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Abstract. Experimental concurrent infection with 
two or more parasite species in mammalian host 
models may result in heterologous antagonistic 
and synergistic interactions ranging in magnitude 
from reduced/enhanced growth and fecundity to 
blockage/enhancement of establishment/expulsion. 
With some exceptions only, there is a reasonable 
correlation between the levels of interaction moni- 
tored by parasitological and by clinico-pathologi- 
cal parameters. Heterologous antagonistic interac- 
tions mediated by functional and specific immuno- 
logical cross-reactivity occur between closely re- 
lated parasite species exhibiting a marked immuno- 
biological similarity. In contrast, antagonistic in- 
teractions between antigenetically more remote 
species of helminths, protozoan-induced resistance 
to helminth infection and helminth-induced sup- 
pression of  concurrent protozoan infection gener- 
ally appear mediated by immunologically non-spe- 
cific factors like macrophage activation and in- 
f lammatory reactions. Synergistic heterologous in- 
teractions between helminths, helminth-induced 
enhancement of concurrent protozoan infection 
and interference with the development and mainte- 
nance of resistance to helminth infection in re- 
sponse to concurrent protozoan infection are gen- 
erally thought to be mediated by non-specific para- 
site-induced immunosuppression. Concurrent ex- 
perimental infection is very complex. There are 
problems and limitations in extrapolating from ex- 
perimental studies on concurrent infection in labo- 
ratory animals to natural polyparasitism. This fact, 
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coupled with the complex influence of ecological 
factors on the pattern and frequency of concurrent 
natural infection means that major consequences 
of natural concurrent parasite infection have not 
been definitively demonstrated. Appropriately 
planned and controlled field studies and further 
laboratory experiments on primate and domestic 
animal models are imperative for elucidation of 
the importance of heterologous interactions in con- 
current parasite infection for the disease pattern 
in man and domestic stock. Experimental studies 
hitherto conducted on concurrent parasite infec- 
tion pointing to natural heterologous interactions 
may be a valuable starting point for further stu- 
dies. 

Concurrent infection with two or more parasite. 
species in man and domestic stock is the basis for 
the enduring interest in experimental studies on 
multiple parasitism. This paper presents a review 
of the available information accumulated from stu- 
dies on synergistic and antagonistic heterologous 
interactions between helminths and between hel- 
minths and protozoans. The effects of  these inter- 
actions on the disease picture are also discussed. 
Other recent publications contain valuable reviews 
of resistance against Schistosoma spp. in mice 
(Dean 1983), of  cross resistance in concurrent me- 
tacestode infections (Gemmell and Johnstone 
1977) and of resistance to trematode infection us- 
ing heterologous antigens (Hillyer 1984). In addi- 
tion, Hsu et al. (1980) briefly listed a number of 
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examples of heterologous antagonistic interactions 
between various schistosomes in the mammalian 
host. Reviews of site selection and site segregation 
by parasitic helminths in heterologous interactions 
and their importance for the development of hel- 
minth communities have been provided by, for ex- 
ample, Schad (1966), Holmes (1973) and Halv6r- 
sen (1976). In addition, Dobson (1985) recently 
introduced mathematical modelling for population 
dynamics of "competition" between parasites. 

A complex set of interacting and interrelated 
factors govern the types and characteristics of het- 
erologous interactions which develop in concurrent 
experimental infections. A given combination of 
two parasite species may thus result in a range 
of types of either antagonistic or synergistic inter- 
actions, depending on factors like relative timing 
and size of infections. The complexity of experi- 
mental concurrent infection must be recognized, 
but in spite of this, and for the sake of clarity, 
each type of interaction is dealt with separately 
in the present review. Aspects and consequences 
of this complexity are dealt with in the discussion. 

Also discussed is the importance of experimental 
studies for elucidating the importance of natural 
multiple parasitism in man and domestic stock. 
For clarity, references are mainly in the tables and 
only to a limited extent in the text. 

Heterologous antagonistic interactions 
in schistosome infections in mice and hamsters 

Resistance to heterologous schistosome infection 
can be reflected in reduced establishment of worms 
after challenge infection (" reduced challenge worm 
establishment"), in reduced total tissue egg counts 
and often also in reduced tissue egg counts per 
worm pair. It is frequently induced by species of 
schistosomes capable of producing significant 
numbers of eggs in the experimental rodent host 
(Table 1). Reductions in Schistosoma mansoni 
challenge worm establishment appear to require 
patent mixed-sex primary infections of a certain 
size and a significant deposit of eggs in the tissue 
at the time of challenge (Malek 1981 ; Nelson et al. 
1968). However, reductions in S. haematobium 

Table 1. Heterologous antagonistic interactions in schistosome infections in mice and hamsters, att, attenuated by passage in 
the hamster; zooph, zoophilic strain; human, human strain 

Resistance induced by Resistance directed against Experimental host 

Mouse Hamster 

Resistance induced by schistosomes producing significant numbers of eggs 

Schis tosoma boris S. mansoni  a 
S. mattheei  S. mansoni  a 
S. rodhaini S. m a n s o n i  a 
S. haematobium S. mansoni  
S. mansoni  S. haematobium 
S. mansoni  Schis tosomat ium douthitt i  a 
Heterobilharzia americana S. mansoni  e 
S. mattheei  (art) S. mattheei  f 
S. japonicum (zooph) S. japonicum (human) g 
S. japonicum (human) S. japonicum (zooph) g 
S. spindale S. incognitum h i 

Resistance induced by schistosomes producing no or insignificant numbers of eggs 

Ornithobilharzia turkestanieum S. boris J 
O. turkestanicum S. haematobium J 
O. turkestanicum S. mansoni  J 
S. mattheei  (single-sex) S. mansoni  k 
S. indicum (single-sex) S. incognitum 1 
S. spindale (single-sex) S. incognitum h i 

Resistance induced by schistosomes undergoing early attrition 

Trichobilharzia szidati  S. mansoni  
S. spindale S. incognitum 

b 

b e  

" Nelson et al. 1968; b Smith et al. 1976; ~ Mansour et al. 1984; d Hunter et al. 1961 ; e Malek 1981 ; f Taylor et al. 1977; g Sadun 
et al. 1961; h Agrawal et al. 1983; ~Agrawal and Sahasrabudhe 1984; J Massoud and Nelson 1972; k Amin and Nelson 1969; 
l Agrawal et al. 1979; m Pedersen et al. 1982; n Varma et al. 1983 
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challenge worm establishment may be induced in 
hamsters by prepatent S. mansoni infections (Man- 
sour et al. 1984). Single-sex male infections with 
S. indicum or S. spindale and exposures to cercar- 
iae of  S. spindale resulting in no adult worm estab- 
lishment induce marked resistance to S. incognitum 
challenge in mice judging by worm establishment. 
The level of  worm establishment suggests that re- 
sistance does not develop either to S. mansoni chal- 
lenge in S. haematobium and Schistosomatium 
douthitti-infected mice or to S. mattheei challenge 
in S. boris-infected mice (Hunter et al. 1961 ; Nel- 
son et al. 1968; Halawani et al. 1977). However, 
this may reflect the low susceptibility of  mice to 
S. haematobium, S. boris and S. douthitti. Resis- 
tance to S. mansoni, S. boris and S. haematobium 
challenge, judged by tissue egg counts, may be in- 
duced in mice by primary mixed-sex infections with 
Ornithobilharzia turkestanicum. This is in spite of  
O. turkestanicum producing insignificant numbers 
of  eggs in the mouse. A reduction in the egg pro- 
duction capacity of  S. mansoni challenge infections 
may also be induced in mice by primary single-sex 
S. mattheei infections producing no eggs. Primary 
exposures of  mice to cercariae of  Trichobilharzia 
szidati, the schistosomulum of which in the mouse 
is killed during early migration, may result in re- 
duced tissue egg counts, but unaltered worm estab- 
lishment, from a S. mansoni challenge infection, 
and reductions in tissue egg counts per worm pair 
of  S. mattheei and S. rodhaini have been recorded 
in mice following S. mansoni challenge (Nelson 
et al. 1968). Reductions in tissue egg counts could 
be due to a decreased egg production capacity, a 
prolongation of  the prepatent period or even to 
an increase in the rate of  destruction of  the eggs 
in the tissue. Finally, initial infection of  mice with 
S. japonicum reduced the histological tissue reac- 
tion following a challenge exposure to cercariae 
of  the bird schistosome Gigantobilharzia sturniae 
(Hunter et al. 1956) and Michael et al. (1979) dem- 
onstrated a suppression of  the granulomatous re- 
action to eggs of  S. mansoni in the liver of  mice 
concurrently infected with S. haematobium. 

The mechanism responsible for heterologous 
resistance between schistosomes in mice and ham- 
sters has not yet been found. However, the impor- 
tance of  presence of eggs produced by worms of  
the primary infection at the time of  challenge for 
reduction in challenge S. mansoni worm establish- 
ment in mice agrees well with observations made 
on the homologous S. mansoni/mouse resistance 
model (Dean 1983). This is also the case for the 
early attrition of  the S. haematobium challenge in 
S. mansoni-infected hamsters (Smith et al. 1976). 

