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Summary. Using the martingale formulation for Markov processes intro-
duced by Stroock and Varadhan, we develop a criterion for checking if a
measure happens to be invariant.

0. Introduction

Let S be a compact metric space or a locally compact separable metric space.
Let x(¢f) be a homogeneous Markov process with state space S and transition
probability function

P(i, x, A)=P,(x ()€ A).

As usual B(S) will denote the bounded measurable functions on S. Let
{T;: t >0} be the associated semigroup i.e.

(LN)(x)={f(y) P(t,x,dy) for all feB(S).

The infinitesimal generator L is defined by the formula

T{—
t10 14

and its domain D(L) consists of all those feB(S) for which the above limit
exists. If 4 is an invariant measure for this Markov process i.e.

uw(A)={P(t,x, Aydu(x) for all t>0
and for all Borel sets 4, one can check that
fLf(x)du(x)=0  for all feD(L).

And conversely, if [Lf(x)du(x)=0 for all feD(I) then u is an invariant
measure. Notice that in order to apply this criterion one has to compute D(L)
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2 P. Echeverria

which is hard to do. The result of this work is that you do not have to check
that |Lf(x)du(x)=0 for all feD(L) in order to see if y is an invariant
measure. It turns out that it suffices to check [Lf(x)du(x)=0 for f varying
over the subclass of D(L) consisting of the functions such that the martingale
problem is well-posed (for information about the martingale problem, see [2]).

For future use, we recall the minimum principle: let H: B(S)— B(S) be an
operator then H satisfies the minimum principle if f(x)=f(x,) for all xeS
implies that Hf(x,)=0.

The contents of this paper is essentially an N.Y.U.-thesis written under the
direction of S.R.S. Varadhan. I heartily thank Varadhan for his insight, kind-
ness and encouragement. I also want to thank H.P. McKean for his sugges-
tions for the presentation of the paper.

1. Statement of the Basic Result

Theorem. Let S be a compact metric space and C(S) be the class of continuous
functions defined on S or let S be a locally compact separable metric space and
C(S) be the class of bounded continuous functions which have a limit at infinity.
Let D([0, o), S) denote the space of right-continuous trajectories. Let M be a
dense subset of C(S) and L: M — C(S) an operator which satisfies the minimum
principle and the following convexity property: for each integer p>0 and
8: RP—>R a smooth convex function (smooth means at least twice differentiable)
and for f, f5, ..., f,€M, we have 0(f,, ..., f,)eD(L).

For weD([0, w), §) define x(t, w)y=w(t).

We assume that for each xS the martingale problem is well-posed i.e. there is
a unique probability measure P, on D([0, o), S) such that

) B(x(O)=x=1
1) £ (6(0) = { L (x(5) ds

isa P, martmgale for each feM.
Let p be a probability measure on S such that § Lf(x)du(x)=0 for all feM,
then u is an invariant measure.

Remark. Under previous assumptions the following inequality holds:

L 08
LOG s s f)2 Y 5= (fisoos £ L
=1 0%
Because the martingale problem is well posed, the process x(t) is Markovian
and so we have an associated semigroup {7;: t>0} and an infinitesimal genera-
tor L which is an extension of L. Since 6(fy, ..., f,)eD(L) we can take point-
wise limit in order to compute LO(f;, ..., f,) and recalling Jensen’s inequality,
we have:
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2. Proof of Compact Case

Lemma 1. Let us consider C(S) and W={fe C(S): f 20}. Let V be a subspace of
C(S) such that the constant function 1€V. Then each monotone linear functional
on V can be extended to C(S) in such a way that the extension is a monotone
linear functional on C(S).

Proof. W' is clearly a convex set and tW< W for all t=0 ie. Wis a wedge in
C(S). For feC(S) we have

f(x)=inff>—o0 for all xe§

hence for a suitable constant «:
f(x)+a=>0 for all xeS.

But constants are in V, thus

(f+V)nW=+¢ for each feC(S)
and so

(f+V)nW=+¢ ifand only if (—f+V)nWke.

