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Summary. Using the martingale formulation for Markov processes intro- 
duced by Stroock and Varadhan, we develop a criterion for checking if a 
measure happens to be invariant. 

O. Introduction 

Let S be a compact  metric space or a locally compact  separable metric space. 
Let x(t) be a homogeneous Markov process with state space S and transition 
probability function 

P(t, x, A)= Px (x(t)EA). 

As usual B(S) will denote the bounded measurable functions on S. Let 
{Tz: t>0}  be the associated semigroup i.e. 

(T t f)(x)= ~f(y)n(t, x, dy) for all f~U(S). 

The infinitesimal generator L is defined by the formula 

Lf =s-lim Ttf - f  
t~o t 

and its domain D(L) consists of all those feB(S) for which thc above limit 
exists. If  # is an invariant measure for this Markov process i.e. 

#(A)=~P(t,x,A)d#(x) for all t > 0  

and for all Borel sets A, one can check that 

f Lf(x) d#(x) = 0 for all f~D(L). 

And conversely, if fLf(x)d#(x)=O for all f~D(L) then # is an invariant 
measure. Notice that in order to apply this criterion one has to compute D(L) 
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which is hard to do. The result of this work is that you do not have to check 
that ~ L f ( x ) d p ( x ) = O  for all f eD(L)  in order to see if /z is an invariant 
measure. It turns out that it suffices to check ~ L f ( x ) d p ( x ) = O  for f varying 
over the subclass of D(L) consisting of the functions such that the martingale 
problem is well-posed (for information about the martingale problem, see [2]). 

For future use, we recall the minimum principle: let H: B ( S ) ~ B ( S )  be an 
operator then H satisfies the minimum principle if f ( x )>f (Xo)  for all x~S 
implies that Hf(Xo)>O. 

The contents of this paper is essentially an N.Y.U.-thesis written under the 
direction of S.R.S. Varadhan. I heartily thank Varadhan for his insight, kind- 
ness and encouragement. I also want to thank H.P. McKean for his sugges- 
tions for the presentation of the paper. 

1. Statement of the Basic Result 

Theorem. Let S be a compact metric space and C(S) be the class of continuous 
functions defined on S or let S be a locally compact separable metric space and 
C(S) be the class of bounded continuous functions which have a limit at infinity. 
Let D([0, oo), S) denote the space of right-continuous trajectories. Let M be a 
dense subset of C(S) and L: M ~ C ( S )  an operator which satisfies the minimum 
principle and the following convexity property." for each integer p > 0  and 
O: Rv--,R a smooth convex function (smooth means at least twice differentiable) 
and for f l , f 2 ,  . . . , fpeM,  we have O(f, . . . .  ,fp)eO(L). 

For weD(J0, c~), S) define x(t, w)=w(t).  
We assume that for each x e S  the martingale problem is well-posed i.e. there is 

a unique probability measure Px on D([0, oe), S) such that 

i) Px(x(O)=x)= 1 
t 

ii) f ( x ( t ) ) -  ~ Lf(x(s))  ds 
0 

is a Px-martingale for each f ~M. 
Let # be a probability measure on S such that ~ L f ( x ) d g ( x ) =  0 for all f a M ,  

then # is an invariant measure. 

Remark. Under previous assumptions the following inequality holds: 

v dO 
LO(fl,  ... ,fp)>-__kE= ( f ,  ... ,f,)" LA. 

Because the martingale problem is well posed, the process x(t) is Markovian 
and so we have an associated semigroup {Tt: t>0} and an infinitesimal genera- 
tor L which is an extension of L. Since O(fl, . . . , fp)~D(L) we can take point- 
wise limit in order to compute LO(fl ,  ... ,fp) and recalling Jensen's inequality, 
we have: 
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lim Ex O(f~ (x(t)), ..., fp(x(t))) - O(f~ (x), ..., fp(x)) 
t~O t 

> lira O(Exf~ (x(t)),. . . ,  EJp(x(t)))  - O(f~ (x) . . . .  , fp(x)) 
t~O t 

d 
= d t  O(E L (x(t)) , . . . ,  E L(x(t)))L o 

_ ~ 00 ( d  E~fk(x(t)))t=o - ( f l ( x ) ,  . . ,  f , ( x ) )  

i.e. LO(ft  . . . . .  fp)> ~ O0 . . . .  

