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B o u n d a r y  e l e m e n t s  a n d  s y m m e t r y  

F. Har tmann ,  Dor tmund ,  C. Katz, Erl ing-Andechs,  and  B. Protopsaltis, Miinehen 

Summary: This paper discusses the deficiencies of boundary element stiffness matrices, gives an account of 
the methods proposed to circumvent these defects and proposes a new procedure to obtain symmetric stiff- 
ness matrices. 

Randelemente und Symmetrie 

t]bersieht: In diesem Aufsatz werden die Fehler diskutiert, die bei Steifigkeitsmatrizen, die mit Randele- 
menten gewonnen wurden, auftreten, und es werden die Methoden vorgestellt, die vorgeschlagen wurden, um 
diese Fehler zu beheben. Ferner wird eine neue Methode vorgestellt, symmetrische Steifigkeitsmatrizen zu 
erhalten. 

I Introduction 

B o u n d a r y  elements are f requent ly  coupled with finite elements to make  use of the  advantages  
both numerical  techniques offer. The  coupling is usually done by t ransforming the boundary  
element region into an  'equivalent '  finite element. An  operat ion which yields a stiffness mat r ix  
that ,  in general, is neither symmetr ic  nor does it enjoy the other  properties a s tandard  FE-  
stiffness mat r ix  has. 

I n  this paper  we want  to give an  account  of these difficulties t race them back to their mathe-  
matical  origin and describe the mathemat ica l  context  of the methods proposed in the literature, 
[1, 2], to  overcome these difficulties. 

, .  x . ,  - P (Y) =Po 

Fig. 1, A bar with a distributed load 

2 Compatibility on the boundary 

To calculate the displacement u(x) of a bar  as in Fig. 1 at  a point  x we load an infinite bar  at  
the same point  with a concentra ted force P ~ l ,  separate the por t ion of the infinite bar  which 
coincides with the  real bar  f rom the infinite bar, mul t iply  the end-forces and end-displacements 
we observe at the  two cuts y = 0 and y = 1 

f[x]~ = {x - 1, - x } ,  6[x]~ = {1, (1 - l) x + 1} 

with the conjugated quantit ies,  the  end-forces and end-displacements of the real bar, 

= {I,, A} ,  S �9 = {~ .  a~} 
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and add to it the scalar p roduc t  (integral) of the distr ibuted load p(y) and the  displacement 
u(y, x) 

u(~,x) = _ L  J ( 1 -  x )y  + ~, y < x  
E A l ( 1 - - y )  x + l ,  x ~ y  

caused by  the single force within the infinite bar. Arranging the result according to Bet t i ' s  
principle we obta in  

I 

o r  

WI,~ = lu(x)  + f[x] T S = f p(y) u(y, x) dy -+- feS[x] = W 2 , 1  

o 

(2) 

l 

u(x) = - f i x ]  ~ s + Six] ~ f + f p (y )  u(y, x) dy : (1 -- x) (~, -~ x3 2 
0 

+ ~  2/, + [ ( 1 - - 1 )  x + 1 ] / ~  + p ( y ) [ ( 1 - - x ) y +  1 ] d y  

I 

+ f ro )  [(1 - y) x + ~] dy  . (2) 
x 

With  this influence-function we can calculate the end-displacements 31 = u(0) and 32 = u(4) 
of the bar  as well. Choosing once x = 0 and once x = 4 we obtain  

[::]:[ ; 
l 4 

f f 4 p, : p(y) u(y, O) dy = EAP~ ldy = - ~  Po, 

0 0 

l 4 

0 0 

where 

(3) 

20 
- -  ~ 9 0  o 

EA 

o r  

KS ---- f + r, (7) 

Multiplying this equat ion from the left with the inverse of the matr ix  on the r ight -hand side we 
obtain  

--0.25 0.25J 32 = /2 @ Po (6) 

[; 
or in a matr ix  nota t ion  

HS = Gf + p. 

