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On Necessary and Sufficient Conditions 
for an Infinitely Divisible Distribution to be Normal 

or Degenerate 

ROGER A. HORN* 

Introduction 

Recently, Ruegg [4] has given elegant generalizations of the familiar result 
that a non-degenerate infinitely divisible probabili ty measure on the line cannot 
have compact  support (rid. [23, p. 174). Using the theory of entire functions and 
deep results about  entire characteristic functions, he has shown that certain asymp- 
totic conditions on the tail of an infinitely divisible distribution are sufficient to 
force it to be either normal  or degenerate. In this note we obtain conditions which 
are both necessary and sufficient, and we do so with quite elementary methods, 
viz., the L6vy-Khinchine representation formula and an elementary inequality 
for Laplace transforms. Our principal result is 

Theorem 1. Let F(x) denote the cumulative distribution function of a probability 
measure on the line, so that 1 - F ( x ) + F ( - x ) = O ( e x p ( - x M ( x ) ) )  as x ~ ,  where 
M(x) is a non-negative measurable function. Assume that the measure is infinitely 
divisible. 

(a) The measure is normal (possible degenerate) if and only if M(x) can be 
chosen such that M(x)/in x ~ as x ~ and such that M(x) is continuous and 
strictly monotone increasing for all sufficiently large x. 

(b) The measure is degenerate if and only if, in addition to the conditions in (a), 
M(x)/x  ~oo  as x ~oo.  

In this context we can summarize Ruegg's results very simply: he drew the 
appropriate  conclusion about the distribution in the special cases M ( x ) =  a x ~ and 
M ( x ) = a ( l n  x)" where a, ~>0 .  

With the elementary methods we develop to prove this theorem we are able 
to obtain certain one-sided results as well. One result leads to a sufficient condition 
for an infinitely divisible random variable to be bounded from above or below, 
while in the spirit of [-5] another  result gives a sharp necessary condition on the 
one-sided asymptotic behavior of an infinitely divisible distribution. 

* This work was supported in part by the National Science Foundation under NSF Grant 
GP-13258. 
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A Lower  Bound 

The characteristic function q~ of an infinitely divisible cumulative distribution 
function F can be represented uniquely by the L6vy-Khinchine formula ([3], p. 76) 

~b(t)= }o e ixt dF(x) 
- - o o  

:ex  2 i t x d r  (x) ] l + x  2 )  x -2( lq -x2)  

(1) 

where c~, fl, and t are real and d# is a non-negative bounded measure with no point 
mass at zero. The distribution F will be normal or degenerate if and only if d # - 0 ;  
it will be degenerate if and only if fl = 0 as well. 

Under suitable conditions on the rate at which F(-x)--,O or 1-F(x)---,O as 
x ~ oe the function ~b will be analytic in the upper or lower half plane (or both) and 
hence in the appropriate domain the Laplace transform of F will converge and will 
have the unique representation 

q~(iy)= ~ e  -~r dF(x) 
- oo (2) 

x y d~(x)] =exp [ c~y+fi2y2+_~ ( e - ~ Y - - l + ~ )  x-2(l+xz) 

with ~, fl, d# as in (1) and y real. For  our purposes it will be convenient to utilize 
a device of [5] and to modify this formula as follows: for e > 0 divide the domain 
of integration in (2) into the interval [ -  e, 5] and its complement and in the former 
utilize the identity x y(1 + xZ) - 1= x y -  x 3 y(1 + x2) -1. If we define 

& - -  S x-2(l+x2)dr(x) 
Ixl>~ 

B ~ - ~ -  Ixdr(x)+ I x- l  dr( x ) 

~(y)=- ~ (e - ~ r -  1 +xy) x-2(1 +x z) dr(x), 

then formula (2) may be written in the form 

c~(iy)=exp[A~+B~y+fl2y2+~(y)+ ~ e-Xyx-2(l+x2)dr(x)], (3) 

but since ~ (y)> 0 for all e > 0 and all real y we obtain the inequality 

(a(iy)>=exp[A~+B~y+fl2y2+ ~ e-XYx-2(l+x2)dr(x)]. (4) 

Now let c < 0 and choose 0 < e < I c[. If d r  has mass m > 0 in the interval ( - o% c) 
then for all y > 0  we derive from (4) the lower bound 

c~(i Y)>=exp[A~+ B~Y+ fl2Y 2 + f e-Xr x-2(l  +x2)dp(x)] 
- -  o ~  

>=exp[A~+ B~y+fi 2 y2 +mc-2(1 + c  2) e-~y]. 
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Similarly, the latter inequality holds for all y < 0 if d# has mass m > 0 in (c, c~) for 
some c>0 .  Thus, if d# has positive mass in the interval ( -  ~ ,  c) for some c < 0  [in 
the interval (c, ~ )  for some c > 0], then there exist real numbers A, B, 7 with 7 4:0 
such that 

qb(i y )>exp[A + B y +  fl 2 y2 +72 elcyl] (5) 

for all y > 0 [-all y < 0]. 