2. Proof of Compact Case 

Lemma 1. Let us consider C(S) and W= { f e  C(S): f => 0}. Let V be a subspace of 
C(S) such that the constant function I ~V Then each monotone linear functional 
on V can be extended to C(S) in such a way that the extension is a monotone 
linear functional on C(S). 

Proof W is clearly a convex set and tW~_W for all t > 0  i.e. W is a wedge in 
C(S). For f e C ( S )  we have 

f ( x ) > i n f f  > - o e  for all x~S 

hence for a suitable constant e: 

f ( x ) + ~ > O  for all x~S. 

But constants are in V, thus 

( f  + V)~  W=t=O for each f eC(S) 
and so 

( f + V ) n W ~ = O  if and only if ( - f + V ) ~ W ~ .  

Therefore by the Krein extension theorem for non-negative linear functionals 
(see [1]), any monotone linear functional on V can be extended to a monotone 
linear functional on C(S). 

Lemma 2. Let S be a compact metric space and l~ a probability measure on S. 
Let V be a linear subspace of C(S) such that the constant function I~V. Assume 
we have a linear operator ~: V ~  C(S) such that 

i) ~ 1 = 1  
ii) ~ f > 0 / f  f__>0 

iii) ~ rcf(x) d#(x)= ~ f ( x )  dp(x). 

Assume for each integer p > 0  and any f l ,  . . . , fv  s V  and for any convex 
function O: R v--* R that the following convexity inequality holds: 

O(~f ~ (x) . . . . .  ~fp(x)) d #(x) <= ~ O(f ~ (x) . . . .  , fp(x)) d#(x). 
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Then we can find a Borel set A such that #(A)=0 and we can find an operator 
~: C(S)~ B(S) such that 

i) if f~ V, then (~f)(x) = (n f) (x) for x 6A 
ii) if f~C(S) and f>O, then (~f)(x)>O for xCA 

iii) ~ ~f(x) d#(x)= yf(x) d#(x) for each f e  C(S). 

Proof Let us construct a probability measure 2 on S x S with marginals # and 
such that 

f(y) d,~(x, y)= ~ f(y) d#(y) 
S x S  S 

and 
g(x) h(y) d2(x, y)= ~ g(x)(nh)(x) d#(x) 

S x S  S 

where f~ C(S), g~ C(S) and he V. 
If Y is a random variable on the product space S x S, then U{Y[x}  is the 

random variable such that 

Y(x, y) d2(x, y)= ~ E'~ { Y(x, y) l pl (x, y)=x} d#(x) 
A x S  A 

for all Borel sets A (here Pl is the canonical projection). 
Hence, the probability measure 2 that we want is such that 

e x {h(y) ] x} = (n h)(x) 

for a.e. -d2(x,y) and for h~V. To do this, let Wc_C(S)xV be the linear 
subspace 

W=I v(x, Y)=i~lgi(x)hi(y)+f(y ) 
V = 

[ Iwhere gieC(S), hisV andf~C(S) 

and consider the linear functional A: W ~  R defined by 

n 

A(v)=~ (,~lgi(x) nhi(x)+f(x))d#(x). 

A is a non-negative functional i.e. 

A(v)>=O if v>0. 

To check this: the function (b g ...... g": R " ~ R  defined by 

(" ) ~b g' ..... ~"(za, ..., z ,)= - i n f  ~ gi(x) z i 
x \ i =  i 

is a convex function, then using the convexity inequality 

~inf (i--~1 gi(x) nhi(y))d #(y)> ~inf (i= gi(x) hi(y))d #(y) 



A Criterion for Invariant Measures of Markov Processes 

and so 

gi(y) ~h~(y d # ( y ) > y i n f  gi(x) h~(y d#(y). 
i x \ i =  1 

inf(~g~(x) i= 
and then 

A(v)=~ (i~lgi(y) z~h~(y)+ f (y)) d#(y)>O. 

