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Constructions of Strictly Ergodic Systems 

I. Given En t ropy  

Christian Grillenberger*' ** 

Recent results of Jewett [2] and Krieger [3] assert, that every ergodic measure 
theoretic dynamical system on a Lebesgue space is isomorphic to a strictly ergodic 
dynamical system which is embedded in a shift space with an alphabet, the 
minimum length of which is determined by the entropy of the transformation. 
However, the corresponding strictly ergodic system is not given in a constructive 
way. Therefore there remains the problem of constructing strictly ergodic systems. 
It turns out that shift spaces with finite alphabet are particularly well suited for 
such constructions because of their simple topological properties. In this way, 
Hahn and Katznelson ([1]) have found strictly ergodic systems with arbitrarily 
large entropies in shift spaces. In this paper, we obtain the same result by a new 
and considerably simpler construction. Moreover, for constructively given 
h <log  k, we construct a system with entropy h in a shift space with alphabet 
of length k. Also, in a shift space with compact infinite alphabet, we construct a 
system with infinite entropy. For the constructions we use only permutations of 
block systems. A considerable simplification of the proofs is possible by the result 
of Parry [5], that in our case topological and measure theoretic entropy are the 
same. 

In a further paper we shall give a construction for strictly ergodic K-systems. 

w 1. Preliminaries 

1. Compact Dynamical Systems 

Notation. Let ;g denote the set of integers, N = { x E Z L x > 0 } .  For a<be~,  
(,a, b) = {xeZla<__x< b}. M ~_Z is said to be dense in ;g, if 

3 L e N  V t ~ :  ( t , t+L)c~M~-~.  

A sequence (a,),~z with an e IR (the reals) is uniform Cesdro, if there exists a e IR 
t+ j  

such that lira ~ a~=a uniformly for all t~7.  M__Z is uniform Ces~ro if 
J J i=t+l 

1M = (1M (n)),~z is uniform Ces~tro. 
For a compact space K, C (K) = {f: K -~ ~ [  f continuous} with the maximum 

norm. F~_ C(K) is total in C(K) if the linear space it generates is dense. 

* Part  of the paper was written with support  of the Deutsche Forschungsgemeinschaft .  
** Parts  of the results are contained in the thesis of the author  (Erlangen 1970). 
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Definition 1.1. (Oo, T) is a compact dynamical system, if f2 o is a compact metric 
space and T: f2 o ~ f2 o a topological automorphism. 

For an invariant subset f2___f2o(Tf2=f2), the restriction of T to f2 is again 
denoted by T. For cO~Oo, O(co)={T"o~ln~7Z } is called the orbit and O(co) the 
orbit closure of ~o. 

Definition 1.2. a) A closed invariant subset t2=~J~ of f2 o is minimal invariant, if 

~: f2' _~ C2, O' closed invariant =r I2' = f2; 

uniquely ergodic, if there exists a unique T-invariant probability measure 
/~ on O; 

strictly ergodic, if it is minimal invariant and uniquely ergodic. 
(O, T) is then called a minimal resp. uniquely ergodic resp. strictly ergodic 

dynamical system. 
b) o)eO o is almost periodic, if for every neighbourhood U of cn {teZI Ttcoe U} 

is dense in Z; 
strictly transitive, if for each f in a total subset of C(Oo) the sequence 

(fo T"(o~)),~ z is uniform Ceshro; 
strictly ergodic, if it is strictly transitive and almost periodic. 

Remarks. 1. By Zorn's lemma, one can show that s o contains at least one 
minimal invariant subset. 

2. On every non-empty, closed, invariant ~?___g2 0 there exists at least one 
invariant probability measure. If this is unique, it is of course ergodic. 

3. If s is uniquely ergodic and # is the invariant measure, then the support 
of/~ is minimal. On the other hand, there are minimal invariant sets which are 
not strictly ergodic (see [4]). 

The relation between minimality properties of sets and regularity properties 
of points is given by the following results, which can be found in [4]. 