Using this simple estimate, we conclude that if a > 0 and if e-a2 y2 ~b (i y) remains 
bounded as y ~ ,  then d# cannot have positive mass on ( - ~ ,  c) for any c < 0  
and, furthermore, flz > a z is impossible. By the same reasoning, if exp ( - e ~y) ~b (i y) 
remains bounded as y ~oo ,  then d# cannot have positive mass on ( - ~ ,  - a ) .  
Similar considerations using (5) as y ~ - ~ complete the proof of 

Proposition 1. Let 4) denote the characteristic function of an infinitely divisible 
probability measure and let dp be represented by the LOvy-Khinchine formula (1). 

(i) Suppose (a(z) is analytic in the upper [lower] half plane and let a>=O. I f  
O(i y)=O(e a2y~) as y ~ [as y ~ - oo] then d# has no mass in ( -  ~ ,  O) [-in (0, ~ ) ]  
and f12  ~ a 2. I f  ~b (i y) = 0 (exp (e" ly[)) as y ~ co [as y -~ - ~ ] ,  then d# has no mass in 
( -  ~ ,  - a) [in (a, ~)3. 

(ii) Suppose 0 (z) is an entire function, l f  O (i y) = 0 (e ~ Y~) as y ~ +_ c~ for all a > 0 
then d#=-O and f l=0,  i.e., the original distribution is degenerate. I f  qS(iy)= 
O(exp(e"lyl)) as y ~  +_oo for all a > 0  then d#-O,  i.e., the original distribution is 
either normal or degenerate. 

An Upper Bound 

Now let ~(z)= ~f e iz~ dF(x) denote the characteristic function of a cumulative 

distribution function F. It is well known that this integral is convergent for all z 
in the upper half plane if and only if F( - x) = O (e-" x) as x ~ ~ for all a > 0 ([7], 
pp. 39-40 and 237-240). Under this condition, integration by parts is permissible 
and for y > 0 we obtain 

oo 

0=<qS(iy)= ~ e-~XdF(x)=y ~ e-YXF(x)dx  
--0o --or3 

oo 

=Y S [ eyx F ( -  x) +e-yx  F(x)] dx 
0 

< y ~ [ey x F( - x) + e-Y ~] dx = 1 + y ~ e y x F( - x) dx. 
0 0 

(6) 

Similar considerations lead to a similar inequality in the lower half plane. If 
we introduce the tail probability function T(x) =- 1 - F ( x ) + F ( - x )  we can unite 
these results in 

Proposition 2. Let q5 denote the characteristic function of a probability measure 
on the line with cumulative distribution function F. 
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(i) The function c~(z) is analytic in the upper half plane if and o n l y / f F ( - x ) =  
O(e - ~ )  as x ~oo  for all a>O, and in this event 

oo 

O <= ~a(i y) < l + y ~ eYX F ( -  x) dx 
0 

for all y>O. Similarly, gp(z) is analytic in the lower half plane if and on ly / f l  - F ( x ) =  
O(e - ~ )  as x-~oo for all a>O, and in this event 

oo 

O < r  1 - y ~ e-YX[1 - F(x)] dx 
0 

for all y <= O. 

(ii) The function r is entire if and only if T (x )=O(e  -~x) as x ~ for all a > 0 ,  
and in this event oo 

0 < r  1 + lyl ~ elyl:' T(x) dx (7) 
0 

for all real y. 

Proof of Theorem 1 
We shall use the upper bound (7) to deduce the theorem via the asymptotic 

conditions given in Proposition 1 (ii), but in order to do so we need the following 
simple inequality for Laplace transforms. 

Lemma 1. Let M(x)  be a non-negative measurable function on [0, Go) such that 
M(x)  is continuous and strictly monotone increasing on [A, oo) for some A > 0  and 
such that M(x)--+oo as x--+oo. Then for all y>  M(A), 

oo 
I e Y X - - x M ( x )  dx<= 1 +y-X e Y M  -1 (y+l ) .  

0 

Proof. The inverse function M -1 is well defined on [M(A), m) and one computes 

oo M - J ( y + l )  

5 eY~'-~u~:') dx = ~ e-"~v{x)-Y) dx + ~ e-x(U(~)-Y) dx 
0 0 M - l ( y + l )  

M - I ( Y + I )  
< ~ eXydx+ e--Xdx=y--l[eYM-ltY+l)--l]+e--M-'(Y+l) 

0 M l ( y + l )  

~ l + y - l e  yM-j(y+I), q.e.d. 

