z~ in two parts  and  derive explicit expressions for Q~(7,~) on those 
intervals:  

Case 1. Z~ <= fli then  {&[ ~ G %~} is the  set of integrat ion for Y~i(g~) and ~(Z~). 
In  this region, we have 

Z~ 

~*(z*) = q+ - ~i J" dFd&) 

Zi 

Zi 

- - c o  

I f  Q~06) is differentiable on the  interval  ( - -  ~o, fii), we have 

d z~ 
d% ~ Q~ (Xi) = - ~ + ~ ~ dF~ (&) = - -  ~i (%i). 

Case 2. fl~ < Z~ then  {$~[& g Z~} = Z~ 
In  this region 

~(Z~) = -- q~ 

~(z~) = ~ & 

Q~(Z~) = - q~ & + ~ ; /~  
and  

d 
d)/, Q~(7~) = q~ = - -  ~(Z~) on (fl~, + o~). 

The function Q~(y~) is l inear on [fig, q- ~) .  
Let  

Z i = Z i 2 ~ % ~ 3  with Z~2 < f l ~ , 0 ~ % ~ a  
Let  

then  
Qi(Z~)=Q~(z~2, Zt3) 

and T i x - - z i 2 - - % ~ 3 = 0 .  

Z~2 

Q*(z*2, x~3) = q$ & - ~$ x*2 + ~, f (z ,2 - &) dE, (&)  + q~ X~ .  
- - o o  

In  a similar manner  we could have given an expression for Q~ (Zi) when & has no upper  bound 
bu t  this  could be obtained immediately from (22), by  let t ing fl, ~ -i- co and deleting the  term 
in Z~3, see e. g. (29). 

From (39) 
A p p e n d i x  2 

r = ~(Zx~  + (1 - z)~)  

n 
k --k k 

y=l i=i 

~b 

- Z ~ ( ; . ( z ~ -  2~1 + z~)(~4d - ~)  + x~). 
i = 1  
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I n  order  to  s implify our  no ta t ions ,  we shah  wr i te  Z} for 2(Z~ - -  ~ )  + Z~. Le t  us consider 
~0i (J/i) a n d  ~i (X~). 

d ~ d 
I f  Z} - -  Z~ = O, t h e n  d2 ~ (Zi) = ~ -  ~i (Zi) = O, we delete  those  te rms.  I n  w h a t  follows, 

le t  us  assume t h a t  Z~ - -  Z~ > O, if  Z~ - -  Z~ < 0 the  inequal i t ies  we o b t a i n  for t he  regions of ,~ 
should  be  reversed.  

Case 1. Zl < cq t h e n  2 < ei  - -  Z/~ 
= = z,~ - ~,~ 

~ ( z ~ )  = o 

Q~(z~) = ~ ,  - q~z~ 
and 

d 
- -  ( Z ~  - -  Zd 

Case 2. ai ~ Z~ ~_ fl~ t h e n  ~ -  ~ < 2 <  fli - -  Z~ 
z ' ~ -  ~.'~ = = ~ - ~  

~ (z~) = q;  - ~ ~ d ~ ( ~ )  
otl 

). + -  + ). 

d ,~ + 
q~ (;/i q~(zi - -  Zi) d2 Q ~ ( Z ' ) = -  - - Z ~ ) - t - -  ~ -'~ Yd3"~(~d. 

a n d  

a n d  

- - ; r  < 2  Case 3. Z~ >= fit t h e n  fli ~'~ 

~ i ( z h  = - q~- 

Q ~ ( z } )  = - q , -  ~ + ~ , -  z ,  ~ 

d 

{2s} = 

a n d  le t  

The  po in t s  Z~ - -  Z~ ' ~Z~ ---- ~'~z~ de te rmine  a change  in  t he  expressions we o b t a i n  for the  de r iva t ive  

of  each  Qi(z~) w i th  respec t  to  2. The  de r iva t ive  of ~(Z) w i th  respec t  to  2 will also change  a t  
those  po in t s  (2 m a t  most) .  B u t  we are only  in te res t ed  in  those  which  belong to  [0, 1]. 

L e t  us  define 

0 , 1 , ~ - -  , �9 - k  i = 1 , . . . , N I 2 ~ < 2 ~ + 1  r ~ [ 0 , 1 ]  z~ - 2'~ 

_>- i ,+1 .2 ,+1  e {~,} 
Zl - -  Z~ 

- - Z i  < 2 s  . 
z g =  i z~ z ~ =  
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If i ~ I s , that means that on the interval [As, As+L] the derivative of Q~(Z~) takes on the value 

q+ (Z~ -- -l~Zi); if i e I~ we have to use the third form of the derivative of ~ Q~ (g~'). For 

~ [As, )~s+l] we get: 
?& 

- - z ~ )  

d)L i = 1 ie I~  i~ISs 

A simple algebraic manipulation gives us (40). I t  is very easy to see how the construction of 
the sets I~, I s and I.~ have to be modified if Z~ -- Z~ < 0. 
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