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Stability diagrams for coupled Mathieu.equations 

J. Hansen, Lyngby 

Summary: A method is described for determining stability diagrams for coupled Mathieu-equations. The 
boundary curves ~re found by searching for those almost-periodic solutions of the differential equations for 
which the real part of the characteristic exponent changes from zero to a non-zero value. The method derives 
analytic expressions for the involved determinants and is ~ble to find the transition curves even for p~r~- 
meters that cannot be considered small. 

Stabilitgtsdiagramme fiir gekoppelte ~athieu-Gleiehungen 

~bersicht: Es wird eine ~ethode zur Ermittlung der Stabiliti~tsdiagramme fiir gekoppelte ~athieu-Gleichun- 
gen beschrieben. Die Grenzkurven der Stabilit/~tsbereiche werden erhalten, indem man nach jenen fast- 
periodisehen LSsungen der Differentialgleichungen sucht, ffir die der ]~ealteil des chara.kteristischen Expo- 
nenten yon Null zu einem nichtverschwindenden Weft wechselt. Analytische Ausdriicke fiir die auftretenden 
Determinanten werden hergeleitet. Die Methode kann auch bei Parametern angewendet werden, die nicht 
klein sind. 

1 Introduction 

The stability problem for the n coupled Mathieu-equations 

y"  + (A* + 2qQ* cos cot) y ~- 0 (1) 

has been studied by many authors, Cesari [1], Bolotin [2], Hsu [3--4], Fu and Nemat-Nasser 
[5--7]. In  (1) A* is the n X n  stiffness matrix, 2qQ* cos ~t the parametric excitation matrix 
with q giving the excitation level, and ( )' is d( ) /d t .  I t  has been shown theoretically, [3, 7], 
and experimentally, Yamamoto and Saito [8], that instability may occur for o4 near twice the 
natural frequencies and their subharmonics, 2~oj / s ,  i -~  l ,  2 ,  . . . ,  n ,  s integer, and also close to 
the so-called combination frequencies and their subharmonics, I-r ~ o ~ l / s  , ], k ~ 1, 2 . . . . .  n ,  

2 ?" ~ k. The squared frequencies wj are the eigenvalues of A*. The boundary curves for the in- 
stability regions must therefore emerge from some of these frequencies. We also know that  for 
the instability domains corresponding to the natural frequencies, the boundary curves can bc 
found by searching for the periodic solutions of (1) and that  on the boundary curves corresponding 
to the combination frequencies we have almost-periodic solutions, [7]. These solutions may, 
however, also exist elsewhere in the parameter plane, Lindh and Likins [9J. So even though we 
are able to determine almost-periodic solutions to (1), e.g., by the use of infinite determinants, 
we cannot be certain that all these solutions will determine a stability boundary. In  other words, 
we can give necessary conditions for being on the stability curves, but  it is more difficult to give 
the sufficient conditions. In  the literature, this is only carried out with very few terms of either 
infinite determinants, [7], Meirovitch and Wallace [10], or perturbation expansions, Nayfeh and 
Mock [l l] ,  since it leads to very cumbersome calculations. Furthermore it can be very difficult 
to determine the "right" number of terms to include in this type of computation, as shown in 
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Fig. 1. This figure is based on (25) and clearly illustrates some of the disadvantages of the per- 
tu rba t ion  methods.  We  see tha t  including first order terms will give par t  of the curves corre- 
sponding to the combinat ion  f requency 0) 1 + c%, whereas no indicat ion of the curves belonging 
to (~01 + 0)2)/2 is found. On the other  hand, taking second order terms into account  will give us 
par t  of these lat ter  curves, bu t  will re turn  a poorer es t imate  for the curves corresponding to the 
main  combinat ion frequency.  Also, these methods  are only applicable for parameters  tha t  can 
be considered small. 

I n  this paper,  we shall use a method  tha t  involves infinite determinants ,  but  employ 
computerised symbolic manipulat ion,  in a manner  similar to tha t  used in Pedersen [12], to 
rewrite the determinants  as polynomials  in the desired variables. We can thereby f ind zeros for 
the determinants  in a simple and fast  way  by  means of the Newton-I~aphson method.  This we 
use together  with a condi t ion  on the characterist ic exponent  for the solutions on the boundary  
curves. Wi th  these tools we can make  a computer  code tha t  can determine a bounda ry  curve 
from the f requency found analytically,  combinat ion  as well as natural ,  and as far up in the para- 
meter  plane as we desire. Thus we shall be able to generate  stabil i ty diagrams tha t  are not  con- 
fined to small parameters  only. 

