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Abstract. A mathematical treatment is given for 1/] noise observed in the ion transport 
through membranes. It is shown that this noise can be generated by current or voltage 
fluctuations which occur after step changes of the membrane permeability. Due to diffusion 
polarization in the unstirred solution layers near the membrane these fluctuations exhibit a 
1/l/t-time course which produces noise with a 1// frequency dependence. The spectral density 
of 1//noise is calculated for porous membranes with random switches between a finite and zero 
pore permeability. A wide frequency range and a magnitude of 1/] noise are obtained which are 
compatible with experimental data of 1/] noise reported for nerve membranes. 
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Introduction 

In  the state of thermodynamic equilibrium the source of electrical noise is the 
Brownian movement of charge carriers. The noise from non-equilibrium ionic 
systems is larger than this thermal noise level. The spectral density of this "excess 
noise" decreases at increasing frequencies / and varies in many cases approxi- 
mately inversely to / over a wide frequency range. This explains the term " l / /  
noise" which was reported in current or voltage fluctuations at semiconductors 
and at various biological and artificial membranes (Verveen and DeFelice, t974). 
For this widely occnring kind of noise no generally accepted theory is available 
at present. A superposition of relaxation processes with a certain distribution of 
time constants can yield a i l l  spectrum (Kingston and McWhorter, 1956 ; Hafford, 
1968), but no mechanism has been described which generates this particular 
distribution. 0finer (t970, 1972) has claimed to obtain a l/]  noise by random walk 
of charge carriers across a potential barrier. However, Bird (i974) pointed out that  
such a process does not give a I//  dependence over a wide frequency range. 
Coupling between parameters of ion pulses passing through the membrane may 
cause i / /  noise (Heiden, 1969; Schick, i974), but the origin of this coupling 
remains unclear. Finally an empirical formula for the spectral density of i / /noise  
was proposed by Hooge and Gaal (1971) which, however, is not in agreement with 
excess noise measured at artificial membranes (Dorset and Fishman, 1975). 

In  this contribution a theoretical interpretation of i/f membrane noise is 
presented. I t  is shown that  diffusion polarization in the unstirred solution layers 
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branforschung". 



296 B. Neumcke 

near the membrane causes a decrease of the current through the membrane which 
is proportional to i / ~ - a t  sufficiently long times t after a change of the membrane 
permeability. This time dependence is known to yield 1//noise (SchSnfeld, i955). 
In order to explain the t f f  noise measured at nerve membranes we investigate 
the time course I(t) of the current through a membrane pore which switches 
randomly between two permeability states. I t  is found that  I(t) can be repre- 
sented as superposition of current pulses which are generated at each permeability 
change and which decay proportional to i/Vt-during the whole lifetime of the 
pore. With pore parameters taken from the literature we then calculate a fre- 
quency range and spectral density of i / f  membrane noise which are compatible 
with experimental data reported for nerve membranes. 

Some results of this work were presented at the Vth International Biophysics 
Congress i975 (Abstract P 483). 

Results 

l ff Noise Generated by Processes with 1/~/t Time Dependence 
In  theoretical noise analyses fluctuating quantities normally are approximated 

by rectangular step functions or represented by random occuring pulses decaying 
exponentially. For the latter case a single event is described by 

0 t < O  
g(t)= exp (-- tiT) t>~ O, (i) 

where g is the fluctuating variable (voltage, current etc) and T the time constant 
of the exponential decay. 

The Fourier transform 

G(/) = ~ g(t) exp ( - 2 ~ i f t) dt (2) 
- - 4  

of g(t) is 

(3) G ( / ) -  ~ + 2~i/~ 

I f  the events g (t) occur at random at the average rate ~, the spectral density 
S (/) of the associated noise power spectrum can be calculated by applying Carson's 
theorem (van der Ziel, 1970): 

S(/) = 2 ;~ [G(/) [~ (4) 

The result is the well known Lorentzian spectrum 

2A~ 2 
S (/) -- I + (2 ~ / ~)~ (5) 

which is constant at low frequencies f<< i/2 ~ ~ and decays proportional to l//~ 
at high frequencies/>> i/2 ~ ~. 

The normalization factor of the spectrum (5) is in agreement with the condition 

f S ( f )  dr= < g2(t)>, (6) 
0 
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Fig. 1. Power spectrum S(]) of events g(t) defined in Eq. (8) for the parameters a = t0 -a s, 
tO -5 s. S(/) is normalized at f = 1 Hz 

where 
l 

< g~ (t) > = -~ ~ ~ (7) 

is the variance of g (~). 
Exponential ly decaying variables thus yield a Lorentzian noise spectrum. 

Accordingly, a superposition of mutual ly independent events decaying exponent- 
ially with different t ime constants will result in a spectrum which is the sum of the 
individual Lorentzian functions. In  this way, therefore, no spectrum can be 
obtained which decays proportional to i / f  within a wide frequency range (Hill 
and Chen, ~972). 