Therefore by the Krein extension theorem for non-negative linear functionals

(see [1]), any monotone linear functional on V can be extended to a monotone
linear functional on C(S).

Lemma 2. Let S be a compact metric space and u a probability measure on S.
Let V be a linear subspace of C(S) such that the constant function 1€V, Assume
we have a linear operator n: V- C(S) such that
i) nl=1

i) nf 20 if f =0

ifi) Juf (x) du()=| f(x) du(x).

Assume for each integer p>0 and any f,, ..., f,€V and for any convex
Junction 0: R? — R that the following convexity inequality holds:

JOmfi(x), .. nfy () du(x) [ O(f1(x), ..., (%)) dp(x).
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Then we can find a Borel set A such that p(4)=0 and we can find an operator
7. C(S)— B(S) such that
1) if feV, then (Tf)(x)=(nf)(x) for x¢4
ii) if feC(S) and f =0, then (Rf)(x)=0 for x¢A
i) [ 7f(x)dp(x)={f(x)du(x) for each feC(S).

Proof. Let us construct a probability measure 1 on S xS with marginals y and
such that

§ S ditx, J')=£f(y) dp(y)

SxS

§ g0 h(y) dAlx, y)= fg(X)(ﬂh)(X) du(x)
SxS
where fe C(S), ge C(S) and heV.
If Yis a random variable on the product space S xS, then E*{Y|x} is the
random variable such that

AISY(X y)dalx, y)= EEA{Y(X PNpi(x, y)=x} dplx)

and

for all Borel sets A (here p, is the canonical projection).
Hence, the probability measure / that we want is such that

E*{h(y)|x} =(mh)(x)

for a.e. —dA(x,y) and for heV. To do this, let W< C(S)xV be the linear
subspace

and consider the linear functional A: W— R defined by

(x, )= z 8.9 () +1 () }
¥lwhere g€ C(S), h,eV and feC(S)

A6={ (5 £16 wh 9 +19) dte).

A is a non-negative functional ie.
Aw)=z0 if »=0.

To check this: the function @& & R*— R defined by

n
D8z, z)= = inf (3 g2
is a convex function, then using the convexity inequality

_[il:f (i g;(x) nhi()’)) d/v‘(Y)?_—jiEf (‘_ilgi(x) hi()’)) duy)

i=1
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and so

n

] (iigi(y) ﬂhi(y)) duy)=| igf (Z g;(x) hi(y)) dp®y).

i=1

But v=0 implies

inf 3 89 1)) +/ )20
and then -

A©={ 3 60) 2h0)+10)) dut 20.

By Lemma 1, we can extend this functional A to a non-negative linear
functional A on C(S x S). And by Riesz theorem

A= | v(x, y) dA(x, y)
SxS

where A is a positive measure. Since

MC(Sx8))= [ 1dA(x, y)=[ldu(x)=1
5

Sx8

we get that A is a probability measure. By the properties of 4, we see that for
heV we have

E*h(y)|x}=(nh)(x) for x¢N

where u(N)=0 and N depends on A.

Since S is a compact metric space, we can find a sequence h,eV such that
the h,’s are dense in V. For each n, we find a Borel set A, such that u(4,)=0
and

E*{h,()|x}=(mh)(x) for x¢A,

Let N, = | J 4,, then u(N,)=0 and for each n
n=1

E*{h,(y)| x} =(nh)(x) for x¢N.

Given any heV, we pick a subsequence h,_such that sup|h(x)—h, (x)| =0 as
k1oo. Then xeS

E*{h,, ()| x} =(nh,)(x) for x¢N,

implies that E*{h(y)|x} =(rh)(x) for x¢N;.

Again, since S is a compact metric space, we can find a sequence f,e C(S)
such that f,=0 and the f’s are dense in {feC(S): f =0}. For each »n, we find a
Borel set B, such that u(B,)=0 and

E*{f,(»Ix}=0 for x¢B,.
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Let N,= | ) B,, then u(N,)=0 and for each n:
n=1

E*{f,0)|x}20 for x¢N,.
Given any fe C(S) such that f 20, we pick a subsequence Jfy,; such that
suglf(X)—fnj(X)l-*O as jfoo.