We  will present stabil i ty diagrams for two coupled Mathieu-equat ions and verify them, both  
by  direct  numeric s imulat ion as well as combined with l~loquet-theory. 

2 The infinite determinant  

We look at coupled Mathieu-equat ions in the form of (1). B y  subst i tut ing 

o# = 2T 

we t ransform (1) into the s tandard  form 

o~j~ + (A + 2qQ cos 2z) y = 0 

with 

A = 4 A *  and Q ~ 4 Q *  

and (') as d( )/dr. This is the system for which we want  to f ind stabil i ty diagrams. 
According to Floquet- theory ,  [9], the solutions of (3) can be wri t ten as 

y - -  chiC(,) ,  

(2) 

(3) 

(4) 

(5) 
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where (~(r) is z-per iodic ,  

~b(v + z) = ~b(r) (6) 

and h is a complex  quant i ty ,  

h = ~ + i~. (7) 

Eq. (5) shows us tha t  we mus t  have  I~e (h) g rea te r  t han  zero in order  to m a k e  y uns table  and,  
since we have  no damping ,  Re  (h) equal  to zero in the  stable domains.  This  fact  will be used to 
ac tua l ly  de te rmine  the  b o u n d a r y  curves.  

To  proceed f rom (5) we make  the  classical expansion,  [9], of ~(r)  in its Fourier-series to 
ob ta in  

( 1  j = l  

sin r ] = 2, 4, .. .  
~(~) = Z bjv;, v; = (8) 

] =  1 COS ~ - -  1 
( 2 - T  j = 3 , 5  . . . .  

Combining (3), (5) and  (8) brings us to 

e h' ~ (~2I~) i § 2hco2I~i + (oAh~I § A + 2qQ cos 2v) vj) b] : 0, 
j = l  

where I is the iden t i ty  mat r ix .  CurLing a f te r  N t e rms  and  dividing by  e h~ gives 

N 
(~o2Ii)~ + 2hco2I~j ~- (oJ2h2I + A + 2qq cos 2r) vj) b~. = 0. 

/=1 

(9) 

(10) 

We inser t  the v]'s f rom (8) and  use the re la t ions 

and  

~)j - -  

0 j = l  

J ~- v~+l ] = 2 , 4 , . . . ;  

j - - 1  
vj_~ j = 3 , 5 , . . .  

2 

[ vj+~ ] = i 

v~ cos 2v = / -2- (vj+a -~ v~) j = 3 

vj+~ i = 4 

1 
[-ff (v;+4 + vj_~) ] > 4 

iJj - 

0 j = l  

- -  v i ] - - 2 , 4  . . . .  

- -  vj ] - - 3 , 5  . . . .  

(11) 

(12) 

I f  we then  denote  the k ' th  componen t  of b i by  b}i and write (10) in its componen t  form we will 
get  n equat ions  in the n X N unknowns  bki. W e  then  argue  t ha t  in each of the n equations,  the  
coefficients of each vj mus t  equal  zero in order  to m a k e  the  equat ions  zero for  all ~. Thus  we have  
n X N equat ions  for  the n X N unknowns .  

32 
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3 Reducing the determinant to polynomials 

Ordering the b~i's as bn, b~a . . . . .  b ~ ,  b2~ . . . . .  bnN in the vector  b and assembling the coefficients 
in the mat r ix  D, we have 

Db = 0  

with 

r 
D~I D12 ... D ~  

D = D2~ D~2 . . .  D2n 
: : : : " 

D n l  D n 2  . . .  D n n  

I n  (14) D~ are N X N matr ices  with 

~)kk ~-  

Dk~ = 

1 e~h ~ 
2 

0 
1 

+ -~ ~ 

0 
( D 2 ] ~  2 - -  (]9 2 

a~ --  qq~ 

0 --20)2h 

0 0 

qqkk 0 

: 

- 1  
a~k 0 

0 a~ --  qq~ 

0 0 

0 0 

qq~ 0 

0 0 

(~3) 