We now want  to compute the noise spectrum of events g(t) which decay 
proportional to t/Vt-at t > a > 0 : 

0 t <  a (8) 
~ ( t )=  V ~ -  t>~ a .  

The Fourier transform G (]) of g (t) can be expressed in terms of Fresnel integrals 
(SehSnfeld, i955) or computed numerically. Fig. i shows the noise spectrum 
obtained from our computations for two values of the parameter  a. 

For frequencies ] < J[/2 ~ a the spectrum turns out to be proportional to ~//, 
at  higher frequencies S (/) decays as l / ]  2. Thus for sufficiently low values of a, 
a wide frequency range is obtained with a ~/] dependence of the spectral intensity 
S (~). In  the extreme case a = 0, S (f) would be proportional to l[~ at  all frequencies 
(Verveen and DeFel/ce, 1974). 

Since the computed spectrum is proportional to 1/] for all frequencies 
/ < 1/2 ~ a, S (]) diverges in the low frequency limit f--~ 0 and no finite value for the 
variance of g (t) would be obtained from Eq. (6). This divergence is caused by  the 
t ime course (8) of g(t)  which was postulated to be proportional to l / ~ - a t  times 
t > a. A superposition of an unlimited number  of such single events occnring 
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Fig. 2. Power spectrum S(/) of events g(t) defined in Eq. (9) for the parameters a = 10 -~ s, 
b = I s. S(/) is normalized at / = I Hz 

r andomly  would yield an  infinite ampl i tude  thus  explaining the  divergence of 
S (]). Therefore,  i t  is more  realistic to invest igate  the  noise spec t rum of events  g (t) 
which decay propor t ional  to l / i / t -within a l imited t ime range a < t < b: 

0 t < a  
g(t)= l/~/t a<~ t<~ b. (9) 

0 t > b  

I n  this case the  1// dependence of  S(]) is res t r ic ted to frequencies / wi th  
1/2 ~ b < / <  1/2 ~ a as can be seen f rom Fig. 2. A t l o w  frequencies/<< 1/2 ~r b S(/)  
assumes the  cons tan t  value 

S(/)  = 8 2  ( V b -  V3F (10) 

and a t  high frequencies/>> t /2  ~ a the spec t rum falls off as 1//2 as in Fig. t .  
The small  oscillations between ] - -  t and l0  Hz  which are super imposed to the 

1// dependence in Fig. 2 are genera ted b y  the  fixed pulse length b -  a of  the  
events  (9) yielding oscillations with the  period t[(b - a) in the  noise spect rum.  For  
pulses (9) with a small  sca t ter  of  the  pulse length, a pure  i / /  spec t rum would be 
obta ined  in the  f requency range 1/2 ~r b < ] <  t /2  ~r a. This  1// dependence is 
independent  of  the  pulse ampl i tude  g (t) be tween t = 0 and  t = a. I n  Eq.  (9) 
vanishing values were assumed in this t ime  region. Bu t  the  same t / ]  spec t rum in 
the  f requency range 1/2 zt b < / <  1/2 ~r a is obta ined  if  g(t) assumes nonzero 
values for 0 < t < a. 

For  r andom occuring events  (9) and frequencies )t wi th  ]>> 1/27~b and ]<< l/2z~a 
the  spectral  in tens i ty  S (/) can be app rox ima ted  b y  a ve ry  simple expression which 
coincides wi th  the  numerical  results in this f requency range. The  Fourier  t r ans form 

(/) of  g (t) 
b 

G ( / ) =  ~ e x p ( - - 2 ~ i / t )  dt (11) 
a 
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c~n be written as 
2~ ]b 

l ~ exp -iZ) dz (12) 
2~ ]a 

by introducing the new variable z : 2 z f t .  Lower and upper integration limits 
then can be replaced by 0 and c~ respectively: 

1 ~ exp ( - iz) 
G(/) = - V ~  J gz  dz (t3) 

o 

and the result is: 
l - i  1 

G ( / ) =  2 V-7 (14) 

Carson's theorem (4) finally yields: 
1 

s ( / )  = .~.f (t5) 

The expression (15) is valid for frequencies 1/2 ~b << ]<< 1/2 ~a  and confirms 
the i / /  dependence of the spectral intensity S(/) in this frequency range which 
already was obtained above by numerical computations. Pulses decaying pro- 
portional to i/Vt-thus give a l/[ noise spectrum. I t  will be shown in the next  
section that  the relaxation of various diffusion processes follows such a time course. 