Heterologous antagonistic interactions 
in schistosome infections in sheep, cattle 
and non-human primates 

Exposure of  sheep and cattle to cercariae of  S. hae- 
matobium and S. mansoni results either in no adult 
schistosome establishment, or in only a few worm 
pairs which produce insignificant numbers of  eggs. 
This also applies to baboons and rhesus monkeys 
exposed to cercariae of  non-human strains and 
species of  schistosomes. However, heavy and re- 
peated exposure to cercariae of  heterologous schis- 
tosome species and strains, as well as exposures 
to heterologous radiation-attenuated cercariae, 
may induce significant resistance to challenge with 
homologous schistosome species and strains. Re- 
sistance in this case is measured using parasitologi- 
cal parameters such as worm establishment, tissue 
egg counts (total and per worm pair) and faecal 
egg excretion (Table 2). This resistance is generally 
accompanied by alleviation of  disease in sheep and 
calves, but  not in rhesus monkeys and baboons. 
Significant alleviation was thus not found follow- 
ing S.japonicum (human strain) challenge of  rhe- 
sus monkeys heavily exposed to cercariae of  a non- 
human strain of  S. japonicum (Murrell et al. 1973) 
or following S. mansoni challenge of  baboons 
heavily and repeatedly exposed to cercariae of  
S. boris and S. rodhaini (Taylor et al. 1973). This 
seems to be explained by the fact that egg counts 
in essential organs remain unaffected and by an 
apparently increased granulomatous reaction to 
S. mansoni eggs in S. boris- and S. rodhaini-ex- 
posed baboons. In contrast, resistance to S. japoni- 
cum challenge is apparently not induced in rhesus 
monkeys following even heavy exposures to S. bo- 
ris cercariae (Eveland et al. 1969) and exposure of  
baboons to only moderate numbers of  S. rodhaini 
cercariae has not induced resistance to S. mansoni 
challenge (Taylor et al. 1976). The mechanism re- 
sponsible for this type of  heterologous resistance 
remains unknown, but a parallel might be drawn 
with resistance to homologous schistosome chal- 
lenge induced by exposure to radiation-attenuated 
cercariae. 

Heterologous antagonistic interactions may 
also develop between homologous schistosome 
species of  sheep, cattle and non-human primates. 
Thus, there may be reciprocal resistance in cattle, 
and possibly also in sheep, between S. boris and 
O. turkestanicum. A marked resistance may devel- 
op to S. mansoni challenge in S. japonicum-infected 
rhesus monkeys and in baboons harbouring prima- 
ry patent infections with S. haematobium. The re- 
sistance to S. mansoni challenge in S. haemato- 
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Table 2. Heterologous antagonistic interactions in schistosome infections in sheep, cattle and non-human primates. (),  evidence 
only; zooph, zoophilic strain; human, human strain; irr, attenuated by irradiation; att, attenuated by passage in the hamster 

Resistance induced by Resistance directed against Experimental host 

Sheep Cattle Rhesus monkey Baboon 

Resistance induced by schistosomes producing no or insignificant numbers of eggs 

Schistosoma haematobium S. boris 
S. haematobium Ornithobilharzia turkestanicum 
S. mansoni S. mattheei 
S. boris S. mansoni 
S. boris S. haematobium 
S. mattheei S. mansoni 
S. rodhaini S. mansoni 
Schistosomatium douthitti S. japonicum 
S. japonicum (irr) S. mansoni 
S. mansoni (irr) S. japonieum 
S. japonieum (zooph) S. japonieum (human) 

Resistance induced by schistosomes producing significant numbers of eggs 

S. mattheei (att) S. mattheei l 
O. turkestanicum S. boris (a) 
S. boris O. turkestanicum (a) 
S. haematobium S. mansoni 

d e  

g 

d 

h 

e 

e 

i j k  

a Massoud and Nelson 1972; b Preston et al. 1972; c Hussein et al. 1970; d Amin et al. 1968; e Eveland et al. 1969; f Taylor et al. 
1973; gHsii etal .  1966; hHsti etal .  1964; iHsii  and Hsii /961; JHsfi and Hsfi 1963; kMurrell etal .  1973; ~Dargie etal.  
1977; m Webbe et al. 1979 

bium-infected baboons was reflected in reduced 
worm establishment and reduced faecal egg excre- 
tion, but  an increased retention of  eggs resulted 
in unaltered S. mansoni tissue egg counts. How- 
ever, a suppression of  the granulomatous reaction 
to the S. mansoni eggs in the S. haematobium-in- 
fected baboons allows the resistance to be paral- 
leled by alleviation of  the disease. The demonstra- 
tion by Webbe et al. (/979) that sera from S. hae- 
matobium-infected baboons show a cytotoxic reac- 
tion to S. mansoni schistosomula in vitro may 
point to the involvement of  specific immunological 
factors in the resistance, and this may be seen in 
view of the suggested occurrence of  common func- 
tional antigens. Finally, preliminary observations 
indicate that a primary S. mansoni infection in the 
chimpanzee may induce resistance to S. japonicum 
challenge (Hs/i and Hsfi 1968) and that a reciprocal 
cross resistance may exist between S. mansoni and 
S. haematobium in vervet monkeys (Obuyu 1969, 
cited by Webbe et al. 1979). 

The distribution of lechwe schistosomes 
(S. margrebowiei and S. leiperi) does not overlap 
those of  human (S. mansoni and S. haematobium) 
or bovine schistosomes (S. mattheei) (Pitchford 
1976, 1977). Results from immunological tests on 
children in areas free from human schistosomiasis 
but endemic to schistosomiasis in lechwe (Pitch- 
ford and Wolstenholme 1977) combined with the 

distribution data have been put forward as evi- 
dence that exposure to lechwe schistosomes in- 
duces heterologous resistance to infection with 
S. mansoni and S. haematobium in man and to 
S. mattheei in cattle. Epidemiological evidence also 
suggests an interaction in the primary definitive 
hosts between the two lechwe schistosomes S. mar- 
grebowiei and S. leiperi (Wright et al. 1979). These 
suggestions based on epidemiological evidence re- 
quire experimental confirmation. 

Heterologous antagonistic interactions 
between schistosomes and other trematodes, and 
between trematodes and other helminths 

Using worm establishment as the resistance criteri- 
on, patent solid infection of  mice with a range of  
Schistosoma species may induce a marked resis- 
tance to heterologous challenge with Fasciola hepa- 
tica and Echinostoma revolutum (Table 3). A pa- 
tent, primary S. mansoni infection in mice may also 
induce a marked resistance to challenge with Tri- 
chinella spiralis (reduced establishment, reduced 
tissue larvae counts, enhanced expulsion), with As- 
caris suum (reduced lung larvae counts), and pre- 
sumably also with Nippostrongylus brasiliensis. 
However, resistance to A. suum challenge, mea- 
sured by liver larvae recovery rates on day 2 fol- 
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Table 3. Heterologous antagonistic interactions between schistosomes and other trematodes, and between trematodes and other 
helminths. ( ) evidence only. Note that resistance induced by F. hepatica against S. douthitt i  is reflected only in decreased survival 
of eggs deposited in the liver 

Resistance induced by Resistance directed against Experimental host 

Mouse Rat Sheep Cattle 

Sch&tosoma mansoni  Fasciola hepatica , b (e) 
S. boris F. hepatica d 
S. boris F. gigantica 
S. intercalatum F. hepatica d 
S. mansoni  Eehinostoma revolutum d h 
S. boris E. revolutum a 
S. mansoni  Ascaris suum 
S. mansoni  Nippostrongylus brasiliensis J 
S. mansoni  Trichinella spiralis k 

A. suum Schis tosomatium douthit t i  i 
N. brasiliensis S. mansoni  (J) 
F. hepatica S. mansoni  a 1 m 
F. hepatica S. douthitti  n 
F. hepatica N. brasiliensis ~ 
N. brasiliensis F. hepatica P 
F. hepatica Hymenolepis  micros toma q 
F. hepatica Taenia taeniaeformis r 
F. gigantiea S. boris 
T. hydatigena F. hepatica 

Christensen et al. 1978; b Hiltyer 1981; ~ E1-Azazy and van veen Schillhorn 1985; d Christensen et al. 1981 b; e Monrad et al. 
1981; f Sirag et al. 1981; g Yagi et al. 1986; h Sirag et al. 1980; i Crandall et al. 1966; J Hunter et al. 1967; k Aboul Atta and 
El-Sheikh 1981; t Hillyer 1976; m Christensen et al. 1980; n Maldonado-Moll 1977; o Goose 1977; p Doy et al. 1981; q Lang 
1967; r Campbell et al. 1979b; s Campbell et al. 1977; t Dineen et al. 1978 

lowing challenge, was not induced in mice har- 
bouring prepatent S. mansoni infections (Bindseil 
1970). It has been suggested that immunological 
non-specific factors like the schistosome-egg-in- 
duced inflammation in the liver and intestines, and 
even liver fibrosis/necrosis, might contribute to or 
be responsible for the schistosome-induced resis- 
tance to heterologous helminth challenge. How- 
ever, the recent demonstration by Hillyer (1985) 
of induction of resistance in mice to F. hepatica 
with a Fasciola/Schistosoma cross-reactive defined 
immunity antigen might point to the involvement 
of an immunologically specific mechanism. In con- 
trast, S. mansoni infection in mice failed to induce 
resistance to infection with Onchocerca lienalis mi- 
crofilariae. Resistance was judged by microfilariae 
recovery rates following injection of O. lienalis mi- 
crofilariae into mice harbouring patent infections 
with S. mansoni (Townson et al. ~985). 