(1~) 

2co2h 

0 

0 

qqk~ 

0 0 qqk~ 

0 0 0 

a~r + qqkj 0 0 

0 a~j 0 

0 0 akr 

0 

0 

~eh ~ _ 4 ~  

-~- akk 

--4e)2h 

0 

0 

4~o2h 

~ h  2 _ 4 ~  
-~ a~k 

~  

~  

(15) 

. ~  

. ~  

o . ~  

, . ~  

(16) 

for  k # j. Here,  a~r and q~j are the k j ' th  elements of the A- and  Q-matrices f rom (3), and  all the 
equations corresponding to the blj's are divided by  2. This division ensures tha t  D~j, k # j, is 
symmetr ic  and tha t  Dk~ can be wri t ten  as the sum of a symmetr ic  and an ant imetr ie  matr ix  
where the only non:zero  elements of the ant imetr ic  one are the elements d~,~+l and dk+l,k, 
k = 2, 4 . . . .  I n  (15) tha t  means the elements ~2~oh 2, ::]=4~h ~ . . . .  

I n  order  for b to have a solution different f rom zero, the de terminant  

= IDI (17) 

mus t  be zero. An  examinat ion  of the  matr ices  shows tha t  the equat ions 2, 3, 6, 7 . . . .  , N -~- 2, 
N ~- 3, N ~- 6 . . . . .  i.e. the ones corresponding to  the ~-periodic expansion functions,  decouple 
f rom the remaining ones, and we can write 

--  0 (18) 
a s  

zJlzJ 2 = 0 (19) 
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as in [12], thereby reducing the size of the determinants with which we shall work. Assuming 
the elements of A and Q to be given constants, the determinants will be polynomials in q, ~o 
and h. We therefore apply the same idea as in [12] and use some Fortran written symbolic mani- 
pulation to rewrite the determinants as 

zip : ~ P'k~,~co~q~h ~,  p : 1, 2. (20) 

Now we use the fact that  we are looking for solutions with ~ equal to zero, for the natural fre- 
quencies as well as for the combination frequencies. We also use the fact that  the determinants 
are independent of the sign of h. This is due to the symmetric/antimetric pattern of (15) and (16) 
and the fact that  the determinant of a matrix is equal to the determinant of its transpose. There- 
fore we shall only have even powers of h in (20) and so 

h "  = (ifl)2r = ( - - 1 ) ~ f l  2'. (21)  

Altogether, this means we can write (20) as 

ziv ~- ~ P'kl~kq~( - 1) ~ fl2r (22) 
o r  

zip = ~ Pkt~okq~fi 2~ (23) 
with 

& ~  = ( - 1 ) ~  PitT. (24) 

The polynomial zip is then a pure real expression. I t  should be noted that in (23) only some of 
the combinations of klr will result in non-zero Pktr's and the summation is only carried out for 
the non-zero elements. 

4 Determination of boundary curves 

We now have the determinants in a suitable form for our purpose. First, we want to determine 
the boundary curves corresponding to the natural frequencies. Here, we can take advantage of 
the fact that  these curves are characteri~zed by periodic solutions and simply put fl equal to zero. 
That brings the polynomial in a state similar to the one in [12], and we can find the zeros of 
(18) up along a curve by the Newton-Raphson method. 

The instability regions corresponding to the combination frequencies, however, must be 
handled in a more complex manner because here, for given q, we have to determine two vari- 
ables, co and r. As already stated, we must have ~ equal to zero in the stable domains and greater 
than zero in the unstable domains. Or, expressed in h, h must be imaginary in the stable domains 
and complex in the unstable domains. Since the polynomial is real, fl must, at the limit, i.e. on 
the boundary, be at least a double root, and it is then known, Wilkinson [13], that  we must have 

la~/aoJI = ~ (25) 

on the boundary. That in turn means that if we are at a point on a boundary curve, say (~0, qo) 
and rio, we can determine whether a nearby point (~o, q) belongs to the stable domain or not by 
trying to determine the corresponding r by the 57ewton-Raphson method. I t  it fails to converge, 
the point belongs to an unstable domain, if it succeeds, we are in a stable domain. This follows 
from the fact that  we are only dealing with real quantities, and if the point (~o, q) belongs to a 
stable region, we can find a real fl close to rio, and if it does not this will not be possible, due to 
(25). So, to proceed from a once determined point on a boundary curve, we move q further up 
in the parameter plane and find ~ by bisection, with the criterion for moving left/right being the 
success/failure of the Newton-Raphson procedure in the determination of ft. 

