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Abstract. A mathematical treatment is given for 1/f noise observed in the ion transport
through membranes. It is shown that this noise can be generated by current or voltage
fluctuations which occur after step changes of the membrane permeability. Due to diffusion
polarization in the unstirred solution layers near the membrane these fluctuations exhibit a
1/ ¢t time course which produces noise with a 1/f frequency dependence. The spectral density
of 1/f noise is calculated for porous membranes with random switches between a finite and zero
pore permeability. A wide frequency range and a magnitude of 1/f noise are obtained which are
compatible with experimental data of 1/f noise reported for nerve membranes.
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Introduetion

In the state of thermodynamic equilibrium the source of electrical noise is the
Brownian movement of charge carriers. The noise from non-equilibrium ionic
systems is larger than this thermal noise level. The spectral density of this “excess
noise” decreases at increasing frequencies f and varies in many cases approxi-
mately inversely to f over a wide frequency range. This explains the term ““1/f
noise” which was reported in current or voltage fluctuations at semiconductors
and at various biological and artificial membranes (Verveen and DeFelice, 1974).
For this widely occuring kind of noise no generally accepted theory is available
at present. A superposition of relaxation processes with a certain distribution of
time constants can yield a 1/f spectrum (Kingston and McWhorter, 1956 ; Halford,
1968), but no mechanism has been described which generates this particular
distribution. Offner (1970, 1972) has claimed to obtain a 1/f noise by random walk
of charge carriers across a potential barrier. However, Bird (1974) pointed out that
such a process does not give a 1/f dependence over a wide frequency range.
Coupling between parameters of ion pulses passing through the membrane may
cause 1/f noise (Heiden, 1969; Schick, 1974), but the origin of this coupling
remains unclear. Finally an empirjcal formula for the spectral density of 1/f noise
was proposed by Hooge and Gaal (1971) which, however, is not in agreement with
excess noise measured at artificial membranes (Dorset and Fishman, 1975).

In this contribution a theoretical interpretation of 1/f membrane noige is
presented. It is shown that diffusion polarization in the unstirred solution layers
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near the membrane causes a decrease of the current through the membrane which
is proportional to 1/}/# at sufficiently long times ¢ after a change of the membrane
permeability. This time dependence is known to yield 1/f noise (Schonfeld, 1955).
In order to explain the 1/f noise measured at nerve membranes we investigate
the time course I (f) of the current through a membrane pore which switches
randomly between two permeability states. It is found that I(f) can be repre-
sented as superposition of current pulses which are generated at each permeability
change and which decay proportional to 1/)/# during the whole lifetime of the
pore. With pore parameters taken from the literature we then calculate a fre-
quency range and spectral density of 1/f membrane noise which are compatible
with experimental data reported for nerve membranes.

Some results of this work were presented at the Vth International Biophysics
Congress 1975 (Abstract P 483).

Results

1/f Noise Generated by Processes with 1]/t Time Dependence

In theoretical noise analyses fluctuating quantities normally are approximated
by rectangular step functions or represented by random occuring pulses decaying
exponentially. For the latter case a single event is described by

0 t<0

exp (—¢/r) =0, M

g(t)= ‘

where g is the fluctuating variable (voltage, current etc) and v the time constant
of the exponential decay.
The Fourier transform

G() = g0 exp (— 2mifr) @

of g(t) is
T

¢N=iTamir ®)

If the events g(t) occur at random at the average rate A, the spectral density
S (f) of the associated noise power spectrum can be calculated by applying Carson’s
theorem (van der Ziel, 1970):

8(=24[G(H [ 4)
The result is the well known Lorentzian spectrum
» 2272
S(f)= T @afo (5)

which is constant at low frequencies f< 1/2 z 7 and decays proportional to 1/f2
at high frequencies f> 1/2 7 7.
The normalization factor of the spectrum (5) is in agreement with the condition

o0}

f8(df= <g?(t)>, (6)

0
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Rig. 1. Power spectrum S(f) of events g(t) defined in Eq. (8) for the parameters @ = 1073,
1075 5. S(f) is normalized at f = 1 Hz

where
< H)> =;~h (7)

is the variance of g (¢).