Examples of heterologous helminth-induced re- 
sistance to schistosome challenge in mice using 
worm establishment as the criterion include A. 
suum-induced resistance to S. douthitti, and N. bra- 
siliensis- and F. hepatica-(patent infection) induced 
resistance to S. mansoni challenge infection. N. 
brasiliensis infection enhances IgE antibody-depen- 

dent eosinophil adherence and cytotoxicity to 
DNP-coupled schistosomulae of S. japonicum (Ko- 
jima et al. 1985a, b), and there have been repeated 
demonstrations of induction of significant resis- 
tance to S. mansoni infection in mice and hamsters, 
using different immunizing regimes with various 
types of purified F. hepatica antigen (see review 
by Hillyer 1984). Both provide strong evidence for 
the involvement of immunological factors of a pos- 
sible specific nature. Hillyer and Serrano's (1983) 
induction of resistance in mice to infection with 
S. mansoni by immunization with Paragonirnus 
westermani whole worm extract antigen is a related 
finding. Significant "negative" findings include 
failure of A. suum to induce resistance to S. man- 
soni and of T. spiralis to induce resistance to 
S. mansoni and S. douthitti in mice, as judged from 
challenge worm recovery (Weinman 1960; Ja- 
chowski and Bingham 1961; Hunter et al. 1963; 
Crandall et al. 1966). However, the egg production 
capacity per worm pair of S. mansoni seems sup- 
pressed in mice concurrently infected with T. spira- 
lis (Aboul Atta and El-Sheikh 1981). Finally, intra- 
venous injection of T. spiralis larvae, resulting in 
marked eosinophilia, in naive baboons and those 
already harbouring primary S. mansoni infections 
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has failed to increase the level of resistance to 
S. mansoni (re)infection (Sturrock et al. 1985). 

Patent F. hepatica infections in rats may induce 
significant resistance to N. brasiliensis challenge, 
and a marked resistance to F. hepatica oral meta- 
cercarial infection, but not to intraperitoneally im- 
planted newly-excysted juveniles, was demon- 
strated in rats harbouring 4- but not 2-week-old 
infections with N. brasiliensis. The resistance mech- 
anism remains unknown, but the level of resistance 
to F. hepatica challenge was correlated with the 
level ofN. brasiliensis-induced intestinal eosinophi- 
lia. F. hepatica challenge of mice harbouring 
25-day-old infections with the bile duct cestode 
Hymenolepis microstoma may result in a change 
in site of attachment and an expulsion of part of 
the cestode population. This may possibly be a 
result of the F. hepatica-induced bile duct damage. 
In line with this, the decreased survival of eggs 
of S. douthitti in the liver of concurrently F. hepa- 
tica-infected mice may be induced by the F. hepa- 
tica-induced damage of the liver parenchyma rath- 
er than by an immune reaction. Besides, F. hepa- 
tica challenge of rats harbouring 6-week-old meta- 
cestode infections with Taenia taeniaeformis may 
significantly reduce the number of metacestodes 
developing from the primary infection and infec- 
tion of rats with F. hepatica may stimulate a sub- 
stantial level of resistance to a T. taeniaeformis egg 
challenge. In contrast, no resistance to F. hepatica 
challenge appears to develop in rats harbouring 
4-, 6- and 12-week-old primary T. taeniaeformis in- 
fections (Campbell et al. 1979b). This finding is 
paralleled by failure of different immunization reg- 
imens using T. hydatigena cysticerci antigens to in- 
duce resistance to F. hepatica challenge in rats and 
mice (Rajasekariah et al. 1979). 

Infection of sheep for 3 and 9 months, but not 
for 3 weeks, with Cysticercus tenuicollis, the meta- 
cestode stage of T. hydatigena, may induce a 
marked reduction in the F. hepatica challenge 
worm establishment and egg excretion and in the 
F. hepatica-induced liver pathology. A similar 
marked resistance has been observed in sheep to 
F. hepatica at challenge 3 weeks after anthelmintic 
termination of a 3-month-old C. tenuicollis infec- 
tion. However, resistance was not observed at 
F. hepatica challenge 3 weeks and 6 months after 
termination by anthelmintics of C. tenuicollis infec- 
tions of 3 weeks and 3 months duration, respective- 
ly. Nor was it found with simultaneous infection. 
No resistance developed to a T. hydatigena egg 
challenge in sheep harbouring primary patent 
F. hepatica infections (Campbell et al. 1977, 
1979a; Dineen et al. 1978). 

Attempts to repeat the demonstration of C. ten- 
uicollis-induced resistance to F. hepatica challenge 
have failed in experiments on goats, sheep and 
calves (Mitchell and Armour 1981; Hughes et al. 
1978). Hughes et al. (1978) suggested that the C. 
tenuicollis-induced resistance to F. hepatica chal- 
lenge could be a result of non-specific immunopo- 
tentiation due to extensive use of the immunosti- 
mulatory drug levamisole. This stimulated Mit- 
chell and Armour (1981) to examine resistance to 
F. hepatica in sheep combining levamisole treat- 
ment and prior intestinal helminth and metaces- 
tode infection. The results led the authors to sug- 
gest that this heterologous helminth-induced resis- 
tance actually requires the simultaneous use of an 
immunostimulatory agent, e.g. levamisole. How- 
ever, the final clarification of the C. tenuicollis- 
induced resistance to F. hepatica in sheep requires 
further studies. Differences in breeds of sheep and 
parasite strains used might also be responsible for 
the diverging results. 

Resistance to heterologous challenge with 
F. hepatica may develop in sheep and cattle har- 
bouring newly patent infections with S. boris, as 
reflected in reduced F. hepatica challenge worm es- 
tablishment and reduced F. hepatica-induced liver 
pathology. A marked reduction in F. gigantica 
challenge worm establishment has been demon- 
strated in cattle harbouring primary patent S. boris 
infections. The mechanism responsible for this re- 
sistance to Fasciola spp. in sheep and cattle re- 
mains unknown, but may be immunological. In 
contrast, a primary, old patent S. boris infection 
in sheep (Monrad et al. 1981) and repeated, heavy 
exposure of calves to cercariae of S. mansoni result- 
ing in no adult worm establishment (Knight 1985) 
have failed to induce resistance to heterologous 
F. hepatica challenge. Resistance to F. gigantica 
challenge was also not induced in cattle exposed 
to primary infection with irradiated S. boris cercar- 
iae (Yagi et al. 1986). However, some evidence was 
obtained by Hammond (1973) for resistance to ex- 
perimental F. gigantica challenge in sheep harbour- 
ing naturally acquired infections with the bile duct 
cestode Stileria hepatica. A marked reduction in 
S. boris challenge worm establishment has been 
demonstrated in cattle harbouring primary patent 
infections with F. gigantica. A significant "nega- 
tive" finding comprises lack of resistance to F. he- 
patica challenge in sheep 13 weeks after the second 
of 2 exposures, given 2 weeks apart, to a mixture 
of 5000 third stage larvae of Ostertagia circum- 
cincta and Trichostrongylus vitrinus and 15 weeks 
after inoculation of 5000 A. suum eggs (Mitchell 
and Armour 1981). Besides, daily infections of 
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calves over a prolonged time with O. ostertagi lar- 
vae and F. hepatica metacercariae gave rise neither 
to antagonistic nor synergistic interactions (Bur- 
den et al. 1978). This indicates that the fascioliasis/ 
ostertagiasis disease complex (see e.g. Reid et al. 
1967) represents a simple accumulation of the dis- 
ease induced by each of the parasites separately. 

Heterologous antagonistic interactions 
between intestinal nematodes, cestodes 
and acan thocephalans 

The expulsion of both primary and homologous 
challenge (secondary and superimposed) helminth 
infections is, in some cases, mediated by immuno- 
logically specific factors. However, in many cases 
it is mediated through intestinal inflammatory re- 
actions with non-specific effects, although me- 
diated through specific immunological reactions 
(see Larsh and Race 1975). These inflammatory 
reactions are associated with changes in mucosat 
architecture, mucus production, intestinal motility, 
levels of vasoactive amines, enzymes and prostag- 
landins, and alterations in net-fluid flux across the 
epithelial cells. This may lead to antagonistic he- 
terologous interactions by rendering the intestinal 
environment physically and/or physiologically un- 
suitable for the establishment and/or survival of 
even phytogenetically remote helminths. Such an- 
tagonistic interactions may be reflected in change 
of location, reductions in growth and fecundity, 
reduced establishment of primary infections and 
enhanced expulsion of both primary and challenge 
infections. Two or more of these effects occur com- 
monly simultaneously. The level of interaction is 
generally most marked when "critical" periods in 
the development of the "target" infection coincide 
with the period of maximum inflammation induced 
by the concurrent infection. Such antagonistic in- 
teractions, which are often reciprocal, have been 
demonstrated in mice and rats infected with differ- 
ent worm combinations of species of the cestode 
genus Hymenolepis, the acanthocephalan Monili- 
formis dubius and species of the nematode genera 
Ancylostoma, Angiostrongylus, Ascaris, Aspiculur- 
is, Nematospiroides, Nippostrongylus, Strongy- 
loides, Syphacia, Trichinella and Trichuris (Ta- 
ble 4). Besides, infection with A. lumbricoides in 
mice appears to increase the resistance to a chal- 
lenge infection with Toxocara canis, as reflected 
in delayed migration through the liver and in de- 
creased survival of larvae (Olson 1962; see also 
Sharp and Olson 1962). Embryonated eggs and 
second stage larvae of T. canis and third stage lar- 
vae of A. caninum, but not third stage larvae of 

Haemonchus contortus, administered via the mes- 
enteric vein into guinea pigs, may induce a signifi- 
cant level of protection to A. suum challenge infec- 
tion given by mesenteric vein injection of second 
stage larvae, assessed on the basis of larval recov- 
ery rates from the lungs (Stromberg and Soulsby 
1977). Stromberg and Soulsby (1977) give other 
examples of failures of different "heterologous" 
immunization regimes to induce resistance to A. 
suum in rodent models. It has been suggested that 
some of the antagonistic interactions between in- 
testinal helminths are brought about by competion 
for nutrient and/or by direct mechanical interfer- 
ence (see Holmes 1973). However, as discussed 
above, most seem to be induced by immunologi- 
cally non-specific factors. However, immunologi- 
cally specific factors, based on functional immuno- 
logical cross-reactivity, are responsible for the re- 
ciprocal cross resistance between T. spiralis and 
T. muris in mice (Lee et al. 1982), between T. spira- 
lis and T. pseudospiralis in mice (Palmas et al. 
1985) and between T. spiralis and S. ratti in rats 
(Moqbel and Wakelin 1979). Specific immunologi- 
cal factors also appear responsible for S. ratti-in- 
duced resistance to N. brasiliensis in rats (Nawa 
et al. 1982) and for N. brasiliensis-induced resis- 
tance to N. dubius challenge in mice (Brindley and 
Dobson 1983). Specific immunologically mediated 
cross resistance between intestinal helminths may 
appear to be more common than hitherto antici- 
pated. 