Theorem 1.3 (Gottsehalk). For a non-empty, closed, invariant ( 2 ~ 2  o, the 
following are equivalent: 

a) s is minimal invariant. 
b) Vo~eO: O(~o)=~. 
c) 3o)60: O(co)--O, co is almost periodic. 
a) implies: Each coco is almost periodic. 

Theorem 1.4 (Oxtoby). For Y2~_O o non-empty, closed, invariant, the following 
are equivalent: 

a) O is uniquely ergodic. 
b) For f e  C(Y2) (or f e  C(Oo)) there exists f~]R such that 

lim% 
t i = i  

uniformly for all o~(J. 
a) is true, if fJ= 0(o9)for a strictly transitive coefJ. 
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Corollary 1.5. For s ~_ ~2 o the following are equivalent: 

a) s is strictly ergodic. 

b) (2 = O(~o)for a strictly ergodic ~o~s 

c) ~oE(2 ~ O(co)=(2 and co is strictly ergodic. 

Notation. If • is a strictly ergodic set and e ~ 2 ,  the unique invariant measure 
is denoted by/~9 o r / ~ .  

2. Strictly Ergodic Dynamical Systems 
in a Finite Shift Space and Their Entropy 

The space s o in which we construct strictly ergodic points will in general be a 
finite shift space. 

Let A be a finite set (the alphabet), 

s = {go----(r Vn 6 7Z: ~ ,6A} 

with the product topology (A is a discrete topological space), and T the shift 
transformation T: (~o,),~,~(o~,+l),+z. If A = / 0 ,  k - 1 )  for some k ~ q ,  we write 
(2k instead of ~2<o,k_t>. 

We use the following notation to characterize subsets of ~A: 9A s = U At' the 
t e n  

set of non-empty finite words or blocks over A. For  P~A r we call l (P)=r the 
length of P. If P=(Pl , . . . ,  PgtP)), Q =(ql,  ..-, q~Q)), let 

PQ = P" Q=(pl,  ..., pt(P), qt, ..., qitQ))6Y2Ca �9 

For o3~Y2A, s<t~71 e~(<s, t))=(co . . . . . .  o~,)e~2a s. For  s < t ~ N  and Q~A r, we define 
a probability vector/~o on A S by the relative frequencies 

1 
l~(2(P)- t - s + l  [{ j<=t-s+l l (q j , . . . ,q j+s_O=P}l .  

For  re~7, PeYffA, the set 

, [n ]  = {O~m(2A I ~o(<r , r +  l ( P ) -  i>) = n }  
is called a finite cylinder. The system of finite cylinders is a base for the topology 
in (2 A, consisting of closed and open sets, and preserved under T. Hence T is an 
automorphism of (2 a. The indicator functions of the finite cylinders are by the 
Stone-WeierstraB theorem a total set in C(~2A). It is therefore easy to characterize 
minimality properties of points in (2 a. Almost periodic, strictly transitive and 
strictly ergodic elements of QA will be called almost periodic sequences etc. 

Lemma 1.6. a) o3 E ~-~a is almost periodic iff for each P E ~2~ the set {r 6Z [ ~o6r[P] } 
is either empty or dense in 71. 

b) ~o is strictly transitive iff for each P ~Y2~ the set above is uniform Cesdro in 7]. 

Proof Immediate consequence of Definition 1.2. _] 

Let P, Q~Y2~, O~mOA, M~_O A. We write 

P < Q  if l(P)<l(Q) and P is a subblock of Q; 

P ~ e )  if ~ r ~ : ~ o % [ P ] ;  

P-<M if 3t/~M: P-<t/. 
23 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 25 
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Especially important sub-a-algebras of the Borel a-algebra B on ~A are the 
following: B j =  a(fx] lx~A)( j~2g) ,  the finite algebra generated by thej- th coordi- 
nate mapping; 

B<~'t>=sY<tBJ=" s<=j<tV T-JBo=a(~[P][P~A~-S+~); 

B<s, oo)= <V Bj. s=je~z 

Measure Theoretic and Topological Entropies in (2 A 

If/~ is a T-invariant probability measure on ~2 A, the entropy h(#, T)=h(/t) 
can be computed equivalently by the formulae 

1 
h (/~) = lim - -  H u (B<o, 1>) = lim H u (B o I B<l,n}), 

t l  n ' - ?1 

where for finite a-algebras C, D with atoms (c1, ..., cr) resp. (d 1 . . . . .  d+) 

HAc)= Z 
i 

(c, qj).] 
H ~ , ( C I D ) = ~ # ( d j ) ~ z (  #(di ) ] ,  

and 
z(0)=0,  z ( x ) = - x l o g x  ( 0 < x <  1). 