Exponentially decaying variables thus yield a Lorentzian noise spectrum.
Accordingly, a superposition of mutually independent events decaying exponent-
ially with different time constants will result in a spectrum which is the sum of the
individual Lorentzian functions. In this way, therefore, no spectrum can be
obtained which decays proportional to 1/f within a wide frequency range (Hill
and Chen, 1972).

We now want to compute the noise spectrum of events g(f) which decay
proportional to 1/t at t> a> 0:

0 i<o (8)

g¢)= { e t=a.

The Fourier transform G (f) of g (£) can be expressed in terms of Fresnel integrals
(Schoénfeld, 1955) or computed numerically. Fig. 1 shows the noise spectrum
obtained from our computations for two values of the parameter a.

For frequencies < 1/2 w a the spectrum turns out to be proportional to 1/f,
at higher frequencies S(f) decays as 1/f2. Thus for sufficiently low values of o,
a wide frequency range is obtained with a 1/f dependence of the spectral intensity
8(f). In the extreme case @ = 0, 8(f) would be proportional to 1/f at all frequencies
(Verveen and DeFelice, 1974).

Since the computed spectrum is proportional to 1/f for all frequencies
f< 12 7 a, S(f) diverges in the low frequency limit f— 0 and no finite value for the
variance of g (f) would be obtained from Eq. (6). This divergence is caused by the
time course (8) of g(¢) which was postulated to be proportional to 1/)/# at times
t> a. A superposition of an unlimited number of such single events occuring
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Fig. 2. Power spectrum S(f) of events g(f) defined in Eq. (9) for the parameters @ = 1073 s,
= 1s. 8(f) is normalized at f = 1 Hz

randomly would yield an infinite amplitude thus explaining the divergence of
S(f). Therefore, it is more realistic to investigate the noise spectrum of events g ()
which decay proportional to 1/)/# within a limited time range a < ¢ < b:

0 t<a
gity= 1 1/t a<<i<b. 9)
0 t>b

In this case the 1/f dependence of S(f) is restricted to frequencies f with
1/27 b < f< 1/2 7w @ as can be seen from Fig. 2. At low frequencies f< 1/27 b S(f)
assumes the constant value

8()=84(Yb— Va)? (10)
and at high frequencies f> 1/2 7 a the spectrum falls off as 1/f% as in Fig. 1.

The small oscillations between f= 1 and 10 Hz which are superimposed to the
1/f dependence in TFig. 2 are generated by the fixed pulse length &— a of the
events (9) yielding oscillations with the period 1/(b — &) in the noise spectrum. For
pulses (9) with a small scatter of the pulse length, a pure 1/f spectrum would be
obtained in the frequency range 127 b< f< 1/2m a. This 1/f dependence is
independent of the pulse amplitude ¢g(f) between t=0 and {=a. In Eq. (9)
vanishing values were assumed in this time region. But the same 1/f spectrum in
the frequency range 1/2nb< f< 1/2ma is obtained if g(f) assumes nonzero
values for 0 < { < a.

For random occuring events (9) and frequencies f with > 1/27b and f< 1/2za
the spectral intensity S (f) can be approximated by a very simple expression which
coincides with the numerical results in this frequency range. The Fourier transform

G(f) of g(t) ,
G(f)=J%exp(—2nift)dt (11)
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can be written as
2n fb

B 1 exp (— i2) y
@ (f) = szjm = (12)

by introducing the new variable z= 2 nft. Lower and upper integration limits
then can be replaced by 0 and oo respectively:

6= g7 | e (13)
and the result is:
a3t o (14)
Carson’s theorem (4) finally yields:
S(f):/l-% . (15)

The expression (15) is valid for frequencies 1/2 b« f< 1/2wa and confirms
the 1/f dependence of the spectral intensity S(f) in this frequency range which
already was obtained above by numerical computations. Pulses decaying pro-
portional to 1/)/% thus give a 1/f noise spectrum. It will be shown in the next
section that the relaxation of various diffusion processes follows such a time course.