By Lemma 1, we can extend this functional A to a non-negative linear 
functional A on C(S • S). And by Riesz theorem 

= y) y) 
S x S  

where 2 is a positive measure. Since 

2 ( C ( S x S ) ) =  ~ l d 2 ( x , y ) =  5 l d # ( x ) = l  
S x S  S 

we get that 2 is a probability measure. By the properties of 2, we see that for 
he V we have 

Ea{h(y)lx}=(~h)(x) for x~N 

where #(N)= 0 and N depends on h. 
Since S is a compact metric space, we can find a sequence h.EV such that 

the h.'s are dense in V. For each n, we find a Borel set A. such that # (A. )=0  
and 

E~{hn(y)[x} =(7ch,,)(x) for xr 

Let N 1 = ~) A., then # ( N 0 = 0  and for each n 
n = l  

EX{h.(y)[x}=(~h.)(x) for x(~N 1. 

Given any h~V, we pick a subsequence h.k such that sup [h(x)-h.~(x)]~O as 
k T oe. Then ~s  

EX{h.k(y)[x} =(rch.~)(x) for x(~N~ 

implies that EX{h(y)[x} =(~h)(x) for xq~N 1. 
Again, since S is a compact metric space, we can find a sequence f,,~C(S) 

such that f . > 0  and the f,,'s are dense in {f~C(S):f>O}. For each n, we find a 
Borel set B. such that #(B.)= 0 and 

EX{f.(y)[x}>O for x(~B.. 

But v > 0 implies 
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Let N 2 = 0 B., then # ( N 2 ) = O  and for each n: 
n = l  

EZ{f,(y)lx}>O for xCN 2. 

Given any f e  C(S) such that f >0, we pick a subsequence f , j  such that 

sup [f(x)-Lj(x)l- ,0  as iT~176 
x~s 

Then EZ{f,j(y)lx} >=0 for xCN2 implies that EZ{f(y)lx} >0 for xCN 2. 
Let A = N 1 w N 2, then obviously #(A)= 0. Let us define 

(~f)(x)=EZ{f(y)lx} for f s  C(S) 

and check that it has the desired properties 

i) if h~V, then 

EZ{h(y)[x}=(rch)(x) for x~.N 1 
and so 

EZ{h(y)lx}=(rch)(x) for x(~A 

i.e. (gh)(x)=(rch)(x) for xq~A. 
ii) i f f sC(S)  and f > 0 ,  then 

Ea{f(y)lx}>O for x(sN 2 
and so 

E~{f(y)[x}>_O for x~A 

i.e. (~f)(x)>O for x(~A. 
iii) for anyfeC(S)  

~f(x) d#(x)= ~ E~{f(y) lx} d#(x)= ~ f(y) dJ.(x, y)=~ f(y) d#(y) 
S S S x S  S 

i.e. ~ ~f  (x) d#(x)= i f ( x )  d#(x). 

Lemma 3. Let S be a locally compact separable metric space. Let Yo, 
Y1 . . . . .  u ... be a time-homogeneous Markov chain with transition probability 

function g(y, A) and state space S. Let 

G (y)= (ng - I) H (y) = ~ (H (x) - H (y)) g (y, d x) 

n - - 1  

then Z , = H ( Y , ) -  ~ G(Yj) is a F,-martingale where F, is the a-algebra generated 
j=0 

by Yo, Y~ , . . . ,Y  .. 

Proof Just check that E(Z,+11F,)=Z,. 

Proof of the theorem in the compact case: 

Step 1. Let 2 > 0  and consider the operator I - 2 L :  M~C(S) .  Let N~=Range 
( I -  ~L) and let 

~z=(I -2L) -~:  Na ~ M. 

P.  Echeverria 
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To see that nz is well-defined, let us check that the null space of I - 2 L  is 
trivial: let f = 2 L f  then for some xoeS f(x)>f(xo) and thus by the minimum 
principle f(Xo) = 2Lf(xo) > 0 i.e. f (x)  > 0; but 

f (x) d #(x) = 2 ~ L f  (x) d #(x) = 0 

and this implies that f = 0 .  
nx has the following properties. 
i) na is a non-negative operator: let feN~ be such that f > 0 ,  since S is a 

compact space for some xoeS we have 

n~f(x)>nxf(Xo) for all xeS 

then by the minimum principle, we have 

and so 

This implies: 