The outcome of concurrent experimental infec- 
tion with digestive tract nematodes in sheep .de- 
pends on the size and relative timing of infection. 
However, heterologous antagonistic interactions 
have commonly been demonstrated with reduced 
establishment/survival following simultaneous in- 
fection and following challenge of animals har- 
bouring primary infections, and with enhanced ex- 
pulsion as a result of lack of specificity of the self- 
cure reaction. Available examples include (among 
others) T. colubriformis-induced resistance to Ne- 
matodirus spathiger, T. vitrinus and H. contortus 
(Muller 1968; Shumard et al. 1957; Dineen et al. 
1977); non-reciprocal Oesophagostomum colum- 
bianum-induced resistance to O. venulosum (Dash 
1981); H. contortus-induced resistance to N. battus, 
O. circumcincta, T. axei and T. colubriformis (Stew- 
art 1953, 1955; Reinecke 1966; Mapes and Coop 
1970, 1971; Turner et al. 1962); O. circumcincta- 
induced resistance to H. contortus and T. colubri- 
formis (Stewart 1953, 1955; Reinecke 1966; Muller 
1968; Turner et al. 1962); T. axei-induced resis- 
tance to T. colubriformis, H. contortus and O. cir- 
cumcincta (Stewart 1953, 1955; Durie 1962; Muller 



Table 4. Hete ro logous  an tagonis t ic  in terac t ions  be tween intest inal  nematodes ,  cestodes and  acan thocepha lans  in mice and  rats. 
Examples  of  he te ro logous  an tagonis t ic  in terac t ions  be tween intest inal  nema todes  in sheep and  cattle are listed in the  text. N. 
dubius-induced resis tance to N. brasiliensis does no t  seem to occur  in the hams te r  (Hdlmes  1962b) 

Resis tance  induced by Exper imenta l  hos t  and  resis tance directed agains t  

Mouse  Ra t  

Moniliformis dubius Nippostrongylus brasiliensis (a) 
Hymenolepis diminuta (b c) 

Trichinella spiralis H. diminuta (a) Angiostrongylus cantonensis ~) 
Trichuris muris (f g) H. diminuta (h i) 
H. nana (J k l) N. brasiliensis (m) 
H. microstoma (") Strongyloides ratti (~ P) 
Asearis suum (q) T. pseudospiralis (r) 
N. brasiliensis (~) 
Aspiculuris tetraptera (t .) 
T. pseudospiralis (v w) 
T. nelsoni (w) 
T. nativa (*) 
Syphaeia obvelata (x) 

A. suum H. diminuta (Y) 
N. brasiliensis (~) 

N. brasiliensis A. suum (z ~') S. ratti (b' ~') 
T. spiralis (~) A. cantonensis (d') 
H. nana (~') T. spiralis (f' g') 
Nematospiroides dubius (h' i) H. diminuta (r k') 

Aneylostoma caninum T. spiralis (r m') 
N. dubius (~') 
H. nana (o') 

H. nana H. diminuta (P') H. diminuta (P') 
T. spiralis (J) 
A. caninum (q') 

H. citelli H. nana (1 r') 
H. microstoma (~') 
H. diminuta (~') 

H. microstoma H. diminuta (c) 
N. dubius (~') 
H. nana (1) 
H. citelli (~') 

H. diminuta H. nana (~') 
H. citelli (~' t') 

S. ratti 

S. obvelata A. tetraptera (~ u) 

A. tetraptera T. muris (w') 

T. muris A. tetraptera (w') 
T. spiralis (g) 

N. dubius N. brasiliensis (i' x') N. brasiliensis (~') 

T. pseudospiralis T. spiralis (u) T. spiralis (r) 
T. nativa (*) 
T. nelsoni (w) 
S. obvelata (*) 

T. nativa T. nelsoni (w) 

N. brasiliensis (b' r 

" H o l l an d  1984; b Holmes  1961; ~ Holmes  1962a;  a Behnke  et al. 1977; e A u  and  Ko  1979; f Bruce and  Wakel in  1977; g Lee 
et al. 1982; h Christ ie  et al. 1979; i Silver et al. 1980; J Ferret t i  et al. 1984; k Larsh  and  Campbe l l  1952; 1 W e i n m a n n  1964; m Kaza-  
cos 1975; n H o w a r d  et al. 1978; ~ Kazacos  1976; p M o q b e l  and  Wakel in  1979; q M a t o v  and  K a m b u r o v  1968 (cited by Kazacos  
1975); r Br i tov  1975 (cited by Pa lmas  et al. 1985); s Kennedy  1980; t Stahl  1966; u Behnke  et al. 1976; * Pa lmas  et al. 
1985; * Mar t i nez -Fe rn~ndez  et al. 1981b;  * Mar t inez -Fe rn~ndez  et al. 1981a;  y Bindseil and  Andreassen  1981; z Er iksen 
1981; "' Cranda l l  et al. 1967; b' Kazacos  and  T h o r s o n  1975; c' N a w a  et al. 1982; a, K o c a n  1974; e, Larsh  and  D o n a l d s o n  
1944; f' Sinski 1972; g' Louch  1962; h' Hi tcho  and  T h o r s o n  1974; i, Brindley and  D o b s o n  1983; j' Hendr ix  et al. 1975; k' M orcock  
and  Rober t s  1976; 1' Cox 1952; m' Gou l son  1958; n' Liu and  Ivey 1961 ; ~ Vyas et al. 1980 (cited by Vyas et al. 1981); p' H e y n e m a n  
1962; q' Vyas et al. 1981; r' W e i n m a n n  1966; ~' Alghali  and  Grencis  1986; t, Hopk ins  et al. 1977; "' Cour tney  and  Forres ter  
1973; v' Hopk ins  1980; w' Keeling 1961; x' B runa  and  Xen ia  1976 
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Table 5. Heterologous antagonistic interactions between larval cestodes, between adult and larval cestodes, between non-intestinal 
nematodes and between filarial nematodes and other helminths. + ,  primary infection/exposure; + + ,  " immunizat ion" (somatic 
and excretory/secretory larval antigens, intramuscular injection of eggs/activated embryos, passive transfer of immune serum); 
mff, microfilariae. D. filaria induced resistance to D. viviparus challenge was demonstrated by Sinclair (1967) in the guinea pig 

Resistance induced by Resistance directed against Experimental host 

Mouse Rat Rabbit Sheep Cattle 

Mesocestoides corti 
T. crassiceps 
T. hydatigena 
T. hydatigena 
T. hydatigena 
T. hydatigena 
T. ovis 
T. ovis 
T. ovis 
T. ovis 
T. pisiformis 
T. pisiformis 
T. pisiformis 
T. saginata 
T. taeniaeformis 
T. taeniaeformis (rat strain) 
T. taeniaef ormis q m o use strain) 
T. crassiceps 

T. taeniaeformis 
T. crassiceps 

Dictyocaulus filaria 
D. viviparus 

Dipetalonema vitae 
O. gutturosa 
Trichinella spiralis 
O. cerviealis mff 

Taenia crassiceps + a b 
M corti + ~ b 
T. or& + ,  + + 
T. pisiformis +,  + + 
T. saginata + + 
Echinococcus granulosus + + 
T. pisiformis + + 
E. granulosus + + 
T. hydatigena + + 
72 saginata + + 
T. taeniaeforrnis + + 
T. hydatigena + + 
T. ovis + + 
T. taeniaeformis + + u 
T. saginata + + 
T. taeniaeformis (mouse strain) + v 
T. taeniaeformis (rat strain) + 
T. taeniaeformis +,  + + u 

Hymenolepis nana + ,v 
H. nana + w 

D. viviparus + 
D. filaria + 

Onchocerca lienalis mff + b" 
O. lienalis mff + b' 
O. lienalis m f f +  b' 
O. lienalis mff + b' 

e i j k l  

c k l  

c d e f g h  

o p  

e o p  

e d q r s  

a Novak 1984; b Joysey 1986; c Gemmell 1964a; d Gemmell 1969a; * Heath etal .  1979; f Rickard and Bell 1971; g Gemmell 
1965a; h Gemmell 1970; i Rickard and Coman 1977; J Ermalova et al. 1968 (cited by Rickard and Coman 1977); k Gemmell 
1965b; l Gemmell 1969b; m Wikerhauser et al. 1971; n Rickard and Adolph 1976; o Gemmell 1967; p Gemmell 1966; a Varela- 
Diaz et al. 1972; r Gemmell 1964b; s Blundell et al. 1968; t Miller 1932; u Lloyd 1979; v Conchedda and Ferretti 1983; w Wein- 
mann 1964; ~ Parfitt and Sinclair 1967; y Lucker et al. 1964; z Vegors et al. 1963; "' Wilson 1970; b' Townson et al. 1985 

1968; Reinecke 1974; Turner et al. 1962; Reinecke 
et al. 1979) and reciprocal resistance between Coo- 
peria oncophora and C. pectinata (Herlich 1965). 
A similar reciprocal resistance between C. onco- 
phora and C. pectinata has been demonstrated in 
calves (Herlich 1965). It has been suggested that 
specific immunological factors are responsible for 
T. colubriformis-induced resistance to T. vitrinus 
(Dineen et al. 1977), but most suggestions point 
to the involvement of immunologically non-specif- 
ic factors in the cross resistance between digestive 
tract nematodes in sheep. 