It is an elementary fact that h (#)< log [AI, and equality is possible only if # is the 
product of equidistributions on A. Hence, for every strictly invariant f2__ Ok: 
h(#o) < log  k. We shall show that log k can be arbitrarily approximated by the 
entropies of such measures. For this purpose we use essentially the topological 
entropy, which in QA can be defined as follows: Let O _ Oa be a non-empty, closed, 
invariant subset and 

0,= 0 . (0)= ]{P~A"IP-<OII. 

Then 1 < 0,+,, < 0,.  0,,; hence, lira 1 log 0, exists. 
n n 

Definition 1.7. h(O)=lim 1-- log 0,(O) is called the topological entropy of Q. 
If f2= O(coj, h(co) = h(f2), n 

It is again easy to see that h ((~k) = log k and ~2 ~ f2 k ~ h (l?) < log k. The following 
theorem relates the two concepts of entropy. 

Theorem 1.8 (Parry). a) Let fJ+ f2 ~_ f2 A be closed invariant and # an invariant 
probability measure on f2. Then h(#) < h (g?). 

b) I f  f2 ~_ f2 A is minimal invariant, there is an invariant probability measure # 
on f2 with h(#)= h(~2). In particular, if ~ is strictly ergodic, h(f2)= h(pe). 

Proof a) comes from the elementary relation 

Hu(B <o,,_~> ) < log 0,((2). 

b) is a special case of Theorem 3 in [5]. _J 
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Substitutions of Constant Length in Strictly Ergodic Sequences 

Let t/e~2 A, r e N  and L: A--~A r be an injection. For tleO a define ~/LeoA by 
,~((r ~, r(~+ 1)-- 1))= L(~.)(, JZ/. 

Lemma 1.9. I f  ~l is strictly ergodic, then so is @, and h(~/L)= 1~ h(t/). 
r 

Proof a) Strict ergodicity: Almost periodicity is trivial. For strict transitivity, 
let Q~(r/L, a>0.  We choose h e n  such that rn>l(Q). For S e A  r", the set 

{ue~l~Le.~l-S]} 

is uniform Ces/tro by the strict transitivity of t/. We denote its density by z(S). 
Let for se7Z, t > n  

1 
zs"(S)= t - n +  1 I{ue(O' t-n)l@e(~+,)r[S]}].  

We count for each SEA'" the number of times it occurs in t l ( ( s r , ( s + t ) r - 1 ) )  
at places (s + u) r (0 __< u < t) and in each S the frequency of Q. Since each occurence 
of Q at places s r + k (r n _-< k < (s + t - n) r) is thus counted between (n - (l(Q) + 2 r)) 
and n times, 

In~,,~r162 ~ ( t -n+  1)-c~,,(s). (nr- l (Q)+ 1)~s(~)l 
S~A rn 

<2n 2 r +(l(O)+ 2 r) tr. 

If n is so large that 1 (l(Q) + 2 r) < e, then for each t with 2 n < e and 
n t 

I Cs,,(S)--c(S)l <~ IAI -'~ (SEA'S), 

[t2nc((sr,(s+t)r-l)) ( Q ) -  2 v(S)~s(Q)l<3e forall  se7Z. 
S E A  r n  

This implies strict ergodicity. 

b) Entropy: The result follows immediately from 

On(~l) <= Onr(rlL) <=r On+ l (rl). _l 

w 2. Strictly Ergodic Sequences with Given Finite Entropy 

Let the two sequences of functions 

mj: N---~ N,  2j: N---~ IR + 

be defined inductively by 

m 1 : 1, era1 (k) ,h (k) = k 

mj+l=rnjemJZJ, emJ§ +1 =(e mJzJ) ! 