Di#usion Processes in Unstirred Solution Layers give 1/Vt-Time Dependence 
I f  current flows through a membrane, the charge carriers have to move from 

the bulk of the solutions across the unstirred solution layers near the membrane. 
Thus the charge carrier concentration in the solutions will decrease at one mem- 
brane surface and increase at the other. This gives rise to a membrane potential 
opposite to the externally applied voltage so that  the current will decrease with 
time. This phenomenon, which is called diffusion polarization, is well known from 
electrode kinetics 8~nd has been observed in the transport of hydrophobic ions 
across lipid bilayer membranes (LeBlanc, 1969). In a theoretical t reatment it has 
been shown that  the current decrease due to diffusion polarization at lipid bilayer 
membranes is proportional to l /~/t  at sufficiently long times and that  this time 
course is in agreement with experimental results (Neumcke, ~971; L~iuger and 
Neumcke, 1973). Thus diffusion processes in the unstirred solution layers near 
lipid bilayer membranes exhibit a time dependence which yields t / /noise .  

Our main objective of this investigation is to describe the 1//dependence of the 
spectral intensity of current and voltage fluctuations at nerve membranes and 
other biological systems. In these cases the ion flux through the membrane is not 
uniform but  very likely occurs through ion selective channels (Ulbricht, 1974). 
Thus the one-dimensional t reatment of diffusion polarization at lipid bilayer 
membranes (Neumcke, t971) cannot be applied to the diffusion of ions in the 
unstirrcd solution layers around membrane pores. Instead ions in the solutions 
will flow at different angles towards a highly conductive pore. Following Hille 
(i968) who calculated the maximal ion flux through pores in nerve membranes, we 
idealize this situation by  assuming spherical symmetry in infinite extended un- 
stirred solution layers around a cylindrical pore of radius ro. Our aim is to calculate 
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Fig. 3. Illustration of spherical ion flux in ~he uns~irred solution layers around a membrane 
pore 

for a fixed externally applied voltage U across the membrane the time dependence 
I (t) of the current I through a single membrane pore which at t ime t = 0 switches 
from a closed to an open state. To simplify the mathematics,  the following 
additional assumptions are made:  

1. The pore only is permeable for one univalent cation species (e.g. K+ or Na+). 

2. The aqueous phases contain a high concentration of an inert electrolyte. In  
this ease the electrical potential is almost constant in the solutions and the drop 
of the externally applied voltage occurs entirely within the membrane phase. 

3. In  the unstirred solution layers there are no interferences between the ion 
fluxes of neighbouring membrane pores. 

4. Space charges in the pore are negligible. 

The validity of the assumptions 2. and 3. will be estimated in the Appendix. 

Fig. 3 illustrates the spherical ion flux in the unstirred solution layers around a 
membrane pore and shows the notations for the concentrations of the permeant  
cations in the bulk of intra- and extracelhilar solutions and at  the inner and outer 
ends of the pore. 

According to assumption 2. there are no electrical driving forces for the ion 
transport  in the unstirred solution layers. Therefore, the concentration v(r) of 
permeant  ions at a distance r from the pore end satisfies the time dependent 
diffusion equation in polar coordinates: 

~ =  \ ~  r ~r /"  (t6) 

D is the aqueous diffusion coefficient which is assumed to be the same in the intra- 
and extracellular solution. 

The initial concentration values are: 

ci (intraeellular solution) (i7) 
0) ! Co (extraeellular solution). 
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At the pore ends r =  ro we have 

2 - / 5 c  \ 
2 z r 0 D / - - /  (inner pore end), 

\0r/r=ro 
= (18) 

-- 2 7 ~ r ~ D ( ~ r )  (outer pore end) 
k I ~ ' = r  o 

where ~b (expressed in moles/s) is the spherical influx of ions from all possible 
directions through the surface of the half sphere of area 2 ~ ro 2 into the pore or the 
corresponding outflux at  the opposite pore end. 

Since the exact molecular structure of pores in nerve membranes and other 
biological membranes is still unknown, we idealize the actual potential profile in 
the interior of the pore by  a main energy barrier in the center of the pore. The ion 
flow through the pore then can be described by an ion jump over this single 
barrier. I f  space charges in the pore are negligible (assumption 4) it is at  any t ime 
(Ls and Neumcke, 1973) : 

q3 = 7~ r~ P [c~ eU/2 -- cr~ e-U/2]. (19) 

P (expressed in em/s) is the pore permeability coefficient which is a function of 
pore parameters (pore length l, diffusion coefficient in the interior of the pore etc). 
An upper limit of P is reached if the ions in the pore behave as in free solution. 
Then: 

P = ~-- (20) 
I " 

The normalized voltage u is defined by 

u = ~-~ U (21) 

with F :  Faraday  constant, R: gas constant, T:  absolute temperature.  At 25~ 
u = I corresponds to a voltage of approximately U = 25 mV. The ion concen- 
trations c .m , c~ at  the inner and outer pore ends are connected by the symmetry  
relation 

c~ + c~ = ct + Co (22) 

because an increase of the ion concentration in one unstirred solution layer must  
be balanced by  a corresponding decrease at the image point in the opposite 
solution layer. For unequal diffusion coefficients in the intra- and extracellular 
solutions this symmetry  would no longer hold. Eliminating the flux q~ in Eqs. (18), 
(19) and combining the result with Eq. (22) yields the following boundary condi- 
tion at  the pore ends r = r0: 