Diffusion Processes in Unstirred Solution Layers give 1]/t Time Dependence

If current flows through a membrane, the charge carriers have to move from
the bulk of the solutions across the unstirred solution layers near the membrane.
Thus the charge carrier concentration in the solutions will decrease at one mem-
brane surface and increase at the other. This gives rise to a membrane potential
opposite to the externally applied voltage so that the current will decrease with
time. This phenomenon, which is called diffusion polarization, is well known from
electrode kinetics and has been observed in the transport of hydrophobic ions
across lipid bilayer membranes (LeBlane, 1969). In a theoretical treatment it has
been shown that the current decrease due to diffusion polarization at lipid bilayer
membranes is proportional to 1/}t at sufficiently long times and that this time
course is in agreement with experimental results (Neumcke, 1971; Liuger and
Neumcke, 1973). Thus diffusion processes in the unstirred solution layers near
lipid bilayer membranes exhibit a time dependence which yields 1/f noise.

Our main objective of this investigation is to describe the 1/f dependence of the
spectral intensity of current and voltage fluctuations at nerve membranes and
other biological systems. In these cases the ion flux through the membrane is not,
uniform but very likely occurs through ion selective channels (Ulbricht, 1974).
Thus the one-dimensional treatment of diffusion polarization at lipid bilayer
membranes (Neumcke, 1971) cannot be applied to the diffusion of ions in the
unstirred solution layers around membrane pores. Instead ions in the solutions
will flow at different angles towards a highly conductive pore. Following Hille
(1968) who calculated the maximal ion flux through pores in nerve membranes, we
idealize this situation by assuming spherical symmetry in infinite extended un-
stirred solution layers around a cylindrical pore of radius 7,. Our aim is to calculate
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Fig. 3. Illustration of spherical ion flux in the unstirred solution layers around a membrane
pore

for a fixed externally applied voltage U across the membrane the time dependence
1(t) of the current I through a single membrane pore which at time £ = 0 switches
from a closed to an open state. To simplify the mathematics, the following
additional assumptions are made:

1. The pore only is permeable for one univalent cation species (e.g. K+ or Na+).

2. The aqueous phases contain a high concentration of an inert electrolyte. In
this case the electrical potential is almost constant in the solutions and the drop
of the externally applied voltage occurs entirely within the membrane phase.

3. In the unstirred solution layers there are no interferences between the ion
fluxes of neighbouring membrane pores.

4. Space charges in the pore are negligible.
The validity of the assumptions 2. and 3. will be estimated in the Appendix.

Fig. 3 illustrates the spherical ion flux in the unstirred solution layers around a
membrane pore and shows the notations for the concentrations of the permeant
cations in the bulk of intra- and extracellular solutions and at the inner and outer
ends of the pore.

According to assumption 2. there are no electrical driving forces for the ion
transport in the unstirred solution layers. Therefore, the concentration ¢(r) of
permeant ions at a distance » from the pore end satisfies the time dependent
diffusion equation in polar coordinates:

oc 2% 2 0c
D is the aqueous diffusion coefficient which is assumed to be the same in the intra-
and extracellular solution.

The initial concentration values are:

¢; (intracellular solution) (17)
c(r,t<< 0)=

¢o (extracellular solution).
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At the pore ends = r, we have

2nraD (2—i>r=r (inner pore end),

- (18)

- 277D (a—c> (outer pore end)
Or Jy=rp,

where @ (expressed in moleg/s) is the spherical influx of ions from all possible

directions through the surface of the half sphere of area 2 7 73 into the pore or the

corresponding outflux at the opposite pore end.