Corollary 1. Let M(x)  be as in Lemma 1 but assume that M(x) /x  --,oo as x ~oo.  
Then 

y ~ eXy-xur dx=O(eaY2) as y--,oo 
0 

for all a > O. 

Proof. Using the lemma, we have for all large y 
O(3 

Y e-~Y2 S eXy-xMlx) dx < y  e -ay2 q- e -y[ay-M-lty+I)], 
0 

so it is sufficient to have a y >= M-~(y  + l) for all sufficiently large y for each a > O. 
Since M(x) is monotone increasing this would follow from the inequality M(a y)> 
y + 1, but M(a y)/y -+ oo as y ~ c~ and so this is surely the case. 
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Corollary 2. Let M (x) be as in Lemma 1 but assume that M (x)/ln x --* oo as x ~ oo. 
Then oo 

y ~ eX,-XU(X) dx=O(exp(e" ' ) )  as y ~ o e  
0 

for all a > 0. 

Proof Using the lemma, we have for all large y 

oo 

y e x p ( -  e ay) ~ e ~y-~M~) dx<=y e x p ( - e "  Y) + exp [ - y ( y - ~  e "y - M - I ( y +  1))] 
0 

so it is sufficient to have y-1 e a y > M - l ( y +  1) for all sufficiently large y for each 
a >0 .  As before, this would follow from M(y  -1 eaY)>>_y+ 1. But �89 a y > l n  y for all 
sufficiently large y and hence 

M (y -~ e ~ Y)/y >_ �89 a [ M  (y-  1 e ~ Y)/ln (y- 1 e ~ y)] ~ oo 

as y---,oo, q.e.d. 

We can now prove Theorem 1 easily. The asymptotic condition in (b) of the 
theorem ensures that F has an entire characteristic function q~ by the first part of 
Proposition 2 (ii). If we successively apply Proposition 2 (ii), the hypothesis on 
T(x), and Corollary 1, we find that 

oo 

q~ (i y) =< 1 + l Yl ~ eX I,I T(x) dx  
0 

= l +O[ly l  f exlyl-xM(x) dx] 

= O ( e  ay2) 

as ]y[ ~ o e  for all a>0 .  Finally, Proposition l(ii) shows that F must be degenerate. 
The sufficiency of the asymptotic condition in (a) of the theorem is established by 
parallel reasoning using Corollary 2. 

The necessity of these asymptotic conditions is proved in each case by direct 
computation. I fF is degenerate then T(x) = 0 for all large x and hence T(x) = O(e-  x3). 
But then M ( x ) =  x 2 meets all the required conditions and M(x) /x  ~ oc as x ~ oe. 
In the normal case, a simple change of variable shows that it suffices to prove that 

oo 

e -t2 d t=  O(e -~M(~)) 
x 

for some function M(x)  meeting the required conditions. If we set 

[_xl 01 M( ) t2 x = m a x  In e -  dr, , 
x 

x > 0  

then we shall be done if we can show that M(x)/ ln x -~  oe as x--, oe and that 
M' (x)> 0 for all sufficiently large x. Both of these statements follow from repeated 
applications of de l'H6pital's rule for indeterminant limits. The computations are 
13 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 21 
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straightforward but tedious, and we content ourselves with the following sketch 
oo 

of the steps involved: First show that x - 2 In ~ e -t2 d t --, - 1 as x ~ ov and deduce 
x 

from this that M(x)/ ln x --* Go and M(x)  ~ oo as x ~ oo. Now use this to show that 
the derivative of the numerator  of M'(x) is ultimately strictly negative. But since 
the numerator of M'(x)  tends to zero as x ~ o v  and the denominator is always 
positive, one concludes that ultimately M ' ( x ) >  0. The proof of the theorem is 
complete. 

Since the asymptotic conditions in (a) and (b) are necessary and sufficient 
conditions, it follows that an infinitely divisible distribution is a non-degenerate 
normal distribution if and only if (a) is satisfied but (b) is not. Thus, within the 
family of non-degenerate infinitely divisible distributions the normal distributions 
are characterized as those whose tail probabilities decrease most rapidly. 

Random Variables Bounded from above or below 

The half of Theorem 1 dealing with degenerate laws says, in effect, that if 
T(x) ~ 0  fast enough then T(x)=O for all large x. If part (i) of Propositions 1 and 2 
is used in the same way as part (ii) was used in the above proof, one sided versions 
of our theorem result. For  notation, we refer to the L6vy-Khinchine formula (1). 