Heterologous antagonistic interactions 
between larval cestodes, between adult 
and larval cestodes, between non-intestinal nematodes 
and between filarial nematodes and other helminths 

Primary Taenia spp. and Mesocestoides corti meta- 
cestode infections, immunization with somatic and 

excretory/secretory larval Taenia antigens, intra- 
muscular injection of  Taenia eggs or activated em- 
bryos, and passive transfer of  immune serum may 
induce a marked resistance to heterologous chal- 
lenge infection in mice, rats, rabbits, sheep and 
cattle with related or unrelated larval cestodes. The 
challenge infection is normally peroral inoculation 
of  eggs or activated embryos (Table 5). Resistance 
may be induced by antigens and eggs/embryos of  
Taenia species to which the experimental host is 
non-susceptible or has only low susceptibility. The 
heterologous resistance is most commonly re- 
flected in reduced metacestode establishment, al- 
though reduced metacestode survival has also been 
reported. Thus, in most cases, the early develop- 
mental stages appear both to induce and to be 
the target of  the resistance mechanism, which in 
turn appears to be immunologically specific based 
on cross-reacting functional antigens. In addition, 
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reciprocal cross resistance may develop in mice be- 
tween M. corti and T. crassiceps following intra- 
peritoneal implantation of metacestodes. Resis- 
tance has also been reported to H. nana challenge 
infection in mice harbouring metacestode infec- 
tions with T. taeniaeformis and T. crassiceps. A 
significant finding is the failure of exogeneous anti- 
gens released by T. hydatigena larvae developing 
in filtration membrane diffusion chambers im- 
planted intraperitoneally into dogs to stimulate 
any measurable resistance to challenge infection 
with E. granulosus protoscolices (Rickard et al. 
1975). 

Resistance to infection with Dictyocaulus vivi- 
parus in cattle and with D.filaria in sheep may 
develop as a result of previous exposure of cattle 
to D.filaria and of sheep to D. viviparus. This is 
in spite of the low compatibility between D. filaria 
and cattle and between D. viviparus and sheep. A 
guinea pig model also shows D. filaria-induced re- 
sistance to D. viviparus (Sinclair 1967). High doses 
of crude larval antigen preparations of H. contor- 
tus and T. colubriformis administered intraperito- 
neally induce partial protection to infection with 
D. viviparus in guinea pigs (Silverman et al. 1962). 
However, the crude nature of the antigens prevents 
any conclusions on involvement of specific immu- 
nological factors. 

Cross resistance has been demonstrated in mice 
between microfilariae of Onchocerca eervicalis and 
O. lienalis. Resistance to O. lienalis microfilarial 
infection has been induced in mice implanted intra- 
peritoneally with adult O. gutturosa and Dipetalon- 
ema vitae and in mice harbouring primary T. spira- 
lis infections. Repeated exposures of cats to 
10 krad attenuated Brugia pahangi larvae establ- 
ishes low level infections with sexually sterile 
worms. Such infections may induce substantial re- 
sistance to development of the macrofilarial stages 
of a subsequent B. patei challenge (Oothuman 
et al. 1979). Vaccination of jirds with 40 krad at- 
tenuated third-stage larvae of Litomosoides carinii 
may induce a marked reduction in the size of a 
B. pahangi challenge infection (Storey and A1- 
Mukhtar 1982). The antigenic familiarity between 
many filarial nematodes (see Maizels et al. 1983, 
1985) may suggest that heterologous antagonistic 
interactions between closely related filarial nema- 
todes could be mediated by specific immunological 
factors. This suggestion is supported by the fact 
that the IgE-dependent platelet-mediated in vitro 
killing of larval filariae occurs in both homologous 
and heterologous systems (Hague et al. 1985). In 
contrast, the resistance to O. lienalis microfilarial 
infection induced in mice harbouring T. spiralis 

infections may be mediated by immunologically 
non-specific mechanisms, mediated by the non- 
specific T. spiralis-induced potentiation of macro- 
phage mediated immunity. 

Heterologous antagonistic effects o f  protozoans 
on helminths 

Infections with Toxoplasma gondii and Trypano- 
soma cruzi may induce significant resistance to 
S. mansoni establishment in mice (Mahmoud et al. 
1976; Kloetzel et al. 1971, 1973). Resistance to T. 
spiralis infection, reflected in reduced establish- 
ment, enhanced expulsion or reduced tissue larvae 
counts, may develop in mice and rats concurrently 
infected with T. gondii and Eimeria nieschulzi, re- 
spectively (Copeland and Grove 1979; Stewart 
et al. 1980; Yusuf et al. 1980). Such protozoan- 
induced resistance to helminth infection is general- 
ly thought to be due to enhanced macrophage- 
mediated non-specific resistance. Besides, T. gondii 
challenge of mice harbouring primary patent 
S. mansoni infections may result in fewer eggs in 
tissue per established schistosome worm pair 
(Kloetzel et al. 1977). H. diminuta worms may ex- 
perience reduced growth in rats concurrently in- 
fected with T. lewesi or Plasmodium berghei (Fen- 
wick 1980; Rigby and Chobotar 1966). The im- 
munosuppression associated with a range of proto- 
zoan infections (see Terry and Hudson 1982) is 
furthermore reflected in a P. yoelii-, T. brucei- and 
T. gondii-induced suppression in mice of the granu- 
lomatous reaction to S. mansoni eggs in concurrent 
infections and/or to S. mansoni eggs '~ 
into the lungs of protozoanqnfected mice (Abdel- 
Wahab et al. 1974; Mahmoud et al. 1977; Fagbemi 
et al. in preparation). This may, as in the T. gondii/ 
S. mansoni model (Mahmoud et al. 1977), alleviate 
the level of hepatosplenic murine schistosomiasis. 

Heterologous antagonistic effects o f  helminths 
on protozoans 

Examples of helminth-induced resistance to blood 
protozoan challenge infection in rodent models, as 
reflected in reductions in the parasitaemia level 
(Table 6) include suppression of different species 
of Plasmodium by S. mansoni, S. ratti and T. spira- 
lis, suppression of Babesia microti by S. mansoni, 
N. dubius and F. hepatica and suppression of  Leish- 
mania tropiea, Babesia rodhaini, Trypanosoma equi- 
perdum, T. lewesi and Entamoeba histolytica by T. 
spiralis. Patency of infection at challenge appears 
necessary for S. mansoni-induced resistance to pro- 
tozoan challenge (see Lewinsohn 1975; Lwin et al. 
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Table 6. Heterologous antagonistic effects of helminths on protozoans 

397 

Resistance induced by Resistance directed against Experimental host 

Mouse Rat Hamster Field vole 

Fasciola hepatica Babesia microti " 
Schistosoma mansoni B. rnicroti b 
Nematospiroides dubius B. microti r 
S. mansoni Plasmodium chabaudi a ~ 
S. mansoni P. yoelii d f g 
S. mansoni P. berghei 
StrongyIoides ratti P. berghei 
Trichinella spiralis P. berghei j k 
T. spiralis Trypanosoma equiperdum 
T. spiralis T. lewesi 
T. spiralis Leishmania tropica k 
T. spiralis Entarnoeba histolytica 
T. spiralis B. rodhaini k 
T. spiralis Giardia muris n 
T. spiralis Eimeria nieschulzi 

a Fagbemi et al. 1985a; b Fagbemi et al. 1985b; ~ Mzembe et al. 1984; d Lwin et al. 1982; e Long et al. 1981 ; f Kusel and Phillips 
1978; g Christensen etal. unpublished; h Yoeli 1956; i Bailenger and Guy 1982; J Ngwenya 1982; k Meerovitch and Pocock 
1981 ; l Meerovitch and Ackerman 1974; m Meerovitch and Ghadirian 1980; n Roberts-Thomson et al. 1976; ~ Stewart et al. 1980 

1982; Fagbemi et al. 1985b). The different levels 
of suppression of B. microt i  in different strains of 
T. brucei - in fec ted  mice experiencing comparable 
degrees of anaemia, and the normal course of in- 
fection with P. yoel i i  and P. chabaudi  in severely 
anaemic T. brucei - in fec ted  mice (Millott and Cox 
1985) appear to disprove the suggestion often put 
forward that S. mansoni-  and F. hepa t i ca- induced  
suppression of concurrent blood protozoan infec- 
tions could be due to the helminth-induced change 
in the erythrocyte kinetics combined with a proto- 
zoan preference for erythrocytes of specific age 
classes. It has been suggested that N.  dubius-, S. 
ratti-, and T. spiral is - induced suppression of blood 
protozoan infections may be mediated immunolog- 
ically by non-specific factors involving macro- 
phage activation. This mechanism might also be 
involved in S. mansoni-  and F. hepa t i ca- induced  
suppression of blood protozoan infections. Be- 
sides, some evidence has been obtained for sup- 
pression of experimental P. fa l c iparum infection 
in owl monkeys harbouring naturally acquired Te- 
t rape ta lonema barbascalensis  microfilarial infec- 
tions (Schmidt and Esslinger 1981). Acquirement 
of P. f a l c iparum infection following anthelmintic 
treatment of heavily A.  lumbricoides- in fec ted  chil- 
dren has been suggested to support the concept 
of helminth-induced suppression of protozoan in- 
fection (Murray et al. 1977, 1978). In contrast, pri- 
mary patent relatively heavy F. hepat ica infections 
in intact and splenectomised calves affect neither 

the course nor the pathogenicity of  subsequent ex- 
perimental B. divergens infection (Hughes et al. 
1977). Antagonistic interactions could not be dem- 
onstrated in rats concurrently infected with T. bru- 
cei and L. carinii (Hendow et al. 1976). 