Lnxf(Xo) >0 

nx f (Xo) > n~ f (Xo)- 2Lnz f (Xo)--f (Xo) > O. 

n~f(x)>O for all xsS  
i.e. ~ x f  >0. 

ii) n x l = l .  To see this, notice that if C is constant function then LC=O 
because C maximum implies LC<O and C minimum implies LC>O. Hence 
the operator I - 2 L  leaves constants invariant, in particular 

( I -  2L) 1 = 1. 
Then 

n~ 1 = nx(I - 2L) 1 = 1. 

iii) j 'nxf(x)d~(x)=~f(x)d~(x)  for all feNz.  To see this: fENz implies 
f = ( I - 2 L )  g for some geM, thus 

f (x) d ~ (x) = ~ g (x) d ~ (x) - ,~ ~ / J ( x )  d ~ (x) = ~ g (x) d ~ (x) 

but n z f = n x ( I - 2 L ) g = g  and so 

f (x) d #(x) = ~ ~ f (x) d #(x). 

We must show that na can be extended from Nx to all C(S) as ~a such that 

i) ~ 1 = 1  
ii) fix f > 0  if f > 0  

iii) ~ f ( x )  d#(x)=~f(x) dl~(X) for all fEC(S). Let 0: R P ~ R  be a convex 
function. Since any pointwise limit of convex functions is a convex function we 
can find a smooth convex function which approximates 0 by taking the 
convolution of 0 with a test function. Hence we can assume that 0 is a smooth 
convex function. Let f l ,  f2 .... , fpeNz and consider 

�9 (2) = ~ (O(f~,..., fp) - O(f~ - 2Lf~ .... , fp - 2Lfp)) d#. 

Since 0 is convex, we have that q) is a concave function. 
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Differentiating 

~o ( f  . . . ,  ~'(,,7.)=j'k=, ~ ~Xk 1 - - 2 L f "  f P - 2 L f p ) L f k d V  

and so 

then 

~0 

�9 '(o) <= ~ L o ( L , . . . ,  L) dv  = O. 

But ~ is a concave function and ~ ( 0 ) = 0  hence ~0.)_<_0 for all 2>0.  

i.e. ~ O(f,, ... , f , )  d # N  ~ O(f, - )~Lfl , ... , f , -  2Lf , )  dlx 

i.e. S O(nag*, "", n~gp) d#-<S 0(gl, ..., g;) d/z 

for gl . . . .  , gp~M. 
By Lemma 2, we have a Borel set Ax such that #(Az)=0 and an operator 

~(1): C(S) ~B(S) such that 

i) if f~N  z then n(~l)f(x)=n~f(x) for x~Ax 
ii) iff~C(S) and f>_0, then n~l)f(x)>=O for x~A;. 

iii) ~ rc~l) f (x) dl~(x)= ~ f (x) dl~(x) for all f ~ C(S). 
Since the solution of the martingale problem is unique, we have a Markov 

process x(t) and hence a semigroup {Tt: t>0}. 
Let {R~: ~ >0} be the resolvent associated with this semigroup and consider 

the operator 
1 

n(~ 2)=~ R%:z C(S)-+ B(S). 

n~ 2) has the properties 

2 1 1 
i) ~(~)1--=~ a~_l=~ tt.=1 

7~ (2) f - -1  R~f>O ii) iff~C(S) and f > 0 ,  then ~ " - 2  

iii) (2) nz f = n z f  for f~Nx. 
t 

To check this, since f (x( t ))-  ~ Lf(x(s)) ds is a martingale, we have 
0 

E~(f (x(t)) - i Lf  (x(s)) ds)=f (x) 
0 

then 

T t f(x) - i Ts Lf(x) ds =f(x)  
0 

1 17e- j T, Ci( )d, dt=i( ) -~ R�89 f (x)-~ o o 
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and integrating by parts 

1 t 

R~ f ( x ) ,  S e-=; TtLf(x ) dr=f (x) 
o 

1 
i.e. ~ R~f(x) -R~Lf(x)=f(x)  

1 
i.e. ~ R~(I -  2L)f(x) =f(x)  

i.e. rr(~2)=(I-2L) -1 on Nz. 