Since the exact molecular structure of pores in nerve membranes and other
biological membranes is still unknown, we idealize the actual potential profile in
the interior of the pore by a main energy barrier in the center of the pore. The ion
flow through the pore then can be described by an ion jump over this single
barrier. If space charges in the pore are negligible (assumption 4) it is at any time
(Léuger and Neumcke, 1973):

D =g 1y P [cI" /2 — ¢t e~ui2], (19)
P (expressed in em/s) is the pore permeability coefficient which is a function of

pore parameters (pore length [, diffusion coefficient in the interior of the pore ete).

An upper limit of P is reached if the ions in the pore behave as in free solution.
Then:

D
The normalized voltage u is defined by
F

U=z U 21)

with F: Faraday constant, E: gas constant, T': absolute temperature. At 25° C
u=1 corresponds to a voltage of approximately U = 25mV. The ion concen-
trations ¢}, ¢i* at the inner and outer pore ends are connected by the symmetry
relation

e =c¢i+ ¢o (22)
because an increase of the ion concentration in one unstirred solution layer must
be balanced by a corresponding decrease at the image point in the opposite
solution layer. For unequal diffusion coefficients in the intra- and extracellular
solutions this symmetry would no longer hold. Eliminating the flux @ in Eqs. (18),
(19) and combining the result with Eq. (22) yields the following boundary condi-
tion at the pore ends r= r,:

oc
c(r=rg)—=x <0_7>r=r =9 (23)

with ' ’

o D 1 9

A= P cosh (u/2) (24)
and

1 .
](ci + ¢) - oo {(inner pore end)

o (25)
(outer pore end) .

1+ e
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The diffusion Eq. (16) together with the conditions (17) and (23) can be
integrated by employing the method of Laplace transformation. The end result
for the current 1= F @ through a single pore is

It)=27FD 1+eu%'70+% {1+ exp< )erfc (1/9} (26)

with
IENESAS
v 5(7(,3) @7
and where erfe denotes the complement error funetion:
y
erfe (y) = 1 — 72-_7; j exp (—u?) du . (28)
o
At t=0:
I0)=2xFD ”‘1‘:‘6@"0 ’: (29)
and in the stationary state:
° 2
I(oo)=2g FDHE "% o (30)

1+er 7o+’
Diffusion polarization in the unstirred solution layers near the pore thus causes
a current drop by the amount 7(0) — I(oo). As an example we take a pore radius
ro= 2 A, a pore length I = 50 &, a diffusion coefficient D = 10~% ecm? s~ for the ion
movement in the solutions and in the pore, equal bulk concentrations ¢;= ¢y=
100 mM in the intra- and extracellular solution, and a normalized membrane
voltage u = 4 (corresponding to U~ 100 mV). With these values » = Ijcosh (u/2) =
133 A, I(0)=1.76-10"12 A, I1(0)— I(co)=0.23. 1012 A. For a shorter pore
length 1= 10 A we obtain % — 2.66 A and the initial current and the current drop
become I(0)=8.79. 102 A, I(0)— I(cc)=3.77- 10712 A,
To estimate the magnitude of the characteristic time 7 we insert Eqs. (24) and
{20) into (27). This gives
1 [ 7l \2
=2 ( ) (31)

D \ro+1

for voltages |u |< 1. With D= 10-3em?s™!, r,=2 A, and !> r, we obtain
7=4.10"1 5. In the following Eq. (26) will be applied at times > 7 only. Using
the relation

exp (1) exfe (== -5 (> 1) (32)
(Carslaw and Jaeger, 1959, appendix IT) we then obtain:
10)=1 {1+ 7o V } (t> 7). (33)

Thus the current drop towards the stationary state is proportional to 1/)/# at
large times.
Using Hgs. (27) and (30), the expression (33) can be written in the form:

I{ty= I{co)+ 8 I{1) (34)
with
_ Ci €l — 0y ot nD
ol=2F 1+er  (rg+ ) VT (35)
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Fig. 4. Tllustration of the superposition of current pulses 61 in Eq. (36). Upper part: Step
changes of the pore permeability between the values P and 0. Lower part: Positive current
pulses generated at each pore opening and negative current pulses at each pore closing.
I(t) — I(x) for an open pore is obtained as superposition of all pulses from previous pore
openings and closings. For a closed pore: I(f) = 0. Examples: If the pore is closed at ¢ < 0,
I(t) — I(=) is equal to one positive pulse for 0 <t < 0, I{t) = 0 for 6, <t <Oy, I{t) — I(=)
is obtained as the sum of two positive and one negative pulse for &, <t < 6,, I(f) =~ 0 for
0, < t < &, ete.