-12 h ~ - ~ - 2 0  

(5) 

(4) 

As the di on the left-hand side are now the same 31 as on the r igh t -hand side, we conclude 
tha t  these two equat ions const i tute  two compat ibi l i ty  conditions for the boundary  data  of the 
b a r  : 

Given a distr ibuted load p, two vectors S = {3i} and f --  {/i} are the end-displacements and 
end-forces resp. of the bar if and only if t hey  satisfy (3). 

I f  we pu t  all the &terms on one side, (3) becomes 
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where the vector r is the vector of the (negative) support reactions of the bar when both ends are 
fixed and where K is the stiffness matrix of the bar 

In  ease the distributed forces are zero, p(y) = 0, the vector r in (7) drops out and we obtain the 
familiar expression 

KS = f (8) 

which formulates a compatibility condition between the boundary values ~ and /~ of homo- 
geneous (p : 0) displacement functions. 

E,4 =103 kN 

I ~-- P = 50kN 
// 

L l =4~ _l 

Fig. 2. A b~r loaded with a single force 

Let us illustrate this with a simple problem. Assume that  on loading the bar in Fig. 2 at its 
free end with a single force, P ~ 50 kN, we observed an elongation of 0.18 m. If  our observation 
is correct then the boundary-data, the two end-displacements, the one on the left-hand side and 
the one on the right-hand side 

~1 = 0, ~2 = 0.18 m 

and the two associated end-forces 

/1 = --50 kN, /2 = 50 kN, 

should satisfy the compatibility condition (8) : 

--250 250J 0.18 50 

But as, obviously, 250 times 0.18 is 45 and not 50 our observation must be wrong. The data di 
and / i  do not match, they do not satisfy the compatibility conditions. 

Our usage of the word compatibility in this context might seem a little bit strange but it 
can be justified as follows: If  one would substitute the (erroneous) data dl = 0, ~2 = 0.18, 
/1 ----- --50 and /2 = 50 into the influence function (2) then these numbers would not be the 
boundary values of the function so constructed. We would have not fit at the boundary (and no 
overall equilibrium). This is only guaranteed if the data satisfy the compatibility conditions. In  
which ease the data are also the boundary values of the influence function. 

3 Elastic plates 

Let us turn now to the two-dimensional analogue of a bar, an elastic plate. The vector-valued 
displacement field u = {ui, u21 of such a plate is governed by the ~Tavier equations 

_ L ~ i u j  : ~_ - - I t u i , .  ,u - -  u j j ~  = p~  (9) 
1 - -  2u 

and subject to geometric boundary conditions 

on a part/"1 of the boundary and static boundary conditions 

on the complementary part F~. 
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To calculate the horizontal and vertical displacements at a point x of a plate with boundary 
]" we load an infinite plate with a concentrated force P ~- el and P ~ e2 resp. at x and apply 
Betti 's principle to the two displacement fields, the field of the infinite plate and the field of the 
real plate in the domain/2:  

wl,  = + f Ti~(y, x) uj(y) dsy 
F 

= f Uii(y, x) bj(y) dDy + f Uii(y, x)ti(y) dsy --  W2,1. 

The terms Uii in this expression are the components, ] = 1, 2, of the fundamental solutions, 
i = 1, 2, i.e. the displacements we observe at a point y if at some distant point x acts a concen- 
trated force Pi = ei and the terms Tij are the components of the associated traction vector on the 
boundary. The values of the matrix C~i which accompanies the free terms uj(x) depend on the 
position of the source point x 

1, x E D  

CIj(x) ~ 1/2dij, x C F (at a smooth point.) 

[ 0 ,  x E D  ~ 

In  the case of a bar, which is a one-dimensional structural element, the compatibility con- 
ditions are algebraic equations between numbers, the boundary values of the bar. Now in the 
case of a plate, which is a two-dimensional structural element, the same conditions are integral 
equations on the boundary 

Cij(x) 7/,~-(X) -~ f Ti,(y , x) u,(y) (18, ~- f Ui,(y , x) t](y)dsy § f Ui,(y , x)~gj(y)d~y (10) 
F F /2 

between the functions ui(x) and ti(X), i.e. between symbols with infinitely many degrees of free- 
dom. 