Theorem 2. Let F(x) denote the cumulative distribution function of  a probability 
measure on the line, so that F ( - x ) = O ( e x p ( - x M ( x ) ) )  as x - ~ ,  where M(x)  is a 
non-negative measurable function. Assume that the measure is infinitely divisible. 

(a) I f  M(x)  can be chosen such that M(x)/ ln x --* ~ as x ---> ~ and such that it is 
continuous and strictly monotone increasing for all sufficiently large x, then the 
measure d# has no mass in ( -  ~ ,  0). 

(b) I f  in addition to the conditions in (a), M(x) /x  ~ as x - ~ ,  then f i=0  and 
the measure d# has no mass in ( -  ~ ,  0). 

There is of course a similar result involving the asymptotic properties of 
1 -  F(x) and the mass of d# on (0, ~) .  

In the spirit of our introductory remarks for this section, it is interesting to 
express these results about the L6vy-Khinchine measure d# in terms of the original 
distribution F. Baxter and Shapiro [1] have given necessary and sufficient con- 
ditions for an infinitely divisible random variable to be bounded from below in 
terms of the quantities 13 and d# in (1). From their Theorem 2 one obtains easily 
the following 

Lemma 2. Let an infinitely divisible probability measure on the line have cumu- 
lative distribution function F and let its characteristic function c~ have the LOvy- 
Khinchine representation (1). Assume that d# has no mass in ( - ~ ,  0), that fl=O, 

1 

and that ~ x -  1 d# (x) < ~ .  Then 
+ 0  oo 

V ( - x ) - O  if  x > ~ z + ~ x - l d # ( x ) .  
0 
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When this is united with the above remarks we obtain 

Theorem 3. Let F(x) denote the cumulative distribution function of an infinitely 
divisible probability measure on the line whose characteristic function has the LOvy- 
Khinchine representation (1). Assume that F ( -  x) = O(exp ( - x M ( x ) ) )  as x ~ oo 
where M(x) is a non-negative measurable function. 

1 

I f  (i) ~ x - l  d#(x)< oo, and 
+ 0  

(ii) M(x) may be chosen to be continuous and strictly monotone increasing 
for all sufficiently large x and such that M(x)/x---, oo as x ~ oo, 

then F ( -  x)= 0 for all sufficiently large x. 

Thus, under suitable conditions we see that if F ( - x ) ~  0 fast enough as x ~ 0o 
then ultimately F ( - x ) - 0 ,  and we can even give an explicit estimate for the support 
ofF. This should be compared with the familiar situation for non-negative random 
variables discussed in [2], p. 539. There is, of course, a similar theorem for random 
variables which are bounded from above. Finally we remark that if (ii) is weakened 
to require that M(x)/ln x ~ oo as x ~ oo, then we can conclude from (a) of Theorem 2 
that F=F1 *F2 where Fa(-x)=_O for all sufficiently large x and F2 is a normal 
distribution. 

A One-Sided Necessary Condition 

Although Theorem 3 gives a precise sufficient condition, hypothesis (i) makes 
it impossible to apply if one has knowledge only of the asymptotic behavior of the 
distribution F. However, this behavior does contain additional useful information 
and we shall show, roughly, that if F(-x)- -*O faster than e -xlnx, then it must 
actually decrease as fast as e -~2. The gap between these two rates thus excludes 
certain types of one sided asymptotic behavior for unbounded infinitely divisible 
distributions. We shall need a simple lower bound for Laplace transforms in the 
same spirit as Lemma 1. 

Lemma 3. Let re(x) be a non-negative measurable function on [-0, or) such that 
re(x) is continuous and strictly monotone increasing on [A, Go)for some A >0  and 
such that m (x) ~ co as x ~ oo. Then there exists some 0 > 0 such that for all y > 3 re(A), 

o o  

S ey . . . .  (2) dx>  0 y-1 e~y,,-l(~y). 
o 

Proof The inverse function m -1 is well defined on [re(A), co) and one computes 
for y > 3 m (A) 

oo m -1 (�89 m -H�89  

S e y . . . .  (~') dx >= ~ e y . . . .  (X) dx >= ~ e~ YX dx 
0 A A 

=2y-1 Ee-~ym-~(~y)_e�89 ] 

> 2y-~ [e~S,,-~(~y)-p e~ym-'(~ y)] 