= O (23) ~(r= r0 ) -~  ~ ~=~0 
with 

D l 
Z--  p r (u/2) (24) 

and 

t (inner end) (c~ + co). 1 + eu pore 

O = (25) 
eu (outer end) (c~ + co). I +--e~ pore 
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The diffusion Eq.  (~6) together  with the conditions (17) and (23) can be 
integrated by  employing the method  of  Laplace r The end result 
for the  current  I = F ~b th rough  a single pore is 

t o +  x 

I ( t ) =  2 ~ F D  m e . -  Co 
~[ + e~ 

with 
l ( r~ 2 

and where erfc denotes the complement  error funct ion:  
y 

2 
erfc (y) : 1 -- -~z f exp ( - -u  2) d u .  

o 

A r t =  O: 

(27) 

(28) 

D me" - co. to2 (29) 
I ( 0 ) =  2 z  ~ + e~ 

and in the s ta t ionary  state : 

i ( ~ ) = 2 ~ F D C ~ e  ~-c~ r~ . (30) 
I + e ~ r 0 + 

Diffusion polarization in the unstirred solution layers near the pore thus  causes 
a current  drop by  the amount  I (0)  - I(c~).  As an example we take a pore radius 
r o = 2 A, a pore length l = 50 A, a diffusion coefficient D = t0  -5 em 2 s -1 for the ion 
movemen t  in the  solutions and in the pore, equal bulk concentrat ions ct ~ co = 
100 mM in the intra- and extracellular solution, and a normalized membrane  
voltage u = 4 (corresponding to U ~ t00 mV). Wi th  these values ~ = / / c o s h  (u/2) = 
13.3/~, I (0)  = i .76 �9 10 -12 A, I ( 0 ) -  I (c~)  = 0.23 �9 10 -12 A. For  a shorter pore 
length l = 10 ~_ we obtain  ~ = 2.66/~ and the initial current  and the current  drop 
become I ( 0 ) =  8.79- 10 -12 A, I ( 0 ) -  I ( c r  3 . 7 7 . 1 0  -1~ A. 

To estimate the magni tude  of  the characteristic t ime z we insert Eqs. (24) and 
(20) into (27). This gives 

l { rol ~2 
�9 = F \~0 + l /  (31) 

for voltages ] u l < l .  Wi th  D = f 0  -Sere  es  -~, r 0 = 2 - ~ ,  and />>r  0 we obtain 
= 4 -  10 -11 s. I n  the  following Eq. (26) will be applied at  times t>> z only. Using 

the relation 
i 

- - - ;  (y>> t) (32) exp (y~). erfc ( y ) =  V~" y 

(Carslaw and Jaeger,  1959, appendix I I )  we then obtain:  

l t+~ - -~  ~ ,. (t>>~).  (33) I(t) I(oo) .  
( 

Thus the current  drop towsrds  the s ta t ionary  state is proport ional  to i /J/ t-at  
large times. 

Using Eqs. (27) and (30), the  expression (33) can be wri t ten in the form:  

I(t) = I ( ~ ) +  (~ I(t)  (34) 
with 

(~ I( t)  = 2 F c, e~ - Co. r o ~ _  4 l / Z ?  (35) 
l + e  ~ (r o+~)2 r ~ 
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Fig. 4. Illustration of the superposition of current pulses 61 in Eq. (36). Upper part:  Step 
changes of the pore permeability between the values P and 0. Lower part:  Positive current 
pulses generated at each pore opening and negative current pulses at each pore closing. 
I(t) - 1( co ) for an open pore is obtained as superposition of all pulses from previous pore 
openings and closings. For a closed pore: I(t) = 0. Examples: I f  the pore is closed at t < 0, 
I(t) - I( 0o ) is equal to one positive pulse for 0 < t < 01, I(t) = 0 for 01 < t < vql, I(t) - I( ~ ) 
is obtained as the sum of two positive and one negative pulse for vq 1 < t < 02, I(t) - 0 for 

02 < t < v~a etc. 

Eq.  (33) gives the  t ime  dependence  of  the  cur ren t  t h rough  a single pore  which 
is closed a t  t imes  t < 0, assumes a finite pe rmea b i l i t y  P a t  t = 0 and  remains  open 
a t  t > 0. W e  now wan t  to s t u d y  the  more  general  case t h a t  the  pore  is closed a t  
t < 0 and  switches be tween  open and  closed posi t ions a t  t imes  t > 0. This  s i tua t ion  
is i nd i ca t ed  in  t he  upper  p a r t  of  Fig.  4. 