To start this procedure we observe that for q equal to zero, ~o is known to be the combination 
frequency itself, so that fl is the only unknown to be solved by (18). 

In  order to save computer time, it is possible to approximate some of the fl's by quadratic 
extrapolation from earlier determined fi's for some steps and only use the abovementioned proce- 
dure for every third or fourth step in q. 

32* 
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The procedure will be stopped either when we reach the desired parameter limit, i.e. when q 
is large enough, or when the curve crosses another curve, indicating that  the solution will be 
unstable for all q's greater than the last found. 

5 Examples 

First we consider the Equations. 

0 ) ' [ ~ : ] - I - ( [ :  : ]  @2q [124 l : ; C O S 2 V ) [ ; : ] = [ : ] .  (26) 

This set of equations has a diagonal A-matrix, and the perturbation method as decribed in e.g. 
[11] can be used directly as comparison. 
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Fig. 2. First and second order instability domains for Eq. (26) 

Applying the method described using 9 expansion functions will give two determinants of 
order 8 and 10, respectively. Searching only for the main stability domains and the ones cor- 
responding to the first subharmonics, i.e. s = 1, 2, will result in the stability diagram shown in 
Fig. 2. 

We observe in Fig. 2 that  the curves corresponding to the natural frequencies can be com- 
puted in the complete parameter plane, whereas those corresponding to the combination 
frequencies end when they cross the other curves. This is because the crossing means entering 
a domain where the solutions will be unstable on both sides of the curve. Thus, it is not possible 
to decide upon stability/instability any more. But since we are already in an unstable domain, 
it is not necessary to continue this curve. 

For the curves arising from (0)1 + 0)2), the values of fl have been plotted against q in Fig. 3. 
From this figure we see clearly fl's dependence upon q and note that  the linear approximation, 
as suggested in e.g. [7], will only be valid for very small q's. In  Fig. 3 we also see the shape of 
some y's of (5) as function of ft. 

The curves corresponding to the combination frequencies have already been presented in 
Fig. i, where they are compared with those found by the method of multiple scales as described 
in [11]. 

In order to verify the curves obtained by the method described here, a direct Floquet- 
analysis has been carried out in a region around one of the instability domains. Using the method, 
as described in the appendix, we can determine whether the solutions are stable or unstable 
]or a given q and 0). But since it demands 2 X n time-integrations over one period and an eigen- 
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Fig. 3. A plot of fl against q for the curves corresponding to (w~ + m2) from Fig. 2. The solid 
line belongs to the right-hand curve, the dashed one to the left-hand curve. Also, some plots 
of certain y's of Eq. (5) are shown 
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l~ig. 4. Part  of Fig. 2 and Floquet-analysis applied to certain points in the plane. The symbol 
�9 means that  the point is stable and the symbol + means that  the point is unstable 

va lue  d e t e r m i n a t i o n  for each poin t ,  this  m e t h o d  is here used on ly  for ver i f i ca t ion  purposes .  I n  
Fig.  4 we have  t a k e n  the  pa r t  of Fig.  2 a round  the  i n s t a b i l i t y  doma in  cor responding  to co ~ co] @ a)2 
and  app l i ed  the  F loque t - ana lys i s  to each p o i n t  in a gr id  in th is  region.  F r o m  this  f igure  i t  seems 
ev iden t  t h a t  if we made  up  a f iner  mesh for  the  gr id,  we would ge t  the  same curves  as the  ones 
in  F ig .  2. 