Eq. (33) gives the time dependence of the current through a single pore which
is closed at times £ < 0, assumes a finite permeability P at {= 0 and remains open
at.t> 0. We now want to study the more general case that the pore is closed at
t < 0 and switches between open and closed positions at times ¢ > 0. This situation
is indicated in the upper part of Fig. 4.

During times ¢ with 0, <t<®, (» =1, 2 ...) the pore is closed and the
current through this particular pore vanishes. At = ¢, the pore opens again and
the current declines towards the stationary value I(co) until the pore closes at
t= 0,4,. Since the two permeability states are of finite duration, the concentration
in the unstirred solution layers at > 0 never reaches the stationary state nor does
the concentration assume the uniform density which existed for ¢ < 0. Therefore,
it is necessary to take into account the actual concentration profile at ¢ = @, if one
wants to calculate the current I (t) between ¢ = 9y, and t = 0,,,. The integration of
the diffusion Eq. (16) together with the boundary condition (23) and the appro-
priate initial concentration values in the unstirred solution layers gives for
Pp<t< Opyy:

I(t)= I(co)+ 8 I(t)+ 25 It—9,)— <T°: ") 26 It—0,) (36)

I(co) is the stationary current given by Eq. (30) and the pulse function 4 I (f)
is defined by Eq. (35). § I(t— &,) and § I(t— 0,) are the same pulses except for a
translation along the time axis by the times 9, and 6, respectively. Similar to relation
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(33) the validity of Eq. (36) is restricted to times (f— &5,) > 7 e.g. for times after the
opening of the pore which are large compared with the characteristic time 7.
In the lower part of Fig. 4 a representation of the current decay I(f)— I(oo) as
superposition of the tails of all previous currents is illustrated. It is obvious that a
term 0 1 (#) does not only contribute to the current during one particular permea-
bility state but occurs in the expressions I (£) — I (co) of all subsequent open states.
This unlimited time course of § I(f) is essential for the frequency range of the
associated 1/f noise spectrum as will be shown in the following section.

1[f Noise from Porous Membranes

We start with the simple case of a membrane pore with a time independent
finite permeability P during its life time b. It was shown in the preceding section
that the initial current through this pore has a finite value and that the current
decay towards the stationary state is proportional to 1/}t for times after the
opening of the pore which are large compared with a characteristic time 7~ 10-1s.
If an average number IV of such pores are open at a given moment, the rate of pore
creation will be A= N/b. Combining Eqs. (15) and (35) then yields the following
expression for the density S;(f) of the 1/f noise spectrum resulting from the
current fluctuations due to diffusion polarization in the unstirred solution layers:

S =% 7 (37)

with

— 1t cer—g¢
q=2FV7sz ¢1+eu0' (38)

According to the derivation of Eq. (15) the 1/f dependence of Sy (f) is restricted
to the frequency range 127 b< f< 12w v~ 10%° Hz.