and 2 = lim 2j. 
23* 
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We omit the argument k whenever there can be no confusion. Using the 
+--0~ *--j~ ~ j - - l ~  

notation k!.. .  !--k, k!. . .  !--(k !... ! )!, we obtain, for j___ 2, the explicit expressions 

, - j - -  1--+ j - - 2  ~ i ~  ~ i - - 1 ~  

e m.i ;.J = k l.. .  ! , mj = I-[ k ! . . .  !, and 2j = m j- 1 log k !... ! . 
i=0 

The existence of 2 is granted by 

Lemma 2.1. (2j)j~ is a decreasing sequence. 2(1)=2(2)=0,  2(k)>0 (k>__3) and 
lim (log k -  2 (k))= 1. 

Proof. k =  1: mj= 1, 2 j=0  for j~N.  
k=2 :  emJZJ= 2, mj=2  ~-1, hence 2 j=2  - j+l  log 2. 

2. for e m ' a * = k > 2 = m l + l ,  k > 3" First we see that e"~ *j > mj + 1 and mj+~ > mj, 

e ~j +')'J +' = (e m~ "~J) [ > (e  m~ zJ - 2) e m~ z~ q_ 1 >= m j  e =j zj + 1 = m j +  1 q- 1. 

Monotonicity of 2j is seen from n ! < n": 

emJ + l 2j + 1 < emJ 2j emj 2.i -~- emJ +, .~j . 

1 

Using Stirling's formula 1 < n ! (2 rc n)- ~ n-"  e" < e 12,, we estimate 

0 < m  j+l 2j+1-�89 2re + mj 2 j ) -  m3+ , 2 j+ e'J aJ < ~  e- =J *s < 3-ta; 

0 < 2 j + l - / ~ j - I  - l ~ ' Q -  l ( ~ - ~ + l o g 2 r ~ + m j 2 j ) < 2 m T + l l . m a 2 j < 2 1 o g k e  -m~aJ 
m j  - -  2 m  j +  a 

1 
O<2(k ) - log  k +  ~ < 2 1 o g k ~  e -m~j. 

j~q  m j  j~N 

Since m 1 = 1, m 2 = k, we have: 

j ~ N  m j  j k--  1 

and 

From 

k 
and 

k - 1  

1 k 
2(k)>21(k)-  ~ > log  k -  

j mj(k) k - 1  

2(3)=�89 

> 0  for k > 4 ,  

2log k ~  e-mszs<2(k - 1) -1 log k--+0 
jeN 

-~ 1 it follows that log k -  2(k) ~ 1. _3 

Suppose M~s ] is a finite set of blocks (block system) of constant length r. 
M can be given an order, e.g. the lexicographic one: M =  {Q1 . . . . .  QIMI}" 

Definition 2.2. 57/-----{Q~o) . . . . .  Q~(IMI)[ r (~i is the permutation group 
of (1, i>.) 

Remark. [~/[ = [M]! and the elements of M have the constant length r ]M]. 
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Lemma 2.3. For each k ~ N  there is a strictly ergodic sequence tl~f2k with 
h (~/)--- 2 (k). 

Proof The case k = 1 is trivial. For k > 1 put 

M l = ( 0 ,  k - 1 )  

Mi+a =37/r (]tiN). 

By induction one shows that IM/= e m~ ~ and the elements of M r have the constant 
length m r . So, 

1 

- -  log IMrl = ;t r ---, ;t(k). 
mr 

In M r we choose two blocks L~, F~ such that 

L r is the tail of Lr+~, 

F~ is the head of F~+~ ( jeN)  

q(( - m j ,  m j -  1)) = Lj.  F~. 

This defines a sequence t 1 ~O k . 
is strictly ergodic: To prove almost periodicity, let Q~OA s with Q-<q. Then 

there is a j e N  such that Lj4:F~ and Q~,L r �9 Fj, and a P~Mr+ 1 with L r. Ff<P. 
Since P < S  for each SeMr+2, Q occurs in each block q(( tmr+2,( t+ 1)mr+ 2 -  1)) 
(t~Tt). Strict transitivity of q can be shown as for @ in Lemma 1.9, since for each 
P ~M r the set {t ~7/Iq ~,,,~[P] } is uniform Ces~ro. 