The suppression of  the intestinal protozoan 
species Giardia muris  and E. nieschulzi  by T. spira- 
lis infection in mice and rats, respectively is re- 
flected in reduced cyst excretion. This may be due 
to the T. spiral is - induced intestinal inflammation 
making the intestinal environment unfavourable 
for the establishment/multiplication of the proto- 
zoans. Finally, prolongation of excretion of cysts 
of Eirneria n inakoh lyak imovae  following anthel- 
mintic treatment of sheep concurrently infected 
with T. colubri formis may support helminth-in- 
duced suppression of intestinal protozoan infec- 
tions (Yvore et al. 1980; see also Gretillat 1981). 

Hetero logous  synergist ic  interactions 
be tween  helminths  

Concurrent helminth infection may result in heter- 
ologous synergistic interactions (Table 7). This is 
reflected by increased initial establishment and de- 
layed expulsion of primary infections, by interfer- 
ence with innate resistance to infection and with 
development of resistance to homologous chal- 
lenge infection and, less marked by enhanced 
growth and fecundity. The delay in the expulsion 
of N. brasiliensis, T. rnuris, T. spiralis and H y m e n o -  
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Table 7. Heterologous  synergistic interact ions between helminths.  ( ) ,  evidence only. 

Effect  induced by Effect directed against  Experimental  hos t  

Mouse  Rat  Sheep 

Schistosoma mansoni Dipetalonema vitae 
S. rnansoni Echinostoma revolutum b 

Nematospiroides dubius Nippostrongylus brasiliensis c d e f 
N. dubius Trichinella spiralis g h 
N. dubius Triehuris muris i j 
N. dubius Hymenolepis diminuta k 
N. dubius H. microstoma 1 
N. dubius H. eitelli r~ 

T. spiralis Strongyloides ratti 
T. spiralis H. nana o p 

S. ratti N. brasiliensis 
N. brasiliensis S. ratti 
S. ratti H. nana (r) 

Ascaris suum H. nana 
E. revolutum S. mansoni t 

Taenia hydatigena T. ovis 
Faseiola hepatica Haemonchus contortus 

(n) 

q 

q 

I I V  

W 

a Hague et al. 1981; b Chris tensen et al. 1985; c Jenkins 1975; d Bruna and Xenia  1976; e Colwell and Wescot t  1973; ~ Wescot t  
and Colwell 1980; g Behnke et al. 1978; h Hagan  and Wakel in  1982; i Jenkins and Behnke 1977; J Behnke et al. 1984; k Hopkins  
1980; ~ Cour tney  and Forres ter  1973; m Alghali  et al. 1985; n Moqbe l  and Wakelin 1979; o Larsh and Campbel l  1952; p Ferret t i  
et al. 1984; q N a w a  and Korenaga  1983; r Brumpt  1933; s We i nmann  1964; t Chris tensen et al. 1981a; u Varela-Diaz et al. 
1972; v Gemmel l  1969b; w Presidente et al. 1973 

lepis spp. in concurrently N. dubius-infected mice 
and of  primary S. ratti and H. nana infections in 
T. spiralis-infected rats and mice is generally be- 
lieved to be a result of  the immunosuppression as- 
sociated with N. dubius and T. spiralis infection 
(see Terry and Hudson 1982; Ali and Behnke 
1984). This suggestion is supported by the experi- 
ments by Hagan and Wakelin (1982) which dem- 
onstrated that MLN cells of  mice concurrently in- 
fected with N. dubius and T. spiralis failed to 
transfer an accelerated expulsion of the latter from 
naive recipients. Conversely, MLN cells capable 
of accelerating expulsion in mice infected only with 
T. spiralis failed to do so when N. dubius was pres- 
ent. In addition, N. dubius was shown to delay 
the onset of  the changes which allow for increased 
blast cell localization in the intestines of T. spiralis- 
infected mice. 

There is other evidence for heterologous syn- 
ergistic interactions between helminths being me- 
diated by immunosuppression. The delay in expul- 
sion of both N. brasiliensis and S. ratti in concur- 
rently infected rats is paralleled by a delay in the 
onset of  the intestinal mast cell response (Nawa 
and Korenaga 1983). Besides, S. mansoni interferes 
only with the innate resistance of rats to infection 
with Dipetalonema vitae if the infection is timed 

to ensure that the moult of  the stage 4 larvae into 
adult worms, the developmental process blocked 
in normal rats, takes place during maximum 
S. mansoni-induced immunosuppression (Hague 
et al. 1981). Mechanisms responsible for the in- 
crease in the S. mansoni worm establishment in 
heavily E. revolutum-infected mice and in the estab- 
lishment of H. nana in A. suum-exposed mice re- 
main to be demonstrated. Immunosuppression/im- 
munotolerance, as judged by blockage of expul- 
sion, has been demonstrated in heavily E. revolu- 
turn-infected mice (Christensen et al. 1981a). Be- 
sides, an active suppression of the immune re- 
sponse or a depression of the efficiency of an unal- 
tered immune response due to extensive intestinal 
pathology have been suggested responsible for the 
S. mansoni-induced delay in the expulsion of subse- 
quent E. revolutum infections when challenge infec- 
tion takes place during late prepatent S. mansoni 
infection. Another significant finding is the en- 
hanced survival rate of cysticerci of  T. ovis in sheep 
in response to prior feeding with eggs of T. hydati- 
gena. An increased faecal egg count and a delayed 
expulsion of H. contortus in concurrently F. hepa- 
tica-infected sheep have also been found. Evidence 
for other synergistic heterologous interactions be- 
tween helminths includes 
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1. "Enhancement" of T. pisiformis in rabbits 
following oral dosing with T. ovis eggs (Rickard 
and Coman 1977). 

2. Increase in the egg production capacity of 
O. turkestanicum in mice concurrently infected 
with S. mansoni, S. boris or S. haematobium (Mas- 
soud and Nelson 1972) 

3. Enhancement of the granulomatous reaction 
to S. mansoni eggs deposited in the liver of mice 
concurrently infected with T. spiralis (Aboul Atta 
et al. 1982) 

4. Increase in the susceptibility of rhesus mon- 
keys to infection with S. boris and S. mattheei in 
response to concurrent infection with S. mansoni 
(Amin et al. 1968) 

5. "Enhancement" of T. axei infection in H. 
contortus- and O. circumcincta-infected sheep 
(Turner et al. 1962) 

6. Synergistic association in pigs between the 
lung worm metastrongyles Metastrongylus apri 
and M. pudendotectus (Ewing and Todd 1961 a,b) 

7. An increased A. suum establishment, based 

on liver larvae recovery, following challenge of 
mice harbouring primary, late prepatent S. man- 
soni infections (Bindseil 1970). 

In addition, data have been presented suggest- 
ing that clinical infections with H. contortus in 
lambs may alter the normal self-limited course of 
infection with N. spathiger (Turner and Colglazier 
1954; Kates and Turner 1960). 

Heterologous synergistic effects o f  protozoans 
on helminths 

Protozoan-induced immunosuppression (see Terry 
and Hudson 1982) is taken as responsible for syn- 
ergistic effects of protozoans on helminths in con- 
current infections. Examples of such synergistic ef- 
fects include increased initial establishment and de- 
layed expulsion of primary infections and interfer- 
ence with the development and maintenance of re- 
sistance to homologous challenge infection (Ta- 
ble 8). The increased establishment of S. mansoni 
in mice infected with T. cruzi and Plasmodium spp. 