If  we let the boundary functions ul and t~ 

ui = uiig~i(x), ti = to'q)j(x) (11) 

and apply a point collocation process, (10) becomes a linear system of equations 

H u  = Gt  

whose columns list the influence the boundary layers associated with the nodal values ui and ti 
resp. have on the collocation points distributed along the boundary. As each collocation point 
on the boundary influences each other point H and G are fully populated and because 'influence' 
(in general) is not a symmetric relation both H and G are unsymmetrie. This is easily understood if 
we consider F to be a material wire, see Fig. 3. 

Fig. 3. A wire with a local density ~e and ~l, respectively 

The attractive force the element Fk with 'mass' qr exerts on the collocation point x ~, in general, 
is not equal to the force the element Ft with 'mass' ~t exerts on the point x k because form, length 
and, hence, also 'mass' of the two elements differ. Only in the limit, if the elements shrink to 
mere points does G become symmetric but not so II  because its elements, the tractions Ti~(y, x) 



444 Ingenieur-Archiv 55 (1985) 

depend on the normais at the boundary point in question. But  as the two normals at two collocation 
points do (in general) not coincide so do not the elements of t t  and t t  ~. 

In  the case of a bar  the exact symmetric stiffness matr ix  

K 8  = f 

is obtained by multiplying the compatibili ty condition 

H 8  : Gf 

from the left with G -1. 
In  the ease of a plate we must,  in addition, multiply this result 

G - 1 H u  : t (12) 

with the matr ix  

to obtain the vector of the equivalent nodal forces, f, on the right-hand side. (The element Fi~ of 
the matr ix  F is the virgual work done by the traction-component q)i acting through the displace- 
ment-eomponent  ~0i) : 

F G - 1 H u  = Ft  = f .  

But  this result, the stiffness matrix,  

K : F G - 1 H  (13) 

has none of those properties exactly 

(Kernel) K8 ~ = 0 (8 ~ = vector of a rigid-body-motion) 

(Equ. )  8~  : 0 

(Sym.) 8TKg = 8~K8 

(Pos.  De f . )  8 ~ K 8  ~ 0 ,  8 :~ 5 0 

which a standard FE-stiffness matr ix  has. The reason is that  the functions 

Ui = U i i c f i ( X ) ,  t i = tiiqDi(x) (14) 

though they solve (12), strictly speaking, are not compatible, are not the boundary values of the 

same displacement field. I f  that  would be true, i.e. if two pairs of vectors {u, t} and {fi, t'} which 
satisfy the discrete compatibil i ty condition I tu  = Gt would render two pairs of vector-valued 
(i = 1, 2) boundary functions 

u~ : -  u~iqpi, ti ~- t~iq~ j , ~ : r t~ = tljq~i 

which are the boundary values of two homogeneous (Pi = 0) displacement fields then Bett i ' s  
principle should apply 

f u i ~ d s  = f t ~ i d s .  
F F 

But as the left-hand side reads 

F 

and the right-hand side 

f tlgi ds -~- t F f i  = uTHfG- l rFu  = ueK~u 
; 

the two sides do only match if K = K T. 
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4 The energy approach 

At  this poin t  one is t emp ted  to s imply  cont inue with the  ma t r ix  

1 (K + KT). (15) 

A manipu la t ion  whieh, seemingly,  even can be ' just i f ied ' :  
The  poten t ia l  energy of a pla te  loaded with bounda ry  t ract ions  ii bu t  with zero in ternal  for- 

ces, Pl = O, reads 

f Hi(u)  = ~ Uijkte~j(u) ekl(U) d D  - -  i iu i  d s .  