Dur ing  t imes  t wi th  0~< t <  v~ (v = 1, 2 . . . )  the  pore  is closed and  the  
cur ren t  t h rough  this  pa r t i cu l a r  pore  vanishes.  A t  t = v~ the  pore  opens again  and  
the  cur ren t  declines t owards  the  s t a t i ona ry  va lue  I ( c~)  un t i l  the  pore  closes a t  
t = 0 ,+r  Since the  two pe rmeab i l i t y  s ta tes  are  of  finite dura t ion ,  the  concen t ra t ion  
in the  uns t i r r ed  solut ion layers  a t  t > 0 never  reaches the  s t a t i ona ry  s t a t e  nor  does 
the  concen t ra t ion  assume the  un i form dens i ty  which ex is ted  for t < 0. Therefore,  
i t  is necessary  to  t ake  into  account  the  ac tua l  concen t ra t ion  profile a t  t = On, i f  one 
wan t s  to  calcula te  t he  current  I ( t )  between  t = Vqn and  t = 0n+l. The  in teg ra t ion  of  
the  diffusion Eq.  (16) toge the r  wi th  the  b o u n d a r y  condi t ion  (23) and  the  appro-  
p r i a te  in i t ia l  concen t ra t ion  values  in the  uns t i r r ed  solut ion layers  gives for 

V a n < t <  On+l: 

i ( t ) =  X ( ~ 1 7 6 2 4 7  ~ I ( t ) §  ~ ~ I ( t - ~ ) v ) -  ( r - ~ )  ~ ~ I ( t -  v = l  (36) 

I (oo)  is the  s t a t i o n a r y  cur ren t  given b y  Eq.  (30) and  the  pulse funct ion  ~ I ( t )  
is defined b y  Eq.  (35). 5 I ( t  - ~ )  and  5 I ( t  - 0,,) are  the  same pulses excep t  for a 
t r ans l a t i on  along the  t ime  axis b y  the  t imes  v~ and  0~ respect ively .  Similar  to re la t ion  
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(33) the validity of Eq. (36) is restricted to times (t-- 0n) >> ~ e.g. for times after the 
opening of the pore which are large compared with the characteristic time ~. 
In the lower part  of Fig. 4 a representation of the current decay I(t) - I ( ~ )  as 
superposition of the tails of all previous currents is illustrated. I t  is obvious that  a 
term ~ I (t) does not  only contribute to the current during one particular permea- 
bility state but  occurs in the expressions I (t) - I (co) of all subsequent open states. 
This unlimited time course of ~ I (t) is essential for the frequency range of the 
associated 1/] noise spectrum as will be shown in the following section. 

1/] Noise ]rom Porous Membranes 
We start with the simple case of a membrane pore with a time independent 

finite permeability P during its life time b. I t  was shown in the preceding section 
tha t  the initial current through tlfis pore has a finite value and that  the current 
decay towards the stationary state is proportional to i /Wtfor  times after the 
opening of the pore which are large compared with a characteristic time ~ ~ 10 - n  s. 
I f  an average number N of such pores are open at a given moment, the rate of pore 
creation will be 2 = N/b. Combining Eqs. (15) and (35) then yields the following 
expression for the density SI(]) of the t / /  noise spectrum resulting from the 
current fluctuations due to diffusion polarization in the unstirred solution layers: 

.N" 2 t (37) 
S~(/) = -~ q �9 7- 

with 
r0~ c~ e~ - Co (38) 

q = 2 F V ~  (~o + ~)~ y + ~ �9 

According to the derivation of Eq. (i5) the l / /  dependence of Sx (/) is restricted 
to the frequency range t/2 ~ b<</<< i/2 z ~ iO 1~ Hz. 

$I(/) is the t /]  noise spectrum of current fluctuations under vo]tage clamp 
conditions. In general the power spectrum Sv (]) of voltage fluctuations under 
constant current is related to S1 (/) through (Verveen and De~elice, t974; Wanke, 
DeFelice and Conti, 1974) 

Sv([) = [Z(/)]  s. Sz(/) .  (39) 

Z (/) is the complex membrane impedance at the frequency ]. I f  ]Z (/) I is constant 
for the range of frequencies studied, it can be replaced by the reciprocal of the 
conductance g. Thus : Sv (]) = SI (])/g2 

