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Boundary elements and symmetry

F. Hartmann, Dortmund, C. Katz, Erling-Andechs, and B. Protopsaltis, Miinchen

Summary: This paper discusses the deficiencies of boundary element stiffness matrices, gives an aceount of
the methods proposed to circumvent these defects and proposes a new procedure to obtain symmetric stiff-
ness matrices.

Randelemente und Symmetrie

Ubersicht: In diesem Aufsatz werden die Fehler diskutiert, die bei Steifigkeitsmatrizen, die mit Randele-
menten gewonnen wurden, auftreten, und, es werden die Methoden vorgestellt, die vorgeschlagen wurden, um
diese Fehler zu beheben. Ferner wird, eine neue Methode vorgestellt, symmetrische Steifigkeitsmatrizen zu
erhalten.

1 Introduction

Boundary elements are frequently coupled with finite elements to make use of the advantages
both numerical techniques offer. The coupling is usually done by transforming the boundary
element region into an ‘equivalent’ finite element. An operation which yields a stiffness matrix
that, in general, is neither symmetric nor does it enjoy the other properties a standard FE-
stiffness matrix has.

In this paper we want to give an account of these difficulties trace them back to their mathe-
matical origin and describe the mathematical context of the methods proposed in the literature,
[1, 2], to overcome these difficulties.
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Fig. 1. A bar with a distributed load
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2 Compatibility on the boundary

To calculate the displacement u(z) of a bar as in Fig. 1 at a point « we load an infinite bar at
the same point with a concentrated force P = 1, separate the portion of the infinite bar which
coincides with the real bar from the infinite bar, multiply the end-forces and end-displacements
we observe at the two cuts y = O and y =

flx]? ={x — 1, —a}, ST ={1,(1 — e+ 1}
with the conjugated quantities, the end-forces and end-displacements of the real bar,

f= {fls fE}a ST = {613 62}
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and add to it the scalar product (integral) of the distributed load p(y) and the displacement
w(y, x)

1 1 —=x 1, <z

uly, 7) = —— ( Yy + ¥ <

EA|(1l—y)z+1, 2<y

caused by the single force within the infinite bar. Arranging the result according to Betti’s
principle we obtain

14
Wy = lu(z) + 127 8 = [ ply) uly, 2) dy + 178[a] = W, (1)
0
or

!
ufw) = —f[z]" & + 8[=] 1 + [ ply) uly, 2) dy = (1 — @) &, + ady
0

z

1
o 1f1+[<1~l>x+1]f2+fp<y>[(1_x)y+1]dy

[
1

+fp(y) [(1 —y)x + 1]dyg. (2)

With this influence-function we can calculate the end-displacements 6; = »(0) and §, = u(4)
of the bar as well. Choosing once z = 0 and once z = 4 we obtain

& [ 1 0f[a], 1 [t AL, (2
l=ls Bl mal all 0 .
i 4

Po 4
—_ ,0 d == Id — >
P fp(y)u(z/ ) dy EA[ y=g1
0 0

where

l 4
Po . 20
= J4)dy = =L 1—4 1dy = — )
y2 fp(y)u(y)y EA[[( Yy 4 11 dy TR
0

0

As the d; on the left-hand side are now the same §; as on the right-hand side, we conclude
that these two equations constitute two compatibility conditions for the boundary data of the
bar:

Given a distributed load p, two vectors 8§ = {;} and t = {f;} are the end-displacements and
end-forces resp. of the bar if and only if they satisfy (3).

If we put all the d-terms on one side, (3) becomes

s sl allE A “
3 —3|16,| EA|t —1t||f]| " E4|—20

or in a matrix notation

~—

HS§ = Gf + p. (5)
Multiplying this equation from the left with the inverse of the matrix on the right-hand side we
obtain

0.25 —0.25][4, f 2
EA4 = 6
[~0.25 0.25} [62] [fz oy (6)
or

K§ =1+, (7)
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where the vector r is the vector of the (negative) support reactions of the bar when both ends are
fixed and where K is the stiffness matrix of the bar

B —
k=240 -t
I |—1 1
In case the distributed forces are zero, p(y) = 0, the vector r in (7) drops out and we obtain the
familiar expression

K§ =1 (8)

which formulates a compatibility condition between the boundary values §; and f; of homo-
geneous (p = 0) displacement functions.