Then E’l{fnj(y)lx} 20 for x¢ N, implies that E*{ f(y)| x} =0 for x¢N,.
Let 4=N, UN,, then obviously u{4)=0. Let us define

@) =E*{f(|x} for feC(S)

and check that it has the desired properties
i) if heV, then

E*h(y)|x}=(nh)(x) for x¢N,
and so
E*{h(y)|x}=(nh)(x) for x¢4

ie. (Fh)(x)=(rh)(x) for x¢A.
ii) if feC(S) and f =0, then

E*{f(y)|x}=0 for x¢N,
and so
E*{f(0)Ix}z0 for x¢4

ie. (Tf)(x)=0 for x¢A.
iii) for any feC(S)
gﬁf(X) du(x)=£E’l{f(y)lx} du(X)=Sfo(J’) da(x, J))=£f(Y) du(y)
ie. [27(0) du(d)={ f(x) du().

Lemma 3. Let S be a locally compact separable metric space. Let Y,,
Y,,..., Y, ... be a time-homogeneous Markov chain with transition probability
function g(y, A) and state space S. Let

GOY=(m,— D H(y)= [ (H(x)—H(y)) g(y, dx)

n—1
then Z,=H(Y)— G(Y)) is a F,-martingale where F, is the o-algebra generated
j=0

J=

by Yy, Y, ..., Y,
Proof. Just check that E(Z,,,|F)=Z,.
Proof of the theorem in the compact case:

Step 1. Let A>0 and consider the operator I —AL: M — C(S). Let N,=Range
(I—AL) and let

m,=(I—AL)~': N,— M.



A Criterion for Invariant Measures of Markov Processes 7

To see that m, is well-defined, let us check that the null space of I—AL is
trivial: let f=ALf, then for some x,eS f(x)=f(x,) and thus by the minimum
principle f(xq)=ALf(x,)=0 ie. f(x)=0; but

[ f(x) du(x)=24{ Lf(x)dpu(x)=0

and this implies that f=0.

7, has the following properties.

i) m, is a non-negative operator: let feN, be such that =0, since S is a
compact space for some x,eS we have

r, f(x)=zn, f(x,) forall xeS
then by the minimum principle, we have

L, f(xq) =20
and so

S (o) 27, f (Xo) = AL f (o) =f (%) Z0.

This implies:
7, f(x)=0 for all xeS§
ie. m, f=0.
i) n,1=1. To see this, notice that if C is constant function then LC=0
because C maximum implies LC <0 and C minimum implies LC=0. Hence
the operator I — AL leaves constants invariant, in particular

(I—AL)1=1.
Then
n,l=n,(I-AL)1=1

i) [m, f(x)du(x)=[f(x)du(x) for all feN,. To see this: feN, implies
f=(U—AL)g for some geM, thus

§f(x) dpu(x)=§ g(x) dp(x) = A Lf (x) du(x)= | g(x) du(x)
but n, f=n,(I—AL)g=g and so

[ () du(x)=m; f(x) du(x).

We must show that n, can be extended from N, to all C(S) as %, such that
)wl=1

i) %, f=z0if f=0

i) {7, f(x)dp(x)=] f(x) du(x) for all feC(S). Let 0: R” >R be a convex
function. Since any pointwise limit of convex functions is a convex function we
can find a smooth convex function which approximates € by taking the
convolution of 0 with a test function. Hence we can assume that 8 is a smooth
convex function. Let f}, f3, ..., f,€N, and consider

DA=[0(fy, ..., f,)—0(f, — ALf,, v fy—ALS)) d .

Since 6 is convex, we have that @ is a concave function.
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Differentiating
&'(7) fZ —ALfy, .. f,— ALf) Lf, dp
and so
o'(0)= jZ (fl: S L du
then

&' (0)< [ LO(f,, ..., f,) du=0.