Now we show h (~) = 2 (k). That h (q) > 2 (k) is trivial, because (P ~ M r ~ P-< q) 
implies 0,,j(~)> [Mr]. On the other hand, let l(P)=mr+l, P<(~. Then there exists 

Q=Q1 . . . . .  QIMjl+l (QjEM r for I__<i<]M~]+I) 

with P<Q.  Therefore 

0m~+l(r/)< mj IMjl tM~l+l = m i +  1 IMrl IMjl 
and 

h(n)__ < 1 log0,v+,(n) < l ~  F IMrl loglMjI 
m j+l mj+l mj+l 

_l~ ~_ 1 l o g l M j l ~ 2 ( k ) .  
mj+ 1 mj 

Remark. For k=2,  in case L I = F I = 0  , the sequence defined is the Morse se- 
quence/~ of Gottschalk-Hedlund, Topological Dynamics, 12.28. The sequences of 
12.37 ibidem are obtained by varying the choices of L 1 and FI: #' for LI=FI= 1; 
v for L I =  1, FI=0;  v' for LI=0 ,  F1 = 1. 

Lemma 2.4. For k > 3, 0 < h < 2 (k), there exists an t l ~ O k with h (rl) = h. 

Proof Let jo=min{j~NIj>=2,  2 r ( k ) > h + ~ } .  We construct a sequence of 

block systems (Nj)j,~, each of constant length nr, with Nj+~ __ ~ ,  and such that in 
each N~ there are three different elements L~, F~, S r (S r only for j >  2) with the 

and put 
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properties 

This is achieved by putting 

Lj is the tail of Lj+,, 

Fj is the head ofFj+l, 

L i_1 "Fj_I~,Sj. 

N = ( 0 ,  k - 1 ) ,  

N j - - ~ _  1 (1 <J  <Jo) 

and by selecting, for each j> jo ,  Nj---~_I such that (*) is fulfilled and 

njh+ 3>log [Njl>njh+ 2. 

The choice is possible, since (**) implies INjl > e : >  4 and 

log [Sls[ = log(lNjl I) >= lNjl (log lNjl - 1 )  >= INjl (nj h + l ) > nj+ ~ h + 2. 

We define again */~Qk by 
~(<-n j ,  n F  l > ) = ~ "  Fi. 

Strict ergodicity of q follows as in Lemma Z3. By (**), fo r j> jo :  

2 h + 3 >  1~ log INjl >__h-t - -  . 
nj nj nj 

Therefore 

(,) 

(**) 

h (~/) _>_ li.m 1 log IN j I= h. 
j nj 

O., + d ~ )  < nj I~1 I~'l +1 = nj+  ~ ISil IN~j furnishes again 

h(~)< 1 logO,~(t/)__<lognj+, ~ l l o g t N j l _ ~ h .  _3 
/'/j+ 1 nj+ 1 nj 

Theorem 2.5. For k >= 2 and 0 < h < log k, there exists a strictly ergodic sequence 
a)e~k with h(eo)= h. 

Proof Since 2 ( k " ) > l o g k ' - 2 = n l o g k - 2 ,  we can choose n so large that 
n h < 2 (k"). We now find a strictly ergodic sequence ~efak. with h(r/)= n h and a 
bijective mapping L: (0, k " - l ) - ~  (0, k - 1 ) " .  By Lemma 1.9, we have for the 
strictly ergodic sequence l/LeQk : h(~/L)=h, d 

w 3. A Sequence with Infinite Entropy 

I. Permutation Sequences with Repetitions 
Let k_> 2 and r = (rj)j~N be a sequence of natural numbers. Construct a sequence 

(Nj)j~ N of block systems Nj, each of constant length n~, by induction as follows. 
Set N1 = (0, k - 1). If N~ is constructed, let 

~,r---- {a: (1, rj INjl) -+ Nil [6-1(P)[ =rj (P ~Nj)} 
and 

Nj+I = {~(1) . . . . .  o(r~ I~l)[ o~ ~{,r}- 
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Then we have the relations 

IN~l--k, 

IN+al- (rj INjl)! 
rj!V#t 

Let again L j, Fj~Nj be such that 

and define r/el2 k by 

n I = 1 

- - ,  nj+l=njrjlNj[. 