Sz(f) is the 1/f noise spectrum of current fluctuations under voltage clamp
conditions. In general the power spectrum Sy (f) of voltage fluctuations under
constant current is related to S;(f) through (Verveen and DeFelice, 1974 ; Wanke,
DeFelice and Conti, 1974)

Su(f)=|Z(f) [*- Sz(f) - (39)

Z(f) is the complex membrane impedance at the frequency f. If | Z(f) | is constant
for the range of frequencies studied, it can be replaced by the reciprocal of the
conductance g. Thus: Sy (f)= Sr(f)/¢®

Predictions of formulas (37) and (39) are now compared with the intensity of
1/f noise measured at nerve membranes under current and voltage clamp condi-
tions. For nodes of Ranvier (Siebenga, Meyer, Verveen, 1973), for lobster axons
(Poussart, 1971) and for squid axons (Fishman, 1973; Conti, DeFelice, Wanke,
1975) very pronounced 1/f spectra were reported which could be related mainly
to the flux of potassium ions through the membrane. A further common feature
of the noise spectra of all preparations is the range of the 1/f frequency dependence
which is extended down to frequencies of the order of 1 Hz. Therefore, the life
time b of individual membrane pores must be higher than 1 s if formulas {37)
and (39) are applicable. From measurements of the membrane shot noise the
number of potassium channels in the node of Ranvier was estimated to be about
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N = 104 (Siebenga ef al., 1973). The potassium concentrations in the intra- and
extracellular solutions in contact with frog nerves are approximately ¢; = 120 mM,
co= 2.5 mM. We further need values for the radius r, and length [ of the potagsium
channels in the nerve membrane. According to Bezanilla and Armstrong (1972)
and to Hille (1973) the narrowest part of the K channel in squid axon membranes
and in myelinated nerves is about 3 A in diameter and the channels have a wide
inner mouth. We, therefore, assume that the cylindrical tunnel of the potassium
channel has an average radius of 7,= 2 A and a length of the order of =10 A.
At U= — 70 mV (u= — 2.8) we then obtain » = 4.65 A using Eqs. (24) and (20).
With D= 10-%ecm2s ! Eq. (38) yields g= 1.77- 10-1° A s¥2 Taking g= 10—78
for one single node (Siebenga ef al., 1973) and &> 1s we finally arrive at an
intensity Sp(1) << 3.1 - 1020 V25 of the 1/f noise spectrum of voltage fluctuations
at f = 1 Hz. In contrast to this calculated value the measured intensity is Sy (1)~
10-10V2 g (Siebenga et al., 1973, Fig. 2).

The same discrepancy occurs for the 1/f noise at squid axon membranes.
Taking the experiments of Fishman (1973) we have ¢;= 500 mM (pofassium
concentration of the internal perfusate), ¢co—= 10 mM, 7= 4.65 A at the resting
potential which is assumed to be U= — 70 mV, and g== 7.5 - 1072® A s%% Using a
value of 50 ym~—? for the density of potassium channels on the squid axon mem-
brane (Conti ef al., 1975), there are N == 5 . 105 potassium channels in an isolated
membrane patch of 10~* em?2. Under these conditions a resistance 1/g of 3.5 MQ
and a 1/f noise density of approximately 10~ V2s at f= 1 Hz were measured
(Fishman, 1973). However, using Eqgs. (37), (39) and b> 1 s gives Sy(l)< 3.4 -
10-18 V25, Consider also the 1/f spectrum of current fluctuation under constant
voltage at squid axon membranes (Conti et al., 1975). These authors isolated a
" membrane area of about 0.38 em? (20 mm axon length, 600 um axon diameter)
and measured a 1/f density of about 10-2' A%?s at f= 10 Hz and U= — 56 mV
(Conti et al., 1975, Fig. 1). Instead S;(10)< 1.3.10728 A?g is obtained from
Eqs. (37), (38) with the values ¢;= 410 mM, ¢,= 10mM, »=594, ¢=84.
101 As¥2, N=1.9.10% and b> 1s.