Predictions of formulas (37) and (39) are now compared with the intensity of 
1/] noise measured at nerve membranes under current and voltage clamp condi- 
tions. For nodes of l~anvier (Siebenga, Meyer, Verveen, i973), for lobster axons 
(Poussart, 197i) and for squid axons (Fishman, 1973; Conti, DeFelice, Wanke, 
1975) very pronounced t/] spectra were reported which could be related mainly 
to the flux of potassium ions through the membrane. A further common feature 
of the noise spectra of all preparations is the range of the l / /  frequency dependence 
which is extended down to frequencies of the order of i Hz. Therefore, the life 
time b of individual membrane pores must be higher th~n l s if  formulas (37) 
and (39) are applicable. From measurements of the membrane shot noise the 
number of potassium channels in the node of l~anvier was estimated to be about 
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N =  i04 (Siebenga et al., t973). The  po tass ium concent ra t ions  in the  in t ra-  and  
ex t raee l lu la r  solut ions in con tac t  wi th  frog nerves  are  a p p r o x i m a t e l y  ci = i20  mM, 
Co = 2.5 raM. W e  fur ther  need values  for t he  rad ius  ro and  length  1 of  the  po ta s s ium 
channels  in the  nerve  membrane .  According  to  Bezani l la  and  Arms t rong  (1972) 
and  to  Hil le  (t 973) t he  na r rowes t  p a r t  of  the  K channel  in squid  axon membranes  
and  in m y e l i n a t e d  nerves  is abou t  3 Fk in d i ame te r  and  the  channels  have  a wide 
inner  mouth .  We,  therefore,  assume t h a t  the  cyl indr ica l  tunne l  of  the  po tass ium 
channel  has  an  average  rad ius  of  ro = 2 -~ and  a length  of  the  order  of  l = l0  A. 
A t  U = - 70 mV (u = - 2.8) we then  ob ta in  ~ = 4.65 A using Eqs.  (24) and  (20). 
W i t h  D = 10 -5 em 2 s -1 Eq.  (38) yields  q = i .77 �9 t 0  -19 A sl/2. Tak ing  g = 10 -7 S 
for one single node (Siebenga et al., 1973) and  b > i s we f inal ly ar r ive  a t  an 
in tens i ty  S u ( l )  < 3.1 �9 10 -20 V 2 s of  the  1/] noise spec t rum of  vol tage  f luctuat ions  
a t  f = i Hz.  I n  con t ras t  to  this  ca lcu la ted  va lue  the  measured  in t ens i ty  is Su (t) 
10 -1~ V 2 s (Siebenga et al., t973, Fig.  2). 

The  same d i sc repancy  occurs for the  t/] noise a t  squid  axon  membranes .  
Tak ing  the  exper imen t s  of F i s h m a n  (1973) we have  c~ = 500 mM (potass ium 
concen t ra t ion  of  the  in te rna l  perfusate) ,  co = i 0  raM, ~ = 4.65 A a t  the  res t ing 
po ten t i a l  which is assumed to be U = - 70 mV, and  q = 7.5 �9 10 -19 A sl/2. Using a 
va lue  of  50 ~m -2 for the  dens i ty  of  po tass ium channels  on the  squid  axon  mem- 
b rane  (Conti et al., 1975), there  are  N = 5 �9 10 ~ po tas s ium channels  in an  i so la ted  
m e m b r a n e  p a t c h  of  10 -~ cm ~. U n d e r  these  condi t ions a res is tance i /g of 3.5 ~r 
a n d  a 1/[ noise dens i ty  of  a p p r o x i m a t e l y  10 - n  V 2 s a t  ] = t t t z  were measured  
(Fishman,  t973).  Hewever ,  using Eqs.  (37), (39) and  b >  t s gives S u ( l ) <  3 .4 .  
I0  - i s  V ~ s. Consider  also the  t / ]  spec t rum of  cur rent  f luc tuat ion  under  cons tan t  
vo l tage  a t  squid  axon  membranes  (Conti et al., 1975). These au thors  i sola ted  a 
m e m b r a n e  area  of  abou t  0.38 cm 2 (20 m m  axon length,  600 ~m axon  d iameter )  
and  measured  a 1 / /dens i t y  of abou t  t0  -21 A 2 s a t  f = t0  Hz  and  U = - 56 mV 
(Conti et al., 1975, Fig.  1). I n s t e a d  S ~ ( 1 0 ) <  t . 3 .  t 0 -2SA2s  is ob ta ined  from 
Eqs.  (37), (38) wi th  the  values  c~ = 410 mM, Co = t0  mM, ~ = 5.9 A, q = 8 .4 .  
10 -19 A sll ~, N = t .9  ,, t09, and  b > i s. 

These large devia t ions  be tween  measured  and  ca lcu la ted  t / ]  noise densi t ies  
ind ica te  t h a t  our t h e o r y  does no t  descr ibe the  observed  1/] noise a t  nerve  mem- 
branes  i f  p e r m a n e n t l y  open po tas s ium channels  are  assumed.  Therefore,  we 
consider  f luctuat ions  of  the  pe rmeab i l i t y  be tween the  values  P and  0 as ind ica ted  
in the  uppe r  p a r t  of  Fig.  4. The  resul t ing t ime  course of  the  current  I (t) t h rough  
an  open pore  is g iven b y  Eq.  (36). According to  th is  re la t ion  I ( t ) -  I(oc) can be 
represen ted  as t he  superpos i t ion  of  posi t ive  pulses d I (t), d I ( t -  0,) f rom previous  
pore  openings and  nega t ive  pulses --  (to + ~)/~r d I ( t - -  0~) from previous  pore  
closings. Thus  I (t) depends  on the  du ra t i on  t of  pe rmeab i l i t y  f luctuat ions,  b u t  the  
ind iv idua l  pulses con t r ibu t ing  to  I (t) are a lways  the  same and  independen t  of  the  
t ime  t. Since we assumed s ta t i s t ica l  switches be tween  the  two pe rmeab i l i t y  s ta tes ,  
the  noise of  such r a n d o m l y  oeeuring pulses can be ca lcu la ted  f rom Carson 's  
theorem [Eq. (4)]. To ob ta in  t he  pulse f requency 2 we in t roduce  the  average  t ime  
per iods  ~o and  ~c of  open and  closed s ta tes  of  an  ind iv idua l  pore. The  ra te  of  
switches f rom a closed to  an open s t a t e  then  becomes 2 = t/(To-t- To). Since the  
cur ren t  pulses are  i n t e r r u p t e d  dur ing  d o s e d  s ta tes  (compare  Fig.  4), the  Four ie r  
t rans forms  of  the  ind iv idua l  pulses have  to  be mul t ip l ied  b y  the  f rac t ion  
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~o/(To § re) of t ime at  which the pore is open. Thus Eq. (t5) yields for the density 
SI (/) of the 1 / /current  noise spectrum: 