~ F 

Because of Green 's  f irst  iden t i ty  

f d.O = f + f tiui ds 
D D F 

and Liiuj • 0, i = 1, 2, the poten t ia l  energy can also be expressed as 

Ill(u) = 1  ; t iu lds- -  ;t iuids.  
F F 

I f  we replace ti und  ui in this expression b y  (14) then/7~(u)  becomes 

/ / l (u)  = _1 u~FG_~H u _ ~r u 
2 

and the  condit ion 

J / 1 : 0  i - ~ l , 2 , . . . n  

renders the  ve ry  same Eq.  (15), as before:  

(K + K~) u = ~ .  

The error we commit ,  also, is the  same as before. The  funct ions ul and ti are not  the boundary  
values of the  same d isp lacement  field. A displacement  field with t race  ui ~ uiigi does not  have  
the t rac t ions  ti = tijq~i and vice versa.  

Unl ike  F E - m e t h o d s  where the  r igh t -hand  side, f, of a stiffness 
ma t r ix  

K 8  = f 

is the  vec tor  of the  equivalent  nodal  forces of the  ve ry  same funct ion u = r i whose termwise  
energy products  const i tu te  the elements  of K, the  r igh t -hand  side, f, of a BE-st i f fness  m~t r ix  in 
no w a y  - -  a t  least  ma thema t i ca l l y  speaking  - -  is associated with the &vec to r  on the  left  hand  
side. I t  is a separa te  independent  quant i ty .  No different ia t ion or in tegra t ion  b y  par t s  will get  us 
f rom ui to ti. 

I n  this con tex t  we should also see t h a t  the funct ions u~ and  t~ which solve the discrete compa-  
t ibi l i ty  condit ions are not  the  bounda ry  values of the  BE-solut ion,  the  funct ion we employ  to 
calculate stresses or d isplacementes  in the  interior.  The  BE-solu t ion  is the  funct ion 

u~(x) = f [Vlj(y, x) ti(y) - -  Tit(y, x) uj(y)] doy + f Uij(y, x) pj(y) d~y (16) 
r Q 

and  its bounda ry  values differ by  te rms  ei(x) and  ~]i(x) f rom the funct ions ui and ti 

lira u~'(x) : ui(x) + ei(x), lira t/h(x) = ti(x) + ~7i(x). 
X ->F X-->F 

Only a t  the collocation points  do the  ei vanish  but  not  so the ~]i. I f  we use nonconforming  
( ~  discontinuous) e lements  these la t te r  even become infinite a t  the e lement  interfaces.  
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5 Galerkin's method 

True symmetric relations are obtained - -  following an idea of the third author - -  if we, firstly, 
complete the set of compatibili ty conditions, secondly, choose among the then complete set 
our conditions wisely and, thirdly, solve these conditions, so chosen, with Galerkin's method. 

To understand this approach better  let us denote the boundary values of a Kirchhoff plate, 
this will be our model structural element, by 

~W 
8~  = w , ~ w  - -  8 n  ' 8~w = M n  , S a w =  V ,  . 

Betti 's  principle (we neglect the corner forces, let F be smooth) reads in this notation 

f KAAw~V dr2 @ f _ ~2w~l~) ~_ ~lw~2~) _ ~Ow~3~) ] d8 
p 

f w K A A C v  d ~  = 0 
D 

and the formulae for the four fundamental  solutions yi(y, x), i = 0, 1, 2, 3, of the Kirchhoff plate 
simply 

1 
gi(y, x) : 8~xg0(y, x), g0(Y, x) - -  8~K r~ in r. 

These solutions correspond to a concentrated load (i = 0), a single couple (i --  1), a bent 
in the slope (i ~ 2) and a discontinuity in the deflection (i --  3). 

I f  we formulate with these four solutions and the real deflection, w, consecutively Bett i 's  
principle then we obtain four integral equations on the boundary, four compatibili ty conditions, 
for the four boundary values ~w associated with the fourth-order operator K A A w  

1 

2 

 ow] f [-ey xgo o  2Ogo-] [ f [ Oeo o , x.o  Ag0 / . 8 o . .  / / = , + 
o ~ 8ySxgo 8y~xgo 

_~wJ L~y~vqo~ ~ ~x~3.y x.o ~,~axgo ~ g o J  L ~~ L~3,#o/ 
f .0 

I0 d~Qy. 