These large deviations between measured and calculated 1/f noise densities
indicate that our theory does not describe the observed 1/f noise at nerve mem-
branes if permanently open potassium channels are assumed. Therefore, we
consider fluctuations of the permeability between the values P and 0 as indicated
in the upper part of Fig. 4. The resulting time course of the current I(f) through
an open pore is given by Eq. (36). According to this relation I(f) — I(co) can be
represented as the superposition of positive pulses § I (#), 6 I (f — 8,) from previous
pore openings and negative pulses — (ro- %)f% - 0I(f— 6,) from previous pore
closings. Thus I (£) depends on the duration ¢ of permeability fluctuations, but the
individual pulses contributing to I (£} are always the same and independent of the
time ¢. Since we assumed statistical switches between the two permeability states,
the noise of such randomly occuring pulses can be calculated from Carson’s
theorem [Eq. (4)]. To obtain the pulse frequency 4 we introduce the average time
periods 7, and 1. of open and closed states of an individual pore. The rate of
switches from a closed to an open state then becomes A= 1/(7,+ 7¢). Since the
current pulses are interrupted during closed states (compare Fig. 4), the Fourier
transforms of the individual pulses have to be multiplied by the fraction
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To/(To+ T¢) of time at which the pore is open. Thus Eq. (15) yields for the density
Sr(f) of the 1/f current noise spectrum:

s LGl e

To+ Te \To+ Te

N is the number of membrane pores which are assumed not to interact with
each other, and the expression ¢ is defined by Eq. (38). The time course of the
single contributions é I (f) in Eq. (36) is not limited by the period 7, of an open pore
but only restricted by the finite lifetime of the pore or by the time range during
which no significant changes of the aqueous bulk ion concentrations oceur due to
ion accumulation or depletion in finite diffusion regions around the pores. Since
these times can be several seconds or even longer, the low frequency limit of the
1/f spectrum can lie below 1 Hz in accordance with the experiments. The upper
frequency limit 1/2 7 7 of 8 (f) is determined by the characteristic time 7~ 10~ s
of pore opening and is outside the range of measured noise spectra.

To simplify Eq. (40) we approximate (ro+ x)/x by 1 and assume equal periods
7, and 7¢ of open and closed pores. Then

Si(f)= 1o (1)

Thus the lifetime b in formula (37) simply has to be replaced by 4 7, to obtain the
1/f noise spectrum of pores with random permeability switches. If the time period
7o of an open state is much smaller than the parameter b, much higher densities Sy
follow from Eq. (41) than it would be calculated from Eq. (37) without taking
permeability switches into account. The discrepancies found between predictions
from Eq. (37) and measured 1/f noise densities at nerve membranes now can be
resolved by choosing appropriate low values for the period 7, in Eq. (41). To
obtain spectral densities of 1/f noise which are compatible with measurements at
myelinated nerves (Siebenga ef al., 1973), 7, has to be in the order of 10~ 5. The
1/f spectrum of voltage fluctuations at squid giant axons (Fishman, 1973) and the 1/f
current fluctuations at the same preparation (Conti ef al., 1975) are in agreement
with our theory with 7,~ 107 s.

Discussion

It was shown in the Results section that the calculated spectral densities of
1/f noise only reach the size of measured 1/f noise at nerve membranes if there are
random switches between two pore permeability states. However, a determination
of pore parameters from 1/f noise densities is not possible at present for the
following reasons: 1/f noise probably is not only generated by the flux of potassium
ions as it was assumed in the previous section, but there are considerable con-
tributions of sodium and leakage currents to this kind of noise (Conti ef al., 1975).
Furthermore, no reliable values are available for the size and the density of ion
selective channels on nerve membranes. Thus the value 7,~ 107 to 10-1% s for
the period of an open pore estimated from Eq. (41) has to be considered as a very
rough estimate. However, 7, is definitely shorter than any time constant of the
Hodgkin-Huxley formalism describing the activation and inactivation of sodium
currents and the activation of potassium currents in voltage clamp experiments.
Therefore, conventional “gating’ of the ionic currents is not responsible for the
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generation of 1/f noise at nerve membranes. A possible alternative interpretation
of rapid switches of pore permeabilities with time constants of the order of 7, is
single file transport of K+ ions through the potassium channels (Hodgkin and
Keynes, 1955; Heckmann, 1972). An influx of ions from the unstirred solution
layer into the channel then would be possible only if there is a free site at the
entrance of the pore. Otherwise the pore would be closed. The rate 1/7, then has to
be interpreted as the frequency of transitions between a free and occupied site.
These random permeability switches due to single file transport could be the basis
of 1/f noise at nerve membranes. As a demonstration we refer to the model
experiment of Schick and Verveen (1974). These authors investigated the flow of
small grains through an hourglass and found a 1/f frequency dependence for the
fluctuation of the grain density.