Table 8. Heterologous synergistic effects of protozoans on helminths. ( ) ,  evidence only 

Effect induced by Effect directed against Experimental host 

Mouse Rat  Goat  

Increased establishment of primary infection 

Trypanosoma cruzi Schistosoma mansoni (a) 
Plasmodium yoelii S. mansoni (b) 
P. chabaudi S. mansoni (c) 
P. yoelii Echinostoma revolutum d 
T. congolense Haemonchus contortus 
T. brucei Nippostrongylus brasiliensis 

Delay/blockage of expulsion of primary infection 

T. brucei E. revoluturn g 
T. brucei N. brasiliensis 
T. brueei Hymenolepis diminuta J 
T. brucei Trichuris muris k 
T, cruzi H. diminuta 1 
P. berghei Strongyloides ratti 
P. berghei T. muris k 
Babesia microti T. muris " 
B. hylomysci T. muris 
Eimeria nieschulzi N. brasiliensis 
Toxoplasrna gondii T. spiralis P 

Interference with development of resistance to homologous challenge infection 

T. brucei E. revolutum g 
T. brucei T. muris 
P. yoelii E. revolutum d 
P. berghei T. muris k 
E. nieschulzi T. spiralis 

h i  

a Kloetzel et al. 1973; b Kusel and Phillips 1978; c Long et al. 1981; d Christensen et al, unpublished; e Griffin et al. 1981a, 
b; f Wedrychowicz et al. 1983; g Christensen et al. 1984; h MacLean 1982; i Urquhar t  et al. 1973; J Fagbemi and Christensen 
1984; k Phillips et al. 1974; ~ Machnicka and Choromanski  1979; m Bailenger and Guy 1982; n Phillips and Wakelin 1976; o Bristol 
et al, 1983; p Copeland and Grove 1979; q Duszynski et al. 1978 



400 N.O. Christensen et al. : Heterologous interactions in concurrent infections 

needs to be confirmed in more comprehensive stu- 
dies. However, the increased establishment of ini- 
tial infection of E. revolutum in P. yoelii-infected 
mice, of  N. brasiliensis in T. brucei-infected rats 
and of H. contortus in T. congolense-infected goats 
appear well documented. Delay in expulsion of a 
number of helminth species has been demonstrated 
in mice and rats concurrently infected with differ- 
ent species of the protozoan genera Plasmodium, 
Trypanosoma, Babesia, Toxoplasma and Eimeria. 
There are also examples of interference with the 
development of resistance to homologous chal- 
lenge infection with E. revolutum, T. muris and T. 
spiralis in response to concurrent protozoan infec- 
tion. Besides, there is also evidence for an increased 
rate of "ma tu ra t ion"  of C. punctata in calves in 
response to concurrent Eirneria spp. infection (Da- 
vis et al. 1959a). A significant finding is the failure 
of P. chabaudi and B. microti to affect acquisition 
of resistance to homologous reinfection with 
S. mansoni in mice (Long et al. 1981 ; Christensen 
et al. (unpublished)). Also, T. lewesi does not affect 
the development and maintenance of acquired re- 
sistance to N. brasiliensis in rats (Ashley 1962). 
Experimental immunological evidence that these 
synergistic interactions are mediated by immuno- 
suppression consists of  (1) suppression of the eo- 
sinophilic response to T. spiralis in concurrently 
T. gondii-infected mice (Copeland and Grove 
1979); (2) decreased humoral and cellular response 
to H. diminuta antigens in mice concurrently in- 
fected with T. cruzi (Machnicka and Choromanski 
1979); (3) gross impairment of production of 
serum protective antibodies to N. brasiliensis and 
decreased N. brasiliensis-induced mast cell prolifer- 
ation in the intestinal wall in rats concurrently in- 
fected with T. brucei (Urquhart  et al. 1973); (4) 
a reduction of local and systemic antibody re- 
sponses to N. brasiliensis antigens in rats concur- 
rently infected with T. brucei and N. brasiliensis 
(Wedrychowicz et al. 1983, 1984); and (5) a block- 
age of antibody production to E. revolutum juve- 
nile worm tegumental antigens in mice concur- 
rently infected with E. revolutum and T. brucei (Si- 
monsen and Andersen 1986). 

Heterologous synergistic effects o f  helminths 
on protozoans 

Mice harbouring primary infections with S. obve- 
lata, T. muris and S. mansoni may experience an 
increased susceptibility to E. histolytica. This is evi- 
dent from increased damage to the caecal wall and 
from an increase in the rate of amoebic tissue inva- 
sion (Knight and Warren 1973; Knight and Chew 

1974; Vinayak and Chopra 1978). It is believed 
that this is due to intramucosal tissue damage, pos- 
sibly combined with a reduced immunological 
responsiveness. The magnitude of the effect gener- 
ally appears to be correlated with the size of the 
helminth infection. Clinico-pathological observa- 
tions have, furthermore, provided strong evidence 
for increased susceptibility of calves to infection 
with Eimeria spp. in response to concurrent infec- 
tion with C. punctata, T. colubriformis and S. papil- 
losus all of  which inhabit the same general region 
of the small intestine as Eimeria spp. (Davis et al. 
1959a, 1960a, b). No similar effects were, however, 
associated with infection in calves with the stom- 
ach nematode O. ostertagi (Davis et al. 1959b). 
However, concurrent infection with T. spiralis and 
T. gondii and with B. microti and metacestodes 
of either T. crassiceps or T. taeniaeformis in mice 
may increase the number of T. gondii cysts in the 
brain and the B. microti blood cell parasitaemia 
(Nichol and Sewell 1984; Yusuf et al. !980). These 
effects may be caused by immunosuppression. Be- 
sides, measurements of morbidity indicate that pri- 
mary S. mansoni infections in mice may potentiate 
the pathogenetic effect of  subsequent T. gondii in- 
fection, although its intensity, measured parasito- 
logically, seems unaffected (Kloetzel et al. 1977). 
Concurrent S. mansoni and T. cruzi infection in 
mice normally results in increased, and commonly 
prolonged, T. cruzi parasitaemia (Kloetzel et al. 
1971, 1973). S. mansoni infection in the field vole, 
despite causing an initial suppression of P. berghei, 
may decrease the ability to finally eliminate a he- 
terologous challenge infection with this parasite 
(Yoeli 1956). Concurrent N. brasiliensis and P. 
berghei infections in the rat may increase proto- 
zoan blood cell parasitaemia (Golenser et al. 1976). 
Besides, observations on nutritional status and me- 
tabolism of infected rats provide some indirect evi- 
dence for a N. brasiliensis-induced increase in the 
intensity of concurrent E. nieschulzi infection 
(Frandsen 1983, 1985). Finally, in several experi- 
ments S. mansoni infection suppressed a subse- 
quent P. yoelii infection, but there is one instance 
of increased P. yoelii parasitaemia in mice har- 
bouring primary S. mansoni infections (Lwin et al. 
1982). 

Discussion 

Concurrent infection with two or more parasite 
species occurs commonly in domestic stock and 
man, especially in subtropical and tropical parts 
of  the world (see Ogunrinade and Adegoke 1982; 
Buck et al. 1978a, b). It has often been suggested 
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that such concurrent infections, mediated by an- 
tagonistic or synergistic heterologous interactions, 
may influence the parasite transmission pattern 
and disease picture. Augmentation or alleviation 
of the amount of disease experienced might be a 
consequence of concurrent infection. Besides, con- 
current infection might make clinical and laborato- 
ry diagnosis less accurate, decrease the bioavailabi- 
lity and toxicity of  drugs used for treatment and 
decrease the efficiency of disease control cam- 
paigns based on immunization (see Buck et al. 
1978 a). 

Unexpected frequencies of some multiple infec- 
tions, i.e. positive correlation coefficients, have oc- 
casionally been demonstrated, for example be- 
tween D. vitae, D. streptocerca and Loa loa in man 
in part of  the African rainforest (Buck et al. 
1978 b), between T. trichuris and E. histolytica in 
man (Jung and Beaver 1951), between S. boris a n d  
Paramphistomum microbotrium in cattle (Ogunrin- 
ade and Adegoke 1982), between T. brucei and 
other cattle trypanosomes in cattle (Willett 1972), 
and between frequency of schistosomal colonic po- 
lyposis and infection with E. histolytica in man 
(El Raziky et al. 1983). Negative correlation coeffi- 
cients, on the other hand, have also been demon- 
strated, for example between S. boris and F. gigan- 
tica in cattle (authors' calculation from data in 
Magzoub and Adam 1977), between F. hepatica 
and E. granulosus (hydatid cysts) in cattle (Froyd 
1960), and between visceral leishmaniasis and 
S. mansoni infections in man (Chunge et al. 1985). 
Positive correlations, however, may reflect a paral- 
lel transmission ecology rather than a synergistic 
heterologous interaction. A positive correlation 
may thus be expected, for example, between S. bo- 
ris and P. microbotrium as both are transmitted 
in the same aquatic environment by a common 
snail host. Furthermore, the transmission of a 
range of intestinal protozoan and helminth infec- 
tions is linked to low levels of  hygiene and poor 
sanitary conditions. Ecologically determined, un- 
expected frequencies of some multiple infections 
are therefore to be expected. Besides, heterologous 
antagonistic and synergistic interactions between 
parasites are normally reflected quantitatively 
rather than qualitatively, i.e. by a modulation of 
the course of infection rather than by the presence 
of one parasite species being determined by that 
of  another. This fact, combined with a complex 
influence of ecological factors on the pattern and 
frequency of concurrent infection mean that major 
consequences of concurrent parasite infection for 
the disease picture in man and domestic stock have 
not been definitively demonstrated. It also seems 

obvious that appropriately planned and controlled 
experimentation is imperative for any understand- 
ing of concurrent parasite infection in man and 
domestic stock. 

Concurrent infection with two or more parasite 
species in experimental mammalian host models 
may commonly, as outlined above, result in heter- 
ologous interactions of either antagonistic or syn- 
ergistic nature. These range from reduced/en- 
hanced growth and fecundity to inhibition/en- 
hancement of  establishment/expulsion. It should 
be stressed, however, that concurrent experimental 
infection involving " inappropria te"  timing of in- 
fection and/or only light infections commonly does 
not give rise to antagonistic or synergistic interac- 
tions. The two parasite populations may in this 
case develop independently of each other and the 
disease picture is of  a simple additive nature. 