But & is a concave function and ¢(0)=0 hence ¢(4)<0 for all 1>0.

ie. J0Ufis s ) Aus ] 8(f,—ALS,, ..., f,— ALf,) dps
ie. [0(,8,, .., ,8,) dus[0(gy, ... 8,) du
for gy, ..., g,eM.

By Lemma 2, we have a Borel set 4, such that u(4,)=0 and an operator
miV: C(S)— B(S) such that

i) if feN, then n{" f(x)=m, f(x) for x¢ 4,
ii) if fe C(S) and f =0, then nf(x) 20 for x¢4,
iil) 7 f(x) dp(x)=| f(x) du(x) for all fe C(S).
Since the solution of the martingale problem is unique, we have a Markov
process x(t) and hence a semigroup {T;: t>0}.
Let {R,: «>0} be the resolvent associated with this semigroup and consider
the operator

1
7@ == RL: C(S)~ B(S).
A2
7$? has the properties

1 1
i (2) = 11== :1
) )1 pl R_l 7 A

i) if feC(S) and f =0, then P f = R1f>0
iii) @ f=n, f for feN,.

t

To check this, since f(x(t)) — | Lf (x(s)) ds is a martingale, we have
¢

E.(f(x(@®)— (J; Lf (x(s)) ds)=f (x)
then

Ef(X)~§Tst(X)dS=f(X)

—le(x %E “%£  Lf(x)ds dt=f(x)
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and integrating by parts
1 ® ot
= RLf(x)= [ e 7 T,Lf (x) de = (3
. 0

1
ie. jl R_;_f(x)—R% Lf(x)=f(x)

Le. )% Rll_(l——/lL)f(x) =f(x)
ie. = —AL)""' on N,.
Let us define the extension
C(S)— B(S).
For each fe C(S), we define

BVf(x) i xgd,

T, f(x): { Bf(x) if xed,.

It is easy to check that &, has the desired properties.
Step 2. Consider the operators
n,: N,— M and their extension
7T,: C(S)— B(S). Using the invariance principle let us show that

7,)'>T when A—0, n—o0, An—t;
A t

where (T, f){(x)=E (f(x(t)) is the semigroup corresponding to the unique so-
Iution of the martingale problem. Then since
J@)f(x) dulx)=] f(x) du(x)

taking limits, we get | T, f(x) du(x)={ f(x) du(x) for all fe C(S), in other words:
uT =y ie pis an invariant measure.

The proof of step 2 goes as follows: For each A>0 consider the Markov
chain

A A A
XO,XP, XD,

with stationary transition probability function 7,. Therefore, for feM and
=f—)LfeN, we have

(@, =D g,=n,(I-AL)f—(I-AL) [=ALf
and by Lemma 3

LXY =2 Z Lf(X{") is a martingale.

Construct the process
YO = x4
‘ [

(here [+] is the usual integer part function).
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We see that Y™ has right-continuous trajectories. Let Q(” be the probabili-
ty measure on S xS x S x ... induced by the process {XP: n>0} conditioned to
start at x ie. for any Borel sets Iy, I3, ..., I, and any k>0

oM XPel,, ..., X1 el)
= _[ j 5x(dy0) TV, dY1) o TV 1 dYp)-

I'm To
Let P be the probability measure on D([0, ), S) defined by
PA(x(ty)el, ..., x(t,)eL,)=0P(YWel, ..., YPel})

where I, ..., I, are Borel sets in S. We want to see that P as 1—0 is weakly
compact in D([0, o), S). Let Y(/, x, 8, {)=PP(r,<t) where 6>0 and t; is the
exit time from the open ball B(x, d). To prove compactness of the sequence
{P?M: >0} it suffices to see that for each 6>0:

lim lim sup sup ¥(4, x, 8, t)=0.

t—0 Ai=0 xeS

Since the state space is compact, it suffices to check

lim limsup sup ¥(4, x,4,1)=0

t—0 A= 0 xeB(xo, d)

for some fixed x,€S (but arbitrary). By Urysohn’s lemma there is 6e C(S) such
that =0 on B(x,, 6), =1 on B{x,,20)° and O0<f<1 in the remaining
annulus. Since M is dense in C(S) given a number O<p<1 we can find
0<6,eM such that

su;s) 16,(x)—0B(x)| <p

then
sup {0,(x): d(x, xo)<d}<p
and
inf{0,(x): d(x, x()>20} > 1—p.