(17) 

The index x or y at  ~ is to indicate tha t  differentiation is done with respect to the coordinates 
ay~xg0(Y, x), e.g., is the Kirch- xl of the source point or the coordinates ys of the field point. So 3 1 

hoff-shear (8~) at the integration point y caused by a single couple (81x) acting at the boundary 
point x. 

(In more general terms does (17) express the fact that  with the 2m fundamental  solutions of 
a linear self-adjoint operator of order 2m an equal number  of compatibili ty conditions between 
the 2m boundary values of such an operator can be formulated on the boundary;  m of these are 
linear independent, see [3] p. 216). 

Assume the plate is clamped 

0w 
K A A w = p  i n ~ ,  w =  8n = 0  o n / ' .  

This leaves M~, the bending moment,  and Vn, the Kirchhoff-shear as unknowns. To determine 
these two functions we have now the choice among four equations. I f  we opt for the first two in 

(17) 

2 [~Oa~go~3 w 1 1 
F 9 
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and solve these two with Galerkin's method, (Lu- / ,  ~v) = O, - -  that  is if we mult iply the 
equations from the right with test  functions 9i, the same functions we use in the expansions 

and integrate once more over T', --  then the two equations render the symmetric system 

where 

=/ 
F F 

OyOxgO~Oi dsy~j 
F F  F F  

F F  I ' F  

If, instead, we had chosen the last two equations in (17) tl~en, regardless of Galerkin or not, 
an unsymmetrie system of equations would result because then the sum of the indices of the o f t  
diagonal kernels in the two equations would not be equal, i.e. the resulting off-diagonal matrices 
would not be adjoint. An adjoint formulation is always possible as long as the problem is regular, 
tha t  is as long as on every part  of the boundary of two conjugated quantities one is known and 
the other is unknown. 

The disadvantage of this approach is that  we need to integrate two times and the fact that  
the deeper we move in the scheme (17), and this we must  do, sometimes, to retain the symmet ry  
the more singular the kernels become. 

The integral operators which constitute the compatibil i ty conditions can be viewed as opera~ 
lr-~. 

tors which shift functions from Sobolev spaces H~+~(F) into spaces H (/'), [4]. I f  2~ is positive 
the operator differentiates the function and if 2~ is negative it integrates a function. In  a sym- 
bolic notation we may, therefore, replace the kernels by the shifts, they effect, i.e., 2c~ = --1 
(the kernel integrates once), 2a --~ 0 (it neither differentiates nor integrates) etc. 

The boundary values of a plate are, roughly said, zero-th, first, second and third derivatives. 
So, in a symbolic notation, we may  replace them by the numbers 0, 1, 2 and 3 rasp. The four 
compatibil i ty conditions, thus, assume the following format:  

--1 0 

0 1 ~ . . . . .  

1 2 

The first equation is the influence function for w ~ 0. In  this equation all boundary terms are 
mapped onto w, the function on the left-hand side, tha t  is ~hey are integrated (besides w, of 
course), the third derivative, the KirchhofLshear, even three times. The last equation is the in- 
fluence function of the Kirehhoff-shear V, = 3. In  this equation all the boundary functions (be- 
sides V,) are differentiated; the deflection w even three times. ]But a kernel which differentiates 
a function three times is very, very singular, actually it is of the order r -3, and the numerical 
taming ancl handling of such a kernel is a delicate affair. 