Definitive information on mechanisms respon- 
sible for heterologous antagonistic and synergistic 
interactions in concurrent infection seems relative- 
ly limited. Cross-reactive antigens have been found 
for a number of species of helminth s (see references 
in Aronstein et al. 1986), but most of  these may 
be unimportant from the point of  view of heterolo- 
gous interactions. However, well-founded evidence 
suggests that immunologically specific factors, 
based on functional immunological cross-reactivi- 
ty, are responsible for at least some cross-resistance 
between intestinal helminths. They may also be re- 
sponsible for most, if not all, of  the heterologous 
antagonistic interactions demonstrated between 
larval cestodes in the intermediate mammalian 
host. Furthermore, it appears reasonable to sug- 
gest that they are involved in heterologous antago- 
nistic interactions between species of schistosomes 
and between different microfilarial infections. 
However, most other examples of antagonistic in- 
teractions are generally thought to be induced by 
immunologically non-specific factors. Resistance 
to non-intestinal helminths induced by other hel- 
minths and by protozoans, and helminth-induced 
suppression of  blood protozoans, are thus general- 
ly believed due to enhanced macrophage-mediated 
non-specific resistance. This would parallel the 
BCG-induced resistance to helminth and proto- 
zoan infections as well as the suppression of  Plas- 
rnodium and Babesia infections by rickettsia, vi- 
ruses, other protozoans and a variety of other 
agents (see Cox 1975; Klesius 1982; Millott and 
Cox 1985). Although immunologically specific 
cross-resistance may occur between intestinal ne- 
matodes, cross-resistance between intestinal hel- 
minths may often be induced by non-specific ef- 
fects of  intestinal inflammation. However, such in- 
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testinal inflammation may originally be initiated 
by immunologically specific mechanisms. Similar 
non-specific effects seem responsible for helminth- 
induced resistance to intestinal protozoans. Most 
synergistic heterologous interactions seem to be 
based on non-specific parasite-induced immuno- 
suppression although enhancement of and tissue 
invasion by intestinal protozoans may at least 
partly be the result of helminth-induced damage 
of the intestinal epithelial lining. However, further 
studies are obviously required for a final and de- 
tailed elucidation of the mechanisms responsible 
for heterologous interactions in concurrent para- 
site infection in experimental mammalian host 
models. 

Experimental studies have demonstrated that 
a complex set of factors govern the types and char- 
acteristics of heterologous interactions in concur- 
rent infection. A given combination of two parasite 
species may thus result in a range of interactions 
and the antagonistic ones are commonly recipro- 
cal. Such reciprocal antagonistic interactions may 
be found between schistosomes, microfilarial infec- 
tions, intestinal helminths, larval metacestodes in 
the mammalian intermediate host and even in com- 
binations of more distinctly related helminths, such 
as F. hepatica, N. brasiliensis and S. mansoni. This 
reflects the reciprocal nature of both the specific 
immunological cross-reactivity and the non-specif- 
ic immunological factors (macrophage activation, 
inflammatory reactions) responsible for the antag- 
onistic interactions. Reciprocal cross-resistance 
has even been demonstrated in rats between T. 
spiralis and E. nieschulzi with the suppression of 
E. nieschulzi resulting from intestinal inflammation 
and with the effect on T. spiralis suggested induced 
by macrophage-mediated non-specific resistance 
(Stewart et al. 1980). The complexity of concurrent 
infection may furthermore be illustrated by a given 
combination of two parasite species giving rise to 
either synergistic or antagonistic interactions de- 
pending for example on the relative timing of infec- 
tion. Both increased and decreased establishment 
of S. mansoni has thus been reported in T. cruzi- 
infected mice (Kloetzel et al. 1973), and T. hydati- 
gena infection in sheep may in some cases decrease 
and in others increase the survival of concurrent 
T. ovis infection (see Tables 5, 7). Moreover, mice 
harbouring primary patent S. mansoni infections 
are highly resistant to E. revolutum challenge 
whereas expulsion of E. revolutum in mice is de- 
layed/blocked when the challenge infection is given 
during the late prepatent period of the S. rnansoni 
infection. Besides, S. mansoni challenge of heavily 
E. revolutum-infected mice may result in increased 

S. mansoni worm establishment (see Tables 3, 7). 
Another interesting example is the suppression of 
P. yoelii in mice harbouring primary patent 
S. mansoni infections and the increase in the estab- 
lishment of S. mansoni in mice harbouring a prima- 
rychronic P. yoelii infection (see Tables 6, 8). Be- 
sides, synergistic and antagonistic interactions may 
both develop even in a given concurrent infection. 
Thus, a reduced initial establishment followed by 
a delay in the expulsion of N. brasiliensis has been 
demonstrated in N. dubius-infected mice (Bruna 
and Xenia 1976), and an initial suppression fol- 
lowed by prolonged persistence of P. berghei has 
been reported in S. mansoni-infected field voles 
(Yoeli 1956). In addition, obviously contrasting 
findings possibly arising from differences in para- 
site and host genetics have been reported. For ex- 
ample, Lwin et al. (1982) demonstrated an en- 
hancement of the infection with a virulent strain 
of P. yoelii in S. mansoni-infected mice whereas 
Kusel and Phillips (1978) and Christensen et al. 
(unpublished) using similar experimental setups 
but different parasite and mouse material demon- 
strated a marked suppression of P. yoelii in S. man- 
soni-infected mice. Both the immunologically spe- 
cific and non-specific responsiveness of the host 
is influenced by genetical, nutritional and physio- 
logical factors and this certainly adds to the com- 
plexity of the phenomenon of heterologous interac- 
tions. 

The criteria for heterologous antagonistic and 
synergistic interactions have primarily been par- 
asitological, and to a much lesser extent clinico- 
pathological. However, there is often a reasonable 
correlation between levels of interaction judged by 
both types of parameters. Such a correlation has 
thus been demonstrated in (1) resistance between 
schistosomes in sheep, cattle and baboons (see Ta- 
ble 2); (2) resistance to F. hepatica challenge infec- 
tion in sheep and calves harbouring primary S. bo- 
ris infections (Monrad etal. 1981; Sirag etal. 
1981); (3) resistance in mice to S. mansoni induced 
by prior infection with T. gondii (Mahmoud et al. 
1977) and by prior exposure to cercariae of T. szi- 
dati (Pedersen et al. 1982); (4) suppression of B. 
rnicroti infection in S. mansoni and F. hepatica in- 
fected mice (Fagbemi et al. 1985 a, b); (5) enhance- 
ment of H. contortus infection in concurrently T. 
congolense-infected goats (Griffin et al. 1981 a, b). 
However, unaltered egg counts in essential organs, 
possibly combined with an increase in the granulo- 
matous reaction to the eggs, are held responsible 
for the lack of significant alleviation of disease, 
in spite of a very marked resistance defined by 
parasitological parameters, following S. japonicum 
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(human strain) challenge of rhesus monkeys hea- 
vily exposed to cercariae of a non-human strain 
of S. japonicum (Murrell et al. 1973) and following 
S. rnansoni challenge of baboons heavily and re- 
peatedly exposed to cercariae of S. boris and 
S. rodhaini (Taylor et al. 1973). On the other hand, 
the possible potentiation of the pathogenicity of 
T. gondii in S. mansoni-infected mice is not re- 
flected in a parallel increase in the intensity of in- 
fection as measured by parasitological parameters 
(Kloetzel et al. 1977). These findings highlight the 
problems of using only parasitological criteria for 
determining possible disease-related consequences 
of concurrent infection. 

Heterologous antagonistic and synergistic in- 
teractions are common phenomena in experimen- 
tal concurrent helminth infection. However, their 
great complexity and the limitations of experimen- 
tal rodent models make extrapolation from experi- 
mental studies to naturally occurring polyparasit- 
ism questionable. For example, mice are very sus- 
ceptible to both bovine and human schistosomes, 
and rhesus monkeys elicit an extremely effective 
immunological response to infection with schisto- 
somes. This should, in fact, preclude the use of 
mice and rhesus monkeys in studies of aspects of 
schistosome zooprophylaxis in man. Experimental 
setups comprising a single, massive heterologous 
challenge infection following maturation of a pri- 
mary infection can reflect the complexity of natural 
parasite transmission to only a limited extent. Fur- 
thermore, the intensity of experimental infection 
is generally very high, inducing high levels of non- 
specific immunological responsiveness or non-spe- 
cific immunosuppression. Experimental concur- 
rent infection may therefore give rise to heterolo- 
gous antagonistic and synergistic interactions 
which are normally not expected in natural poly- 
parasitism. For example, resistance to S. mansoni 
challenge infection in baboons induced by prior 
exposure to cercariae of non-human schistosomes 
is based on very heavy and repeated cercarial expo- 
sures, and baboons exposed to low, and biologi- 
cally more reasonable, numbers of S. rodhaini cer- 
cariae actually failed to develop resistance to a he- 
terologous challenge infection with S. mansoni 
(Taylor et al. 1976). These findings, combined with 
the limited value of the mouse and rhesus monkey 
models indicate that experimental work supporting 
schistosome zooprophylaxis in man (see Nelson 
1974) may be rather limited. 

Experimental studies have, in spite of their 
basic limitations, provided much valuable informa- 
tion on aspects of the nature and characteristics 
of heterologous interactions between parasites in 

the mammalian host. One of their most important 
virtues is their indication of potential heterologous 
interactions between parasites in both man and do- 
mestic stock under field conditions. Studies com- 
prising selective, curative and preventive drug 
treatment of domestic stock populations in the nat- 
ural transmission environment would make one of 
several starting points for further work on the dis- 
ease-related consequences of potential heterolo- 
gous interactions between parasites arising as a 
consequence of natural polyparasitism. The infor- 
mation from hitherto conducted experimental stu- 
dies on concurrent parasite infection may serve as 
a valuable guideline for further field studies. 
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