Let ¢, ,=(I—4L)0,. This implies
ﬁz(‘f’p,):@p and so ﬁ1(¢p,l)—¢p,l=iL9p.

Since 6, is a nice bounded function, we can find A” such that |L6,|<A4” and
hence

[¢, () =10,(x)—ALO (x)| S p+44” for xeB(x,, )
and
¢, () =0,(x)-A|LO,(x)|z1—-p—72A4” for xeB(x,,20).

VBy what we said before .
d)p. /1( Y(f,ﬁ))) -4 'Zo Lep (YE%.)))
iz



A Criterion for Invariant Measures of Markov Processes 11

is a martingale, and the fact that |L0,|<A* obviously implies that ¢, ,(Y{})

—nlA® is a supermartingale. Since {¢, ;(x(tA1,)—A°(tAT,)} is uniformly
bounded, we can apply Doob’s stopping time theorem.
Let xeB(x,, 9)

EY [0, ,(x(tAT35) —AP(EATH,)] <EY [¢,, 1(x(0AT3,)) = A7 (0 A T5,)]
that is
EY (9, :(x(EAT3)) — At AT3) 1S, ,(x) S p+A4P.

Now, since d(x, xo) < 4,75, <t implies that Y{?  eB(x,, 20) so

EECA)[()bp.Z(x(t AT35)] =E;l)[¢p,l(x(‘c35))7 T35St
+EP[0,(x(1), 73, >t] +EP[—ALO (x(2)), 75,>1]
> (1= p— 247 PO(15, £1)— 442 POty >1)
=(1—p— 247 PP (3, S1) ~ AP+ 24P PPO(x5, 1)
=(1-p)PP(13551)— 14
and clearly

EN[AP(t Aty5)] StAP.
Then

(1=p) PPty 1)~ AAP —1 AP éEﬁf’[pr,,m(x(t AT3))—AP(E A T3,)]

Sp+i4°
ie. (1= p) PP (1, SOSp+2AA°+1A4° for x + B(x,, J).
Then
lim limsup sup P¥(z, 5§t)§~p—
t»0 i-0  xeB(xo,d) 1—-p

and since p is arbitrary

o : _
lim limsup sup PW(r,,<1)=0.
t—0 A-0  xeB(x0,9)

Therefore, for some subsequence A
(25)
P=Q.  as 1;-0.

It remains to identify the limit Q,.
Let feM and g,= f —ALf, then (%, —I)g,=/Lf and we know

B.x(ri)~1 ¥, Lf (<)

is a P%-martingale.
Notice that

nj—1

A
8, (A =L ¥ L (x(ki)
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tends to

[ I

f(x(t))—iLf(x(s))ds as A;—0,n;— 00, 4;n;lt.
0

t
And since P*'=Q_, we can easily conclude that f(X(t))— [ Lf (x(s))ds is a Q,-
0

martingale, but we assumed that P, is the unique solution to the martingale
problem, hence Q, =P, and so P’=P, as 1,-0.

3. Proof of Non-Compact Case

From now on, we assume that the state space S is a locaily compact separable
metric space.

Lemma 4. Let S, and S, be locally compact separable metric spaces. Let S, and
S, be the one-point compactifications of S, and S, respectively. Let A, be a non-
negative linear functional on C(S,) and A, a non-negative linear functional on
C(S,). Assume there are probability measures u, on S, and p, on S, such that

Ayf={fdu, and Ag=[gdu,. Let A be a non- negatwe linear functzonal on
C(S,xS,) such that Af =A,f for feC(S,) and Ag=A,g for geC(S,). Then
there is a probability measure p on S| xS, such that

Ah={hdp  for all heC(S,xS,).