, FA=107KN
7 J——— P=50kN
L {=4m ;(

Fig. 2. A bar loaded with a single force

Let us illustrate this with a simple problem. Assume that on loading the bar in Fig. 2 at its
free end with a single force, P = 50 kN, we observed an elongation of 0.18 m. If our observation
ig correct then the boundary-data, the two end-displacements, the one on the left-hand side and
the one on the right-hand side

6, =0, d, = 0.18 m
and the two associated end-forces
fi = —50 kN, f» = B0 kN,

should satisfy the compatibility condition (8):
250 —250][0 |50
—250  250[{0.18] | 50|
But as, obviously, 250 times 0.18 is 45 and not 50 our observation must be wrong. The data §;
and f; do not match, they do not satisfy the compatibility conditions.

Our usage of the word compatibility in this context might seem a little bit strange but it
can be justified as follows: If one would substitute the (erroneous) data 6, = 0, 8, = 0.18,
fi = —50 and f, = 50 into the influence function (2) then these numbers would not be the
boundary values of the function so constructed. We would have not fit at the boundary (and no

overall equilibrium). This is only guaranteed if the data satisfy the compatibility conditions. In
which case the data are also the boundary values of the influence function.

3 Elastic plates

Let us turn now to the two-dimensional analogue of a bar, an elastic plate. The vector-valued
displacement field u = {u,, u,} of such a plate is governed by the Navier equations

—Lijuj 1= —pui,j; — i = Pi (9)

_r_
1 — 2y
and subject to geometric boundary conditions
wu; = U;
on a part Ty of the boundary and static boundary conditions
(W) = oymy; = I; .

on the complementary part I',.
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To calculate the horizontal and vertical displacements at a point x of a plate with boundary
I" we load an infinite plate with a concentrated force P = e, and P = e, resp. at x and apply
Betti’s principle to the two displacement fields, the field of the infinite plate and the field of the
real plate in the domain Q:

Wis= Oz‘juj(x) + [ Ty, x) ui(y) dsy
r
= [ Uiy, x) bi(y) dQy + [ Uiy(y, X) () dsy = Wo,r.
Q r

The terms 77;; in this expression are the components, j = 1, 2, of the fundamental solutions,
1 =1, 2,1ie. the displacements we observe at a point y if at some distant point X acts a concen-
trated force P; = e; and the terms 7';; are the components of the associated traction vector on the
boundary. The values of the matrix C;; which accompanies the free terms u;(x) depend on the
position of the source point x

L, X€EQ
Cij(x) =4 1/26;;, xe€I'  (at a smooth point)
0, b O

In the case of a bar, which is a one-dimensional structural element, tlie compatibility con-
ditions are algebraic equations between numbers, the boundary values of the bar. Now in the
case of a plate, which is a two-dimensional structural element, the same conditions are integral
equations on the boundary

Oij(x) 'U/]-(X) + J[ Tij(Y7 X) u](y) dSy = f U‘ii(y: X) tj(y) d‘sy + f Uif(yz X) Py(Y) d*Qy (10)
r r Q

between the functions u;(x) and £,(x), i.e. between symbols with infinitely many degrees of free-
dom.
If we let the boundary functions u; and ¢;

u; = wipi(X), b = typi(X) (11)

and apply a point collocation process, (10) becomes a linear system of equations
Hu = Gt

whose columns list the influence the boundary layers associated with the nodal values u; and ¢
resp. have on the collocation points distributed along the boundary. As each collocation point
on the boundary influences each other point H and & are fully populated and because ‘influence’
(in general) is not a symmetric relation both H and & are unsymmetric. This is easily understood if
we consider I" to be a material wire, see Fig. 3.

et

%

Fig. 3. A wire with a local density ¢, and ¢;, respectively

The attractive force the element 7, with ‘mass’ ¢, exerts on the collocation point x/, in general,
is not equal to the force the element I”; with ‘mass’ ¢; exerts on the point x* because form, length
and, hence, also ‘mass’ of the two elements differ. Only in the limit, if the elements shrink to
mere points does & become symmetric but not so H because its elements, the tractions 7';(y, X)
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depend on the normals at the boundary point in question. But as the two normals at two collocation
points do (in general) not coincide so do not the elements of H and HT.
In the case of a bar the exact symmetric stiffness matrix