Let us define the extension 

~: C(S)~B(S). 

and by Lemma 3 

with stationary transition 
g;~ =f-)oLf~Nx we have 

(fix - I) gz = ~ ( I -  2L) f - (I - 2L) f = 2Lf 

n - 1  

), Lf(X} 
j=O 

Construct the process 
yt(.~) -- y(.~) 

(here [ . ]  is the usual integer part function). 

is a martingale. 

For each f e  C(S), we define 

. . . . .  frc~l)f(x) if xr 
l~a'J(X)" ~g(2)f(x) if xeAa. 

It is easy to check that ~a has the desired properties. 

Step 2. Consider the operators 

~b.: Nx -+ M and their extension 
~: C(S)--+B(S). Using the invariance principle let us show that 

(~a)"-~T~ when 2-0,  n--*oo, 2n~t;  

where (Ttf)(x)=Ex(f(x(t)) is the semigroup corresponding to the unique so- 
lution of the martingale problem. Then since 

S (~)"f(x) d#(x) = Sf(x) d#(x) 

taking limits, we get ~ Ttf(x ) d#(x)= ~f(x)d#(x) for all f~ C(S), in other words: 
#Tt= # i.e. # is an invariant measure. 

The proof of step 2 goes as follows: For each 2 > 0  consider the Markov 
chain 

x ? ) ,  . . . ,  . . .  

probability function ~,. Therefore, for fEM and 
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We see that Yt ~ has right-continuous trajectories. Let Q(Z) be the probabili- 
ty measure on S • S • S • ... induced by the process {X~Z): n > 0} conditioned to 
start at x i.e. for any Borel sets F o,/"1, ..., F m and any k > 0 

Q ~ ( X  ~ r  ~ ~F.~) 
x "~ k ~ l O ~ ' " ~ ' l X k + m  

= ~ ... ~ 3x(dYo) rcz(Yo, dyO. . .~(ym_l ,  dYm). 
Y m  FO 

Let P~(Z) be the probability measure on D([O, ~) ,  S) defined by 

P~(x ( t3er~ ,  ..., x(t , )er , , ) -  n l m v ~ r  Y.~er,)  - - - ~ x  ~ . a t l  ~ 1 ~  " ' ' ~  t n 

where F i . . . .  , F, are Borel sets in S. We want to see that p}i) as 2 ~ 0  is weakly 
compact in D([0, oo),S). Let ~,(2, x, 3, t)=P}i)(z~<t) where 6 > 0  and z~ is the 
exit time from the open ball B(x, 3). To prove compactness of the sequence 
{p(i): 2>0} it suffices to see that for each 3>0 :  

lim lim sup sup 0(2, x, 6, t)=0.  
t-~O 2~0 x e S  

Since the state space is compact, it suffices to check 

lim lim sup sup ~(2, x, 6, t) = 0 
t ~ O  A ~ O  x e B ( x o ,  6) 

for some fixed xo~S (but arbitrary). By Urysohn's lemma there is 0~ C(S) such 
that 0 = 0  on B(xo, 6), 0=1  on B(xo,26) ~ and 0 < 0 < 1  in the remaining 
annulus. Since M is dense in C(S) given a number 0 < p < l  we can find 
O<OfiM such that 

sup [0p(x)- 0(x)l < p  
x ~ S  

then 
sup {0p(x): d(x, Xo)<3 } < p  

and 
inf {0p(x): d(x, Xo) > 2 6} > 1 - p. 

Let qSp, z = (I - 2L) 0p. This implies 

~z((G,z)=Op and so ~(q~p,~)-~bp.~=2L0p. 

Since Op is a nice bounded function, we can find A s such that [LOpI<A p and 
hence 

[4)p.x(x)l=lOp(x)-RLOo(x)l<p+ZAP for xeB(xo,6  ) 

and 

By what we said before 

I#,p,z(x)[~Oo(x)-21LOp(x)l~l-p-2hP for 

n - - 1  

G.  ~ ( G ~ )  - ~ Z L o o (r~}~) 
j=O 

x~B(xo, 26) c. 
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is a martingale, and the fact that JLOp[<A;  obviously implies that ,~ (Y(~)~ "k'p, A (n ~,)] 
- n'LA ~ is a supermartingale.  Since {~bo, z (x(t A %))-- A ~ %)} is uniformly 
bounded,  we can apply Doob ' s  s topping time theorem. 