Proof. Since S ><S2 is a compact metric space, by Riesz theorem there is a
measure j on S x S, such that Ah={hdpforall he C(S, x8S,). Since Al=A,1=1
we have that u is a probability measure. And since Af =A,f for fe cs, ) and
Ag=A,g for ge C(S,), we have that u has marginals y, and u,. Now

(S x {oo})=p,({c0})=
p({oo} x Sy)=p,({c0})=0

hence u is concentrated on S, xS, and thus p is the desired probability
measure.

Lemma 5. Let S be a locally compact separable metric space and p a probability
measure on S. Let M be a linear subspace of C(S) (the class of bounded
continuous functions on S which have a limit at infinity) such that the constant
function 1eM. Assume we have an operator n: M — C(S) such that

i)nl=1

i) nf 20if f 20

iii) §nf (x) du(x)={ f (x) du(x).
Assume that for each integer p>0 and any f,....f,€M and for any convex
function 0: RP—R, the following convexity inequality holds

fO(rfy(x), ... nfp(x)) du(x) < [ O(f1(X), ... £ () dia().

Then we can find a Borel set A such that u(4)=0 and we can find an operator
7. C(S)~B(S) such that
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i) if feM, then Tf (x)=mnf(x) for x¢A
i) if feC(S) and f 20, then Tf (x)=0 for x¢4

i) [ 7f (x)du(x)={f(x)du(x) for all feC(S).

Proof. Notice that C(S) is isomorphic to C(S). Let W< C(S) x M be the linear
subspace defined as

xy)—Zg V() + 1)
W=qv
where g, C(S), h,eM and feC(S)

and consider the linear functional
A: WR defined by A(v)=| (2 g.(x) thi(x) + f(x)) d (),
i=1

Just as we did before, we can see that 4 is a non-negative linear functional. By
Lemma 1 we can extend A to a non-negative linear functional A4 on C(S8 x S).
But for feC(S), since f(x)1eW we have

Af = A(f )= [ (x) du(x).
Hence by Lemma 4, there is a probability measure 4 on S x S such that
Av=[uv(x,y)dA(x,y) for all veC(S xS).

Since S is locally compact separable metric space, the space C(S) is a complete
separable metric space. And by a previous reasoning the lemma follows.

Proof of the theorem in the non-compact case:

Step 1. Same as before.

Step 2. Consider the operator n,: N,—»M and its extension 7, : C(S)— B(S).

As before, to see that p is an invariant measure it suffices to see that
()"~ T, when A—0, n— oo, in—t where T, is the associated semigroup with the
unique solution to the martingale problem.

The proof of step 2 goes as follows:

As before we want to see that P ag 1—0 is weakly compact in D([0, c0), S)
where xeS is fixed but arbitrary. Since S is a locally compact separable metric
space, we have that § is o-compact ie. there is a sequence D, of compact
subsets of S such that

= U D
k=1

Clearly, we can assume that

D, <Interior(D, ;).



14 P. Echeverria

Let xeD, and consider

0,: S—[0,1]

1 for yeD,
6 =
W) {0 for y¢D,, ;.

such that

For any Borel set A, we define

7Y, A) = 0,(0) 7, (3, A) + (1 = 0,(y)) L, (¥)-

Let P be defined in terms of =, , as P was already defined in terms of ;.
Let G,={x(s): 0<s<t} and define

1, =inf{t: G,n D} % ¢}.

Then since the process x(f) is a jump Markov process the 7, are lower
semicontinuous stopping times. By the definition of the Kernel «, , we see that
the process is not altered until it leaves for the first time the set D,, thus P}
=P% on F,. Also by the definition of m, , we see that the process is slowed
down in the set (D, ,—D,) and there is no motion outside the set D, ,,
therefore, by a procedure analogous to the compact case, we can see that the
sequence {P**: 1>0} is weakly compact ie. for some subsequence P} *=QF
as 4;,—0. Moreover for events in F,_the limit QF is clearly identified as P, the
umque solution to the martingale problem ie. QX=P, on F,. Also notice that
by the definition of the Kernel n, , we have

Ak . p(A)
P=P on F,_.