6 Green's function 

Closely related to the idea to solve the compatibili ty conditions by Galerkin's method is the 
idea to derive stiffness matrices by way of Green's functions, [5], [6]. Here too, a double inte- 
gration process of a symmetric kernel renders a symmetric stiffness matr ix  as we shall explain 
next. 
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In  the absence of distributed loads the potential energy of a Kirchhoff plate which is subject 
aw 

to a certain deflection, w, and slope, -~n '  conditions on the boundary 

1 
M I ( W  ) ~-  = E ( ' ~ ,  w )  

z 

can be expressed in terms of boundary integrals alone 

II~(w) -~ E(w, w) = V~w -- M ~w ] = . ~ j ds .  ( i s )  

F 

If we formulate the compatibility conditions (17) with Green's function Go = g0 ~- wR, the 
deflection of the clamped plate loaded with a concentrated force P = 1, the 3rd and 4th equation 
in (17) simplify to 

1 Mn__ f 82  o 22 1 
- -  [~y~xG0 ~ W ~- -- ~y~xGo D w] dsy, 
2 J 

F 

- -  = ~y~xGo ~ w] dsy. 
2 

F 

Substituting these right-hand sides into (18) and letting the displacement terms on the 
boundary 

~w 

~n 

the potential energy becomes a quadratic form of the nodal values 

Lr~(w) = ~ IS, c] BT 

i.e. the stiffness matrix 

a,,= f J 3 ~ ~yOxOO(Pl dsyq)i dsx, 
F F  

bo __ f f 3 ~ ds x : 48yq~ i d8 x ~y~x ao~ dsy~j f f 2 3 ~y~x Goq~i 
F F r F 

8y~x dsy~v i 
F F 

is symmetric. 
The obvious difficulty with this approach is that  we need to know Green's function of the 

structural element in question. Only in a limited number of cases do we possess analytical ex- 
pression of these functions, [6]. 

To close, let us return to the elastic plate and the difficulty we had with the stiffness matrix. 
If, following the example of the Kirchhoff plate, we denote by 

~ ~  = u ,  ~ l u  = ~ ( u )  

the boundary operators of the elastic plate Betti 's principle reads 

f - - L u .  fi dr2 + f 01u. ~ofi ds = f ~~ Olfi ds + f u .  (--Lfi)ds 
~2 F F 

and the complete set of compatibility conditions for the boundary values now assumes the 
form 

1 [~0U]  : f [ ( S y ~ x U )  0 0 T 1 0 T 
0 1 T 1 1 T-  t - . , 2 ~ u  L(~y~U) (#y0x U) j [~~ dsy d- (19) 

F 
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where U = [U~j] is the Somigliana mat r ix  whose columns are the fundamenta l  solutions corre- 
sponding to concentra ted  uni t  forces el and e2 act ing at  x and where the columns of the matr ix  
01xU are the fundamenta l  solutions corresponding to horizontal  and  vertical  displacement  dis- 
continuities. 

The first mat r ix  equat ion is identical with the two (i ~ 1, 2) compat ibi l i ty  conditions (10). 
I f  we would add to U a matr ix  U~ such tha t  the columns of U + UR comply  with homo- 

geneous displacement  conditions on the boundary  then in the process of the derivat ion of the 
second equat ion the first integral  in (19) would vanish and we would obtain  an influence funct ion 
for the t rac t ion vector  t(x) = 31u in terms of the boundary  displacement  u alone 

t(x) = f  11 (OyGU) u dsy 
F 

and as the kernel of this influence funct ion is symmetr ic  Galerkin's  method  

(O~GU)ii u~ dsycf~ ds x 
F F F 

would, thus,  render a symmetr ic  stiffnes matrix.  
Comparing this result  with our previous result, K = FG-1tt,  we recognize tha t  wha t  we did 

by  mult iplying the compat ibi l i ty  condit ion from the left with G 1 was tha t  we approx imated  
the symmetr ic  kernel 0~lx U by  the discrete and unsymmetr ic  kernel (]-11I. 

For  completeness we should ment ion  tha t  Mustoe, [2], gave the energy approach an addit ional  
twisV. Ins tead  of the potent ia l  energy he uses the basic functional  ( - -  potent ia l  energy ~- addi- 
t ional boundary  terms, s. [3]), and lets u and t, as well as the virtual  displacements fi, the boundary  
values of a potent ia l  of the first kind. This requires actual ly  three integrations,  one for u, one for 
t and one for the evaluat ion of the variat ion of the basic functional.  
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