Let x e B ( x o ,  ~) 

< (~) E~) [qSp, ~(x(t  A T36)) - A P ( t  A z3a)] =E~ [q~p, z(x(0 A zao)) - A ~  A 273~)1 

that is 

E ~  ) [#);, ~(x(t  Ix z30)) - AV(t A Zaa)] --< qSp. z(X) =< p + 'LAp. 

Now,  since d(x,  X o ) < 5 , z a ~ < t  implies that Y(I~,~)EB(xo,  25) ~ so 

F~)[O~.~(x(t A %~)] = / ~ )  [r r ~  < t] 

+ E ~  ) [Op(x(t)), z 3 a > t] + E(~ z) [ - 2 L  Op(X(t)), z a a > t] 

> (1 - p - ' L A ~ ) P ~ ) ( z ~  <= t)- 'LA~n~x~)(~ > t) 

= (1 -- p -- 'LA p) P~Z)(z a ~ < t) - 'LA p + 2 A  ~ P~a)(z 3 6 < t) 

= (1  - p )  P(~Z)(z 3 ~ <- t)  - 'LA ~ 

and clearly 

Then 
E~X)[AR(t A z36)] _--< tA  p. 

(1 -- p)P~'l)(z 3 a < t) -- ,LA p - tA  p <= E~ z) [C~ p, z(x( t  A z 3 6)) -- AP( t A Z 3 ~)] 

<=p+ 'LA p 

i.e. (1 -p )P~Z)(%a < t ) <  p +  2'LAO +tAO for x + B(xo ,  c~). 
Then 

lim l imsup  sup P~a)(~36<t)< p 
t ~ O  Z ~ o  xeB(xo ,6 )  1 - - p  

and since p is arbi trary 

lim l imsup  sup P(~)(za6<t)=O. 
t ~ O  3 ~ 0  xeB(xo,5)  

Therefore, for some subsequence 2j 

It remains to identify the limit Qx. 
Let f ~ M  and g z = f - 2 L f ,  then ( ~ z - I ) g z = 2 L f  and we know 

n--1 
g~(x(n'L))- 'L ~ L f (x ( j 'L) )  

j = o  
is a Px(a)-martingale. 

Notice that 
'Lj l'l,j nj - 1 

k~=O L f  (x(k2j))  
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tends to 
t 

f ( x ( t ) ) - ~  Lf(x(s))ds as 2F-,O, nj-~o%2injSt. 
0 

t 

And since P(~J)~Q~, we can easily conclude that f ( X ( t ) ) - ~  Lf(x(s))ds is a Qx- 
0 

martingale, but we assumed that P~ is the unique solution to the martingale 
problem, hence Q~=P~ and so P~J)~P~ as 2j-~0. 

3. Proof of Non-Compact Case 

From now on, we assume that the state space S is a locally compact separable 
metric space. 

Lemma 4. Let S 1 and S z be locally compact separable metric spaces. Let '$1 and 
S2 be the one-point compactifications of S 1 and S 2 respectively. Let A 1 be a non- 
negative linear functional on C(S1) and A 2 a non-negative linear functional on 
C(~2). Assume there are probability measures #a on S 1 and #2 on S 2 such that 
A t f = ~ f d # 1  and A2g=Sgd#2 .  Let A be a non-negative linear functional on 
C(St xSz)  such that A f = A t f  for feC(S1)  and Ag=A2g  for geC(~2). Then 
there is a probability measure # on S t x S 2 such that 

A h = S h d #  for all heC(S 1 x $2). 

Proof Since $1 x $2 is a compact metric space, by Riesz theorem there is a 
measure # on ~1 x ;g2 such that Ah = ~ h d# for all h e C(~ 1 x $2). Since Al = A t l = 1 
we have that # is a probability measure. And since A f = A i f  for feC(S1)  and 
Ag=A2g for gE C($2), we have that # has marginals #1 and #2. Now 

#(sl x {o�9 

#({00} X 5 2 ) : # 1 ( { 0 0 } ) : 0  

hence # is concentrated on S~ x S 2 and thus # is the desired probability 
measure. 