Applying the Lemma 11.1.1 of reference [2] we have that P*)=P, as 1,—0.

4. Applications
Let S =R be the state space and let us look at some examples to see the scope

of application of the previous theorem.
i) Consider the operator

ln
52‘”6

where the coefficients a;,(x) and by(x) are smooth enough. Then for fe€C*(R)
the initial value problem

o2 " 0
+ 2 by

X, 0x; =4 ;

ou

E=Lu, u(0,x)= f(x)

has a unique solution ue C*(R%. Thus differentiating under the integral sign

—%_f u(t, x)dp(x) = Lu(t, x)dp(x)=0
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Le.
Jult, x) dp(x)= [ u(0, x) du(x)

but we know u(t,x)="T, f(x), so

[T ) dp(x)=[f (x) du(x)

ie. p is an invariant measure. In this case, the previous theorem was not
necessary to check that y is an invariant measure.

ii) Let w(t) be the Brownian motion in RY and consider the stochastic
differential equation

dx(t)= o(x(t)) dw(t) + b(x(r)) dt.

Assume that for some constant K >0 the matrix o=(0;;) and the vector b=(b)
satisfy

|0;(x) =0+ |b(x) = b,y = Kx—yl
lo:;()| +1b;(0)] = K (1 +]x])

for all x,yeR? and 1<i, j<n. Then by the standard theory of Itd we have a
unique Markovian solution of this stochastic differential equation which has
the infinitesimal generator

1 & 0% s 0
L_2 ,-,jzzlaij (3)61.6xj+j§l b, ax;
Here (g,)=a=00*

Let M consist of the class of functions f =g+ C where ge CP(R% and C is
a constant function. We see that L maps M into C(R% and L satisfies the
minimum principle.

If fi,....f,eM and 0: R">R is a smooth convex function, then

LO(f,, -...[,)e C(RY

and so the convexity inequality holds. Since the theory of Itd applies the
martingale problem is well-posed (see reference [2]). Thus if # is a probability
measure on R? such that [Lf(x)du(x)=0 for all feM, then by the previous
theorem, we conclude that y is an invariant measure. In this case the pro-
cedure outlined in (i) no longer applies, however, the previous theorem does.

1 n 62 n a

iii) Let L——2 i,,g'laij i axj—i—j;l b; (3—x1
We assume that the matrix a=(a;;) is bounded, continuous and positive de-
finite, and we also assume that the vector b=(b,) is bounded and continuous.
In this case neither the procedure outlined in (i) nor in (ii) applies but (see
reference [2]) by the theory of Stroock and Varadhan, we can associate with L
a unique Markov process x(f) with infinitesimal generator L. Taking as M the
class of functions f =g+ C where ge CZ(R% and C is a constant function, we
can check that our theorem applies.
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5. Application to Infinite Particle Systems

Let P be a countable set, let F be a finite set and consider

S=]]F.

ieP

Endow F with the discrete metric and S with the product topology. Then S is
a compact metric space. For any N finite subset of P let

Sy=]1F
ieN

and let 7y: S—S, be the natural projection. A function ¢: S—R is said to be a
tame function if there is a finite subset N of P and a function f: Sy—R such
that ¢(x)= f(75(x)) for all xeS, in other words, ¢ depends only on a finite
number of variables.

Let M be the class of tame functions, it is clear that M is dense in C(S). Let
G: M—C(S) be a nice pregenerator (we mean: G satisfies the minimum prin-
ciple and the martingale problem is well-posed). If f,,f5,....f,eM and
0: R"—R is a smooth convex function, then obviously 6(f,,...,f,)eM and so,
the convexity inequality holds.

If u is a probability measure such that

[Gf (x)du(x)=0 for all feM

by the previous theorem, we can conclude that g is an invariant measure.
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