=2(1 _p )  y-1 e-~y,,, ,(+y), 

where p = exp {~ m (A) [A - m-1 (~ m (A))] } < 1 and one may set 0 = 2 (1 - p) > 0. q.e.d. 
13" 
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Corol lary 3. Let re(x) be as in Lemma 3 but assume that lim inf m(x)/x=O as 
x ~oo .  Then for all K > 0 ,  

l i m s u  e y . . . .  ~X) dx =o~ as y ~ o v .  

oo 

In particular, y S ey . . . .  ix) d x =~ 0 (e Ky~) for any K > 0 as y ~ oe. 
0 

Proof Using the lemma,  for all large y we have 

e -Ky2 y ~ e y . . . .  ~) dx>=O exp [ - K y  2 +�89 m-l(�89 
0 

�89 

But if lim inf m (x)/x = 0 as x ~ oe then l im sup m - 1(�89 y)/�89 y = oe and we are done. 

Theorem 4. Let F(x) denote the cumulative distribution function of an infinitely 
divisible probability measure on the line. Assume that there are positive constants 
C1, C2 such that 

C1 e-Xm~X)< F ( -  x) < C2 e -xM~) 

for all x >O, where re(x) and M (x) are non-negative measurable functions which 
are continuous and strictly monotone increasing for all sufficiently large x. I f  
l im M (x)/ln x = oe as x -~ 0% then necessarily lim inf m (x)/x > O. 

Proof Let the characteris t ic  function ~b of F have the representa t ion  (1). If  
l imM(x)/ ln  x =  oo as x--*oo then we conclude f rom T h e o r e m  2(a) that  the L~vy- 
Khinchine  measure  d/~ has no mass  in ( - ~ ,  0) and hence f rom (3) we have for 
y > 0  and e =  1 

q~(i y ) = e x p  l + B a y + f l 2 y Z + ~ ( e - X V - l + x y ) x - Z ( l + x Z ) d # ( x )  
0 

+ j e -~x x - 2 ( 1  -]-X 2) d#(x) 
I 

< e x p  A ~ + 2 ~ d # ( x ) + B l y + y  2 f12+�89 (l+x2)d~t(x) . 
1 

In part icular ,  q~ (i y) = O (e Kx2) for some K > 0 as y ~ oe. But for y > 0 we have f rom 
(6) the lower bound  

co co 

~)(i y)> y f e x '  F ( - x )  d x >  Ca y 5 e ~'-~mlx) dx,  
0 0 

and hence by Corol la ry  3 it is impossible  to have ~ (i y ) =  O (e Kx~) for any K > 0 if 
lim inf m(x)/x = O. 

Thus,  if F(x) is an infinitely divisible dis t r ibut ion function and F ( - x ) ~  
a e x p ( - b  x~+~), with a, b > 0  then if e > 0  it must  be at least 1; 0 < e <  1 is not  pos- 
sible. Also, F ( - x ) ~ a e x p ( - b x ( l n x y ' )  is not  possible for any ~ > 1 ,  nor  is 
F ( - x ) ~ a  e x p ( - b  x In x In In x). There  is, of  course, a similar theorem restricting 
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the asymptotic behavior of 1 - F(x) as x --* ~ .  These results generalize and simplify 
results of Ruegg 1-5] which he obtained with deeper function-theoretic methods. 

Notice that Theorem 4 requires information about the asymptotic behavior 
ofF(  - x) (or of 1 - F(x)) alone and disregards the behavior of 1 - F(x) (or ofF(  - x)) 
entirely. On the other hand, Theorem 1 requires a simultaneous estimate of both 
these quantities. It is worth observing that Theorem 2 leads easily to a useful 
intermediate result. 

Theorem 5. Let F(x) be the cumulative distribution function of an infinitely 
divisible probability measure on the line. Assume that f ( - x ) = O ( e x p ( - x M ( x ) ) )  
and 1 - F ( x ) =  O(exp( -xN(x ) ) )  as x ~oo,  where M(x) and N(x) are non-negative 
measurable functions which are continuous and strictly monotone increasing for all 
sufficiently large x. Finally, assume that N(x)/ln x --, oo as x ~ oo. Then the measure 
is degenerate if and only if M(x) can be chosen such that M(x)/x  ~oo  as x ~oo.  

In particular, if F(x) is the cumulative distribution function of a non-negative 
non-degenerate infinitely divisible random variable then F ( x ) - O  for all x <0  and 
the above assumption about M(x) is trivially satisfied. In this event it is not possible 
to have 1 - F ( x ) = O ( e x p ( - x N ( x ) ) )  with N(x)/ln x ~oo  as x ~oo .  In the special 
case of a discrete distribution with N(x ) - - x  ~, e > 0, this result was first announced 
by Steutel in his thesis 1-6]; his methods are quite different from ours. 
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