Lemma 5. Let S be a locally compact separable metric space and # a probability 
measure on S. Let M be a linear subspace of C(S) (the class of bounded 
continuous functions on S which have a limit at infinity) such that the constant 
function l eM. Assume we have an operator re: M ~ C ( S )  such that 

i) ~ 1=1  
ii) ~ f  >O /f f > 0  

iii) ~ ~ f  (x) d#(x)-=- ~f  (x)d#(x). 
Assume that for each integer p > 0  and any f , . . . , f v cM and for any convex 
function O: RP~R,  the following convexity inequality holds 

OOzf ,(x), ..., ~fv(x)) d#(x) <= ~ O(f t(x ) . . . .  ,fp(X)) d #(x). 

Then we can find a Borel set A such that #(A)=0 and we can find an operator 
"~: C(S)~B(S) such that 
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i) if feM, then ~f(x)=~f(x) for xCA 
ii) if feC(S) and f>O, then fcf(x)>O for x~A 
iii) ~ ~f (x) d#(x)= ~f (x) d#(x) for all f 6 C(S). 

Proof Notice that C(S) is isomorphic to C(S). Let W _  C(S)x M be the linear 
subspace defined as 

{ v(x,Y)=~gi(x)hi(y)+f(Y) } 
W ~ - - -  /) i = 1  

where giE C(S), hiem and fEC(S) 

and consider the linear functional 

A: W---,R defined by A(v)=~ gi(x)zchi(x)+ f(x d#(x). 
. =  t 1 

Just as we did before, we can see that A is a non-negative linear functional. By 
Lemma 1 we can extend A to a non-negative linear functional zl on C(~x ~). 
But for feC(S), since f (x)leWwe have 

/ ) f  = A ( f  1) = ~f(x) d#(x). 

Hence by Lemma 4, there is a probability measure 2 on S x S such that 

Av=~v(x,y)d2(x,y) for all veC(S xS). 

Since S is locally compact separable metric space, the space C(S) is a complete 
separable metric space. And by a previous reasoning the lemma follows. 

Proof of the theorem in the non-compact case: 

Step 1. Same as before. 

Step 2. Consider the operator ~ :  Nz~M and its extension ~x : C(S)-*B(S). 
As before, to see that # is an invariant measure it suffices to see that 

(~cy--,T~ when 2--,0, n~oe ,  2n---,t where T~ is the associated semigroup with the 
unique solution to the martingale problem. 

The proof  of step 2 goes as follows: 
As before we want to see that p};0 as 2 ~ 0  is weakly compact in D([0, oe), S) 

where x~S is fixed but arbitrary. Since S is a locally compact separable metric 
space, we have that S is o--compact i.e. there is a sequence D k of compact 
subsets of S such that 

oo 

S ~- k~)12- Dk" 

Clearly, we can assume that 

Dk --~ Interi~ + 1). 
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Let x E D  k and consider 

Ok: S--,[-0, 1] 

for y~D k 
for YCDk+ 1. 

such that 

Ok(Y)={lo 

For any Borel set A, we define 

nZ,k(Y, A) = Ok(Y ) fez(y, A) + (1 - Ok(Y)) Ia(y ). 

Let p~,k be defined in terms of nz, k as p~z) was already defined in terms of n~. 
Let Gt={x(s): 0 < s < t }  and define 

z k = inf{t: G t ~ D~ 4: gp}. 

Then since the process x(r) is a jump Markov process the z k are lower 
semicontinuous stopping times. By the definition of the Kernel ZZ,k we see that 
the process is not altered until it leaves for the first time the set Dk, thus p~,k 
=P~a) on F~k. Also by the definition of nz. k we see that the process is slowed 
down in the set (Dk+l--Dk) and there is no motion outside the set Dk+ 1, 
therefore, by a procedure analogous to the compact case, we can see that the 
sequence {p~.x: 2>0} is weakly compact i.e. for some subsequence p~j,k~Q~ 
as 2j-*0. Moreover for events in F~ the limit Q~ is clearly identified as P, the 

Qkx=p ~ F~k. Also notice that unique solution to the martingale problem i.e. on 
by the definition of the Kernel rex, k we have 

p~,k=p(~) on F~. 