As a second example ,  cons ider  the  equa t ions  

(27) 

The  s t ab i l i t y  d i ag ram for (27) is shown in Fig.  5. Here ,  we have  used 13 expans ion  funct ions ,  
mean ing  d e t e r m i n a n t s  of order  12 and  14, respec t ive ly .  I n  Fig .  5 i t  is wor th  no t ing  t h a t  the  
curves  cor responding  to o = (co l + aJ2)/2 cont inue  up  to q ~ 1, i.e. the  exc i t a t ion  level  is in no 
w a y  smal l  a n y  more,  bu t  can be c o m p a r e d  in m a g n i t u d e  to the  o ther  t e rms  of the  equat ions .  To 
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ver i fy  t h a t  these  curves ac tua l l y  de t e rmine  the  b o u n d a r y  be tween  s t ab i l i t y  and  ins tab i l i ty ,  some 
numer ica l  s imula t ion  have  been  car r ied  out  for  q = .86 and  q ~ .96, as shown in Tab le  1 and  
Figs.  6 and  7. I t  follows f rom Table  1 t h a t  for  ~o near  2, the  curves  are d e t e r m i n e d  wi th in  :L0.001, 
even  when q ~ 1. 

1.0 

o ~ l ~ I 3 1  14 I 5 
2 ~ / 2  I 2 f~2 /2  20)1 (ml+~Zl 2~Z  

(% + ~2) /2  

Fig. 5. Stability diagram for first and second order domains for Eq. (27) 
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Table 1. l~esult of cer tain numerical  s imulat ions in the  p lane  :for Eq. (27). Cf. wi th  Fig. 5 

q 0) descript ion resul t  

0.86 1.7440 inside ~o I uns tab le  
0.86 1.7445 on 0)~ 
0.86 1.7450 outside 0)1 s table  
0.86 1.7530 outside (~a H- 0)2)/2 stable 
0.86 1.7533 on (0)1 -~ 0)2)/2 
0.86 1.7540 inside (0)1 + 0)2)/2 uns table  
0.86 1.9470 inside (co I q- 0)2)/2 uns tab le  
0.86 1.9473 on (0)1 ~- 0)2)/2 
0.86 1.9480 outside ((91 + 0)2)/2 stable 
0.86 2.0180 outside w2 stable 
0.86 2.0189 on w~ 
0.86 2.0190 inside 0)~ uns table  
0.96 1.9370 inside (0)1 ~ 0)2)/2 unstable  
0.96 1.9376 on (0)1 q- 0)2)/2 
0.96 1.9380 outside (o91 -k 0)2)/2 s table 
0.96 1.9650 outside 0)2 s table 
0.96 1.9655 on 0)2 
0.96 1.9660 inside 0)2 uns table  
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6 Conclusion 

I n  this paper  we have demonst ra ted  a method  by  which we can generate stabil i ty diagrams for 
coupled Mathieu-equations.  W i t h  the  method  we are able to deal with instabil i ty domains cor- 
responding to both natura l  and combinat ion frequencies and subharmonics.  Also, as shown in 
the examples, we have here a method  tha t  does not  restrict  itself to  small parameters  in any  
way. 

Looking at  the involved matrices,  it m a y  also be noted  tha t  an extension to the more general 
Hill-equations will be straightforward,  as will also, with some extensions, the inclusion of damp- 
ing terms. Bu t  it mus t  be realized as well tha t  the method  is restr icted to two, three or perhaps 
four coupled equations.  Tha t  is because the size of the determinants  increases with the number  
of equations, and the necessary computer- t ime required for the analyt ical  derivat ion of the 
determinants  thereby  increases rapidly. 

We  have not  made a ny  a t t e m p t  to deal with cases in which we have equal eigenvalues of the 
A-matrix.  

Appendix 

I n  order to  examine whether  the solutions of (3) are stable or uns tab le /or  a given set o/parameters, 
the  F loquet - theory  as used in [9] will be applied. 

To do tha t  we write (3) as a set of 2n first order differential equat ions 

= B(~) x (28) 

with B(v) a funct ion of A and Q. The matr ix  B(~) is thereby periodic, due to the term Q cos 23, 
with period ~. F rom (28) a matr ix  Z(v) is evaluated by  

Z(~:) : B('r Z(~), (29) 

z ( 0 )  - -  i .  (30) 

We then  generate the mat r ix  Z(~). This is done by  numerical  in tegrat ion of (29), (30) up to z.  
For  this mat r ix  we f ind the  2n eigenvalues, 2~, and, according to the  Floquet- theory,  we will 
have 

max  (]~1) > 1 @ solutions unstable,  (31) 

max  (IA~]) ~ 1 <=> solutions stable. (32) 
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