Poussart (1971) and Conti ef al. (1975) have shown that the spectral density of
1/f noise is proportional to the square of the potassium current through the nerve
membrane. This relation is in accordance with our theoretical description of 1/f
noise since the parameter ¢ and the stationary ion flux I(cc) exhibit the same
voltage dependence [compare Egs. (30) and (38)] and the spectral density of 1/f
noise is proportional to g2 The temperature dependence of 1/f noise cannot be
examined easily because almost all parameters of our model will vary with tem-
perature. It could be that an increase of the frequency 1/7, and the diffusion
coefficient D at increasing temperature is compensated by a slight decrease of the
pore radius 7, such that the 1/f density becomes practically temperature independ-
ent as observed in the experiments (Conti ef al., 1975).
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Appendix: Validity of the Asswmptions 2) and 3)

If Az and Ap are thickness and voltage drop in the Debye Hiickel solution layers in front
of the membrane, the electrical driving force in this layer gives the contribution
25 p o A7
Iz=7IToFDCE (42)
to the current through a single pore. ¢ is a mean concentration of the permeant ion which
is of the order of the corresponding bulk concentration. The magnitude of . has to be compared
with the current arising from the ion flux along the concentration gradient in the unstirred
solution layers. For equal bulk concentrations ¢; = ¢, = ¢ in the intra- and extracellular
solutions Eq. (30) gives

2
I(w)=2aF Dctanh (4/2) —2 (43)
ro+ ®
and the current ratio between I. and I () becomes
I. o + A
o T ¥ ¢ (44)

I(w) 24z tanh (4/2)

This relation was derived under the assumption that the pore radius 7, is small compared with
the Debye Hiickel length Ax. Otherwise the half sphere of radius 7, around the pore ends would
include the Debye Hiickel solution layer and electrical driving forces could be neglected in the
caleulation of the ion flux in the unstirred solution layers for pore distances 7 < r..
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For ion selective channels in nerve membranes the condition 7, < Az is fulfilled and the
Eq. (44) applicable. In physioclogical solutions the Debye Hiickel length Az is of the same order
as the sum 7, + I of pore radius 7, and pore length [, whereas at voltages | U | < 100 mV (| u |

< 4) the voltage drop Ay in this layer is small as compared to tanh (%/2) (Liuger and Neumcke,
1973). Thus I, < I (») and assumption 2) is fulfilled.

If pores switch randomly between open and closed positions with the frequency 1/7, ~
107 Hz, an interference can only occur between the ion fluxes of pores which are less than
V2 Dz, ~ 140 A apart. Assuming that there are only a fow pores within a circle of radius
140 A, it is sufficient to prove assumption 3) for two neighbouring pores. The following
arguments apply to the stationary state at which the deviations between the concentrations
in the unstirred solution layers and the corresponding bulk concentrations assume maximum
values. The stationary concentration profile in the unstirred solution layers is:

I (=) . .
o % S E Dy (intracellular solution) .
c(r)= 5
I (=) .
0t 5 F Dy (extracellular solution).

In the special case ¢: = ¢o = ¢, the expression (43) can be used and the relative deviation
A =]e(r)— ¢|/c of ¢ (r) from the bulk value ¢ becomes

o2

A=

1

P tanh (|« |/2) b (46)

Assuming r, = 2 A, u = 3 (U = 75mV), [ = 10 A and using Eqgs. (24) and (20) yields » ~ 6 A.

Thus 4 < 1% for r > 45 A. For longer pore lengths ! even shorter pore distances r would be

obtained at which the interferences between the ion fluxes of two neighbouring pores can be

neglected.
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