Applying the Lemma 11.1.1 of reference [2] we have that P(~zJ)~P~ as 2j~0. 

4. Applications 

Let S = R  d be the state space and let us look at some examples to see the scope 
of application of the previous theorem. 

i) Consider the operator 

1 ~, ~2 =~1 0 L = ~  ai~ I- i,.i= 1 c~x i ~xj bj ~xj 

where the coefficients aij(x ) and bj(x) are smooth enough. Then for f~C2(R a) 
the initial value problem 

au 
~ = L u ,  u(O,x)= f (x)  

has a unique solution ue C2(Ra). Thus differentiating under the integral sign 

-~u ( t ,  ~ x) d#(x) = ~ L u(t, x) d#(x) = 0 
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i.e, 
S u(t, x) d#(x) = ~ u(O, x) d#(x) 

but we know u(t, x)=  Ttf(x), so 

Ttf (x ) d#(x) = ~f (x) d#(x) 

i.e. # is an invariant measure. In this case, the previous theorem was not 
necessary to check that # is an invariant measure. 

ii) Let w(t) be the Brownian motion in R e and consider the stochastic 
differential equation 

d x ( t )  = a(x(t)) dw(t) + b(x(O) at. 

Assume that for some constant K > 0  the matrix a=(ai~) and the vector b=(bj) 
satisfy 

] aij(x) - a/j(y) ] + ]bj(x) - bj(y)] < g lx - y] 

Icrij(x)l + ]bj(x)] < g ( 1  + Ix]) 

for all x, y s R  d and l__<i, j<n.  Then by the standard theory of It6 we have a 
unique Markovian solution of this stochastic differential equation which has 
the infinitesimal generator 

1 ~ 6~2 __~i gq = -  t -  b~ . 
L 2 i,j= 1 azj 8xg (?x; .= Oxj 

Here (aij) = a = r162 
Let M consist of the class of functions f = g + C  where gEC~(R d) and C is 

a constant function. We see that L maps M into C(R d) and L satisfies the 
minimum principle. 

If f l ,  . . . , fpeM and 0: RP+R is a smooth convex function, then 

L O(fl,... ,f,) ~ C(R d) 

and so the convexity inequality holds. Since the theory of It6 applies the 
martingale problem is well-posed (see reference [2]). Thus if # is a probability 
measure on R d such that SLf(x)d#(x)=O for all f ~ M ,  then by the previous 
theorem, we conclude that # is an invariant measure. In this case the pro- 
cedure outlined in (i) no longer applies, however, the previous theorem does. 

1 Z (~2 n 
~ - ~ b j  8 

iii) Let L =2 ~ 8x i 8xj c~xj" i,j= 1 aU j= 1 

We assume that the matrix a=(aij) is bounded, continuous and positive de- 
finite, and we also assume that the vector b=(bj) is bounded and continuous. 
In this case neither the procedure outlined in (i) nor in (ii) applies but (see 
reference [2]) by the theory of Stroock and Varadhan, we can associate with L 
a unique Markov process x(t) with infinitesimal generator L. Taking as M the 
class of functions f = g +  C where gcC~(R a) and C is a constant function, we 
can check that our theorem applies. 
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5. Application to Infinite Particle Systems 

Let P be a countable set, let F be a finite set and consider 

S=I1F. 
iEP 

Endow F with the discrete metric and S with the product topology. Then S is 
a compact metric space. For  any N finite subset of P let 

SN= ~I F 
iEN 

and let ~N: S---,Ss be the natural projection. A function ~b: S~R  is said to be a 
tame function if there is a finite subset N of P and a function f:  SN~R such 
that 4)(x)=f(zN(x)) for all x~S, in other words, q~ depends only on a finite 
number of variables. 

Let M be the class of tame functions, it is clear that M is dense in C(S). Let 
G: M~C(S) be a nice pregenerator (we mean: G satisfies the minimum prin- 
ciple and the martingale problem is well-posed). If fl,f2,...,fp~M and 
O: RP~R is a smooth convex function, then obviously O(fl,...,fp)~M and so, 
the convexity inequality holds. 

If # is a probability measure such that 

~ Gf(x)d#(x)=O for all f e M  

by the previous theorem, we can conclude that # is an invariant measure. 
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