Ké =1
is obtained by multiplying the compatibility condition
Hb = Gf

from the left with G—*.
In the case of a plate we must, in addition, multiply this result

G'Hu =t (12)
with the matrix

F= [Ff ¥ip; ds]

to obtain the vector of the equivalent nodal forces, f, on the right-hand side. (The element F;; of
the matrix F is the virtual work done by the traction-component ¢; acting through the displace-
ment-component ¢;):

¥6G'Hu = Ft ={.
But this result, the stiffness matrix,
K = FGH (13)
has none of those properties exactly
(Kernel) K§° =0 (8° = vector of a rigid-body-motion)
(BEqu.) STKS =0
(Sym.)  87K$ = 5TKS
(Pos. Def.) §7K$ > 0, 5+ 8°
which a standard FE-stiffness matrix has. The reason is that the functions
w = Upi(X), b = bypi(X) (14)

though they solve (12), strictly speaking, are not compatible, are not the boundary values of the

same displacement field. If that would be true, i.e. if two pairs of vectors {u, t} and (1, f} which
satisfy the discrete compatibility condition Hu = Gt would render two pairs of vector-valued
(¢ =1, 2) boundary functions

A A 2 ¥
Ui = Wi b =gy, W=y, b=t

which are the boundary values of two homogeneous (p; = 0) displacement fields then Betti’s
principle should apply

f uidi ds = [ t;i; ds.
r r
But as the left-hand side reads

[ it ds = WFt — uwTFG-1HA = u?Ki
r

and the right-hand side
[ titt; ds = tFi = wTH?61TF & = uK7
r

the two sides do only match if K = K7.
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4 The energy approach

At this point one is tempted to simply continue with the matrix

K:%m+KW (15)

A manipulation which, seemingly, even can be ‘justified’:
The potential energy of a plate loaded with boundary tractions #; but with zero internal for-
ces, p; = 0, reads

1 _
II(n) = ;foijkzﬁij(“) gn) d2 — /tiui ds.
r

~

2

Because of Green’s first identity
foifklgii(u) () d2 = f —Liju; dQ + ftiui ds
Q Q r

and Lju; = 0, ¢ = 1, 2, the potential energy can also be expressed as

I (w) :—;— [t,-ui ds—«fiiui ds.

r r

If we replace ¢; und u; in this expression by (14) then I7;(u) becomes
mm:éWMﬂM—%

and the condition
ol
20;
renders the very same Eq. (15), as before:

(K + KT)u = Ft.

=0 1=1,2,...n

The error we commit, also, is the same as before. The functions »; and ¢; are not the boundary
values of the same displacement field. A displacement field with trace u; = u;;p; does not have
the tractions #; = #;;p; and vice versa.

Unlike FE-methods where the right-hand side, f, of a stiffness
matrix

K =1

is the vector of the equivalent nodal forces of the very same function » = d;p; whose termwise
energy products constitute the elements of K, the right-hand side, f, of a BE-stiffness matrix in
no way — at least mathematically speaking — is associated with the §-vector on the left hand
side. It is a separate independent quantity. No differentiation or integration by parts will get us
from u; to ¢;.

In this context we should also see that the functions u; and #; which solve the discrete compa-
tibility conditions are not the boundary values of the BE-solution, the function we employ to
calculate stresses or displacementes in the interior. The BE-solution is the function

uf(x) = [ [Us(y, %) () — Tiiy, X) wy(y)] dsy + [ Uigly, x) pi(y) 42y (16)
r 2

and its boundary values differ by terms ¢;(x) and #;(x) from the functions u; and #

lim wf(x) = wi(x) + &(x), lim #4(x) = ;(x) + 7i(x).

x—=I =TI

Only at the collocation points do the ¢; vanish but not so the #;. If we use nonconforming
(= discontinuous) elements these latter even become infinite at the element interfaces.
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5 Galerkin’s method

True symmetric relations are obtained — following an idea of the third author — if we, firstly,
complete the set of compatibility conditions, secondly, choose among the then complete set
our conditions wisely and, thirdly, solve these conditions, so chosen, with Galerkin’s method.