N ( 1+ e (4o1 
s~( / ) -  ~o + ~:o \~o+ ~o/ "7" 

N is the number  of membrane pores which are assumed not to interact with 
each other, and the expression q is defined by  Eq. (38). The t ime course of the 
single contributions 61 (t) in Eq. (36) is not limited by  the period To of an open pore 
but  only restricted by  the finite lifetime of the pore or by the t ime range during 
which no significant changes of the aqueous bulk ion concentrations occur due to 
ion accumulation or depletion in finite diffusion regions around the pores. Since 
these times can be several seconds or even longer, the low frequency limit of the 
i// spectrum can lie below 1 Hz in accordance with the experiments. The upper 
frequency limit 1/2 ~ ~ of Sz (/) is determined by  the characteristic t ime T ~ t0 -11 s 
of pore opening and is outside the range of measured noise spectra. 

To simplify Eq. (40) we approximate (to + ~)/~ by I and assume equal periods 
To and Tc of open and closed pores. Then 

N qg.. t (41) 
s ~ ( / ) = ~  7 

Thus the lifetime b in formula (37) simply has to be replaced by  4 To to obtain the 
t / /noise spectrum of pores with random permeability switches. I f  the t ime period 
To of an open state is much smaller than  the parameter  b, much higher densities Sx 
follow from Eq. (4i) than it would be calculated from Eq. (37) without taking 
permeabili ty switches into account. The discrepancies found between predictions 
from Eq. (37) and measured 1//noise densities at nerve membranes now can be 
resolved by choosing appropriate low values for the period To in Eq. (4t). To 
obtain spectral densities of t / /noise which are compatible with measurements at  
myelinated nerves (Siebenga et al., 1973), To has to be in the order of l0 -1~ s. The 
i / /  spectrum of voltage fluctuations at  squid giant axons (Fishman, i973) and the i / /  
current fluctuations at  the same preparation (Conti et al., 1975) are in agreement 
with our theory with To ~ l0 -7 s. 

Discussion 

I t  was shown in the Results section tha t  the calculated spectral densities of 
l / /noise  only reach the size of measured 1//noise at  nerve membranes if there are 
random switches between two pore permeability states. However, a determination 
of pore parameters  from 1// noise densities is not possible at present for the 
following reasons: 1//noise probably is not only generated by  the flux of potassium 
ions as it was assumed in the previous section, but  there are considerable con- 
tributions of sodium and leakage currents to this kind of noise (Conti et al., i975). 
Furthermore, no reliable values are available for the size and the density of ion 
selective channels on nerve membranes. Thus the value ~o~ i0 -7 to 10-1~ s for 
the period of an open pore estimated from Eq. (41) has to be considered as a very 
rough estimate. However, To is definitely shorter than any time constant of the 
Hodgkin-Huxley formalism describing the activation and inactivation of sodium 
currents and the activation of potassium currents in voltage clamp experiments. 
Therefore, conventional "gat ing" of the ionic currents is not responsible for the 
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genera t ion  of  t / / n o i s e  a t  nerve  membranes .  A possible a l t e rna t ive  i n t e rp re t a t i on  
of  r a p i d  switches of  pore  permeabi l i t i es  wi th  t ime  cons tan t s  of  the  order  of  zo is 
single file t r a n s p o r t  ,of K + ions t h rough  the  po tass ium channels  (Hodgkin  and  
Keynes ,  1955; Heckmann ,  i972).  A n  influx of  ions f rom the  uns t i r r ed  solut ion 
layer  in to  the  channel  t hen  would be possible only i f  the re  is a free site a t  the  
en t rance  of  the  pore.  Otherwise the  pore  would  be dosed .  The  r a t e  1/*o t hen  has to  
be i n t e rp re t ed  as the  f requency  of  t rans i t ions  be tween  a free and  occupied site. 
These r a n d o m  pe rmeab i l i t y  switches due to  single file t r a n s p o r t  could be the  basis  
of  1/] noise a t  nerve  membranes .  As a demons t r a t i on  we refer to  the  model  
expe r imen t  of  Sehiek and  Verveen (t974). These au thors  inves t iga ted  the  flow of  
smal l  gra ins  t h rough  an  hourglass  and  found a 1/[ f requency  dependence  for the  
f luc tua t ion  of  t he  gra in  densi ty .  