To understand this approach better let us denote the boundary values of a Kirchhoff plate,
this will be our model structural element, by

0
Aw = w, 81w——-3w—, Pw =M, Pw=7V,.
n

Betti’s principle (we neglect the corner forces, let I' be smooth) reads in this notation
[ KAdwh d2 + f [BBwddh — OPwdlh + Swdth — Owd] ds
g r

— fwKAAw dQ =0
Q

and the formulae for the four fundamental solutions g;(y, X), 7 = 0, 1, 2, 3, of the Kirchhoff plate
simply

r21n ».

. 1
gy, X) = 890(¥, %), 0¥, X) = ik

These solutions correspond to a concentrated load (¢ = 0), a single couple (v = 1), a bent
in the slope (¢ = 2) and a discontinuity in the deflection (7 = 3).

If we formulate with these four solutions and the real deflection, w, consecutively Betti’s
prineiple then we obtain four integral equations on the boundary, four compatibility conditions,
for the four boundary values d%w associated with the fourth-order operator KAAw

o 333390 35:8290 6389«90 33759;90 Pw o390
L) dw] _ 8‘;,6,12(90 8;,831:% 050390 05030 | | Pw ds, + 8lge pdQ,.
2| Pw 850390 05050 33%3;2(90 ‘935:2{90 lw 2 ’
Pw 3283% 3;&%90 8§8§90 3§a§go Ow 3390
r 0
(17)

The index X or y at & is to indicate that differentiation is done with respect to the coordinates
x; of the source point or the coordinates y; of the field point. So 85&39,(y, X), e.g., is the Kirch-
hoff-shear (8%) at the integration point y caused by a single couple (8}) acting at the boundary
point x.

(In more general terms does (17) express the fact that with the 2m fundamental solutions of
a linear self-adjoint operator of order 2m an equal number of compatibility conditions between
the 2m boundary values of such an operator can be formulated on the boundary; m of these are
linear independent, see [3] p. 216).

Assume the plate is clamped

ow

KAMw=p in2, w=——=0 onl.
: on

This leaves M,, the bending moment, and V,, the Kirchhoff-shear as unknowns. To determine
these two functions we have now the choice among four equations. If we opt for the first two in

{17
110] _ [ [e80sg00%w + oy8hged®w] o ([ 830 pd0
210 e VR s g0 v
r
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and solve these two with Galerkin’s method, (Lu — f, ¢) =0, — that is if we multiply the
equations from the right with test functions ¢;, the same functions we use in the expansions

M, = 8;pi(x) V. = eipi(X)

and integrate once more over I, — then the two equations render the symmetric system

B

iy = | | &Y, X) pily) dsypi(x) ds,
rr

where

by = [ f 03 0%g0ws dsyp; dsy = _f f 2y0390p; dsypi dsy,
rr P

cij = [ [ ehelgopi dsypy dsy fl = [ [ Eigoly, %) p(¥) dQypy() ds,..
rr rr

Tf, instead, we had chosen the last two equations in (17) then, regardless of Galerkin or not,
an unsymmetric system of equations would result because then the sum of the indices of the off-
diagonal kernels in the two equations would not be equal, i.e. the resulting off-diagonal matrices
would not be adjoint. An adjoint formulation is always possible as long as the problem is regular,
that is as long as on every part of the boundary of two conjugated quantities one is known and
the other is unknown.

The disadvantage of this approach is that we need to integrate two times and the fact that
the deeper we move in the scheme (17), and this we must do, sometimes, to retain the symmetry
the more singular the kernels become.

The integral operators which constitute the compatibility conditions can be viewed as opera-
tors which shift funetions from Sobolev spaces H7+*(I") into spaces H*(I"), [4]. If 2x is positive
the operator differentiates the function and if 2« is negative it integrates a function. In a sym-
bolic notation we may, therefore, replace the kernels by the shifts, they effect, i.e., 24 = —1
(the kernel integrates once), 2x = 0 (it neither differentiates nor integrates) ete.

The boundary values of & plate are, roughly said, zero-th, first, second and third derivatives.
So, in a symbolic notation, we may replace them by the numbers 0, 1, 2 and 3 resp. The four
compatibility conditions, thus, assume the following format:

0 3 —2 —1 0773
1] -2 =1 o tf]2],
2l =1 o 12|17
3 o 1 2 3]]o

The first equation is the influence function for w A 0. In this equation all boundary terms are
mapped onto w, the function on the left-hand side, that is they are integrated (besides w, of
course), the third derivative, the Kirchhoff-shear, even three times. The last equation is the in-
fluence function of the Kirchhoff-shear ¥, = 3. In this equation all the boundary functions (be-
sides V,) are differentiated; the deflection w even three times. But a kernel which differentiates
a function three times is very, very singular, actually it is of the order »=2, and the numerical
taming and handling of such a kernel is a delicate affair.

6 Green’s function

Closely related to the idea to solve the compatibility conditions by Galerkin’s method is the
idea to derive stiffness matrices by way of Green’s functions, [5], [6]. Here too, a double inte-
gration process of a symmetric kernel renders a symmetric stiffness matrix as we shall explain
next.
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In the absence of distributed loads the potential energy of a Kirchhoff plate which is subject

to a certain deflection, w, and slope, ?ﬁ, conditions on the boundary
n
1
I (w) = 3 E(w, w)

can be expressed in terms of boundary integrals alone

I (w) = %— E(w, w) = —;—f[Vnw - M, %:—] ds. (18)
r

If we formulate the compatibility conditions (17) with Green’s function G, = ¢, + w;, the
deflection of the clamped plate loaded with a concentrated force P = 1, the 3rd and 4th equation
in (17) simplify to

1
5 M, = f [0505G,8°w + 8302G,0'w] dsy,
r

1
S Ve= f [6363G 0% + 0263G,0Mw] di, .
r

Substituting these right-hand sides into (18) and letting the displacement terms on the
boundary
ow

w = 0;;, P2

the potential energy becomes a quadratic form of the nodal values
1 A B][s
T = —[8,
() =518, €] [BT CJ H
i.e. the stiffness matrix

0/@'7‘ = f J‘ 8;6§G0(p, dSy(}')j de,
rr

bij = [ [ 838 Gopi dsyp; dsx = [ [ 8303 Gop; dsypi sy,
rr r r

C,']' = f f 836,2( Gotpi dsy(py' dSX
rr

is symmetric.
The obvious difficulty with this approach is that we need to know Green’s function of the
structural element in question. Only in a limited number of cases do we possess analytical ex-

pression of these functions, [6].
To close, let us return to the elastic plate and the difficulty we had with the stiffness matrix.
If, following the example of the Kirchhoff plate, we denote by
n =u, o'n = t(u)
the boundary operators of the elastic plate Betti’s principle reads
[—Lu-6dQ+ [du-dds = [ ou- o ds + [ w-(—TLd)de
Q r r 2

and the complete set of compatibility conditions for the boundary values now assumes the

form

0 n0 T 140 T 1

_1_ u — (ayaxU) (aanU) o dsy _G_ e (19)
2 |o @0)" (76:0)7 | [ u

r
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where U = [U};] is the Somigliana matrix whose columns are the fundamental solutions corre-
sponding to concentrated unit forces e; and e, acting at x and where the columns of the matrix
21U are the fundamental solutions corresponding to horizontal and vertical displacement dis-
continuities.

The first matrix equation is identical with the two (v = 1, 2) compatibility conditions (10).

If we would add to U a matrix Uy such that the columns of U 4 Uy comply with homo-
geneous displacement conditions on the boundary then in the process of the derivation of the
second equation the first integral in (19) would vanish and we would obtain an influence function
for the traction vector t(x) = ¢'u in terms of the boundary displacement u alone

t(x) = [ (8,23U)7 u ds,
r

and as the kernel of this influence function is symmetric Galerkin’s method
f ip; ds = f f (0303 0) 5 w; dsyp; dsy
r rr

would, thus, render a symmetric stiffnes matrix.

Comparing this result with our previous result, K = FGH, we recognize that what we did
by multiplying the compatibility condition from the left with G~' was that we approximated
the symmetric kernel 830U by the discrete and unsymmetric kernel G1H.

For completeness we should mention that Mustoe, [2], gave the energy approach an additional
twist. Instead of the potential energy he uses the basic functional (= potential energy -+ addi-
tional boundary terms, s. [3]), and lets u and t, as well as the virtual displacements i, the boundary
values of a potential of the first kind. This requires actually three integrations, one for u, one for
t and one for the evaluation of the variation of the basic functional.
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