Ponssa r t  ( t97 t )  and  Conti  et al. (1975) have  shown t h a t  the  spec t ra l  dens i ty  of  
i / ]  noise is p ropor t iona l  to  the  square  of  the  po tass ium cur ren t  t h rough  the  nerve 
membrane .  This  re la t ion  is in accordance  wi th  our  theore t ica l  descr ip t ion  of  1//  
noise since the  p a r a m e t e r  q and  the  s t a t i ona ry  ion flux I (c~)  exhib i t  the  same 
vo l tage  dependence  [compare  Eqs.  (30) and  (38)] and  the  spec t ra l  dens i ty  of  i / ]  
noise is p ropor t iona l  to  q~. The  t e m p e r a t u r e  dependence  of  1 / / n o i s e  cannot  be 
examined  eas i ly  because  a lmos t  all  p a r ame te r s  of  our model  will v a r y  wi th  tem-  
pera tu re .  I t  could be t h a t  an  increase of  the  f requency  I / r e  and  the  diffusion 
coefficient D a t  increas ing t e m p e r a t u r e  is compensa ted  b y  a s l ight  decrease of  the  
pore  rad ius  re such t h a t  the  t / ]  dens i ty  becomes p rac t i ca l ly  t e m p e r a t u r e  independ-  
ent  as observed  in t he  exper iments  (Conti et al., 1975). 
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Appendix:  Val id i ty  o] the A s s u m p t i o n s  2)  and 3)  

If  Ax and A 9 are thickness and voltage drop in the Debye Hiiekel solution layers in front 
of the membrane, the electrical driving force in this layer gives the contribution 

A9 
Ie = ~zro2F D c Axx (42) 

to the current through a single pore. c is a mean concentration of the permeant ion which 
is of the order of the corresponding bulk concentration. The magnitude of Ie has to be compared 
with the current arising from the ion flux along the concentration gradient in the unstirred 
solution layers. :For equal bulk concentrations c~ = Co = c in the intra- and extracellular 
solutions Eq. (30) gives 

~0 2 
I ( ~o ) = 2 z F D c tanh (u/2) - -  (43) 

t o +  

and the current ratio between I ,  and I ( * ) becomes 

I ,  r o + ~ A 9 
I ( ~ ) =  2Ax tanh(u/2) " (44) 

This relation was derived under the assumption that the pore radius ro is small compared with 
the Debye Hfickel length Ax. Otherwise the half sphere of radius ro around the pore ends would 
include the Debye Ittickel solution layer and electrical driving forces could be neglected in the 
calculation of the ion flux in the unstirred solution layers for pore distances r < ro. 
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For ion selective channels in nerve membranes the condition ro < Ax is fulfilled and the 
Eq. (44) applicable. In  physiological solutions the Debye Hiickel length A x  is of the same order 
as the sum ro + l of pore radius ro and pore length l, whereas at voltages [ U I < 100 mV ([ u I 
< 4) the voltage drop A~ in this layer is small as compared to tanh (u/2) (Li~uger and ~eumcke, 

1973). Thus I~ << I ( ~ ) and assumption 2) is fulfilled. 
I f  pores switch randomly between open and closed positions with the frequency 1/~o 

107 ttz,  an interference can only occur between the ion fluxes of pores which are less than 
l~ 2 D v  o ~ 140/~ apart. Assuming that  there are only a few pores within a circle of radius 

140/~, i t  is sufficient to prove assumption 3) for two neighbouring pores. The following 
arguments apply to the stationary state at which the deviations between the concentrations 
in the unstirred solution layers and the corresponding bulk concentrations assume maximum 
values. The stationary concentration profile in the unstirred solution layers is: 

I(oo) 
(intracellular solution) 

c t -  2 ~ F  D r  
c (r) = 1 ( ~ ) (45)  

co + 2 7~ _~ D r (extracellular solution). 

In  the special ease c~ = co = c, the expression (43) can be used and the relative deviation 
A = [ c (r) - c ]/c of c (r) from the bulk value c becomes 

r0 ~ 1 
A = tanh ([ u ]/2) - - .  (46) 

r0+ ~ r 

Assuming ro = 2 _~, u = 3 (U = 75 mV), l = i0  ~ and using Eqs. (24) and (20) yields u ~ 6/~. 
Thus A < 1% for r > 45 A. ~or longer pore lengths l even shorter pore distances r would be 
obtained at which the interferences between the ion fluxes of two neighbouring pores can be 
neglected. 
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