L i is the tail of L j + I ,  

F~ is the head of Fj+I, 

11((-nj, n j -  1)) =-Lj �9 F~. 

We call r the repetition frequency of t/. 

Lemma 3.1. t/is a strictly ergodic sequence, and h(t/)>�89 k / f k >  10. 

Proof Strict ergodicity is shown as for all other sequences considered before. 
To estimate the entropy, set [Nil = e "j~j. By Stirling's formula, 

]Nj+I[ > (t9 JNfl) ~jlNA e-,ANA 

and thus 
. .+,(~._! 1 enJ+lvj+a>e(nJVj_l)rjlNj]~_ e a J nj). . C j + I > T j _ _  - 

n~" 
Now, since for k_>_6: e .~ /~<6,  and 1 =nl<[Nl[=k , we can show by induction: 

_-< <lUj+d, 
\ e /  

and hence, for k>6 :  nj+z>n 2. This implies 

k 1 
z j> log  k -  k _  1->~- log k (k_> 10,j~N). 

1 1 
Since 0,j (t/) > [Nj.], we have - -  log 0,j (r/) >-cj > ~ log k and h (t/) > �89 log k for k > 10. / nj 

2. A Shift Space with Infinite Alphabet 
Let (AJ)~  be a strictly increasing sequence of finite sets with A 1 = {0} and let 

A = U Ai be topologized in such a way that 0 is the Alexandroff point of A \ {0}. 
Define f2A, Qa r and T as for finite alphabets. 

Let # :  Y2AWf2ZA---'Y2Aj~Y2~Aj be the mapping induced on the sequences and 
blocks by 

x~__~{ 0 xcAJ 
x ~  A j 

A ---~A ~. 

z~J: ~2A --~ OAj is continuous and commutes with T. 
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Lemma3.2. co�9 is almost periodic (strictly transitive) iff each 7~J c o � 9  

is almost periodic (strictly transitive). 

Proof a) If co is almost periodic, ~J 0 (co) is invariant and closed by the properties 
of ~J, and for q �9 0 (co), 0 (rd(q)) is dense in ~z j 0 (co). Therefore ~J co is almost periodic. 

If co is strictly transitive, we have for f � 9  C ( 0 ~ 7 ~ ) :  

( f  o T"(z{ co)),~ Z = ( f  o zd(T" co)),~z 

is uniform Ces/tro, because fo ~J�9 C(O(co)). Therefore zdco is strictly transitive. 

b) Assume now each nJco to be almost periodic. A base for the topology in 
~2A is provided by the class of special finite cylinders of the form 

N .[a.]n 0 .[Aq', 
neNl neN2 

where N1, N 2 _~ 2g are finite sets, j ~ N, a. �9 A j \ {0} (n �9 N0, and 

,[AJ] ' = {q �9 QA I q, + (A \ A j) w {0} }. 

Now, the cylinder above is equal to 

(~j)- l (  (-~ n['an I ~ ('~ n[Ol)- 
neN1 n~N2 

The last set is open in f2Aj and is visited by ~J co at an empty or dense set of times. 

By the Stone-Weierstra$ theorem, the indicator functions of the special finite 
cylinders are a total set in C(f2A). They can be written in the form g=fo  rd, where 
f is the indicator function of a cylinder in (2A~. Therefore, if rd co is strictly transitive, 
the sequence (go T"(co)),~z=(fo T"(rdco))ne Z is uniform Ces~tro. A 

Let ~2_~ ~2 A be strictly ergodic, co �9 ~2. We avoid the definition of topological 
entropy for general compact metric spaces and consider h (#~)= h (#~). 

Lemma 3.3. h (#o~) = sup h (zd co). 
jeN 

Proof We only use and show the simpler direction " >  ". The other inequality 
is proved by an approximation argument. 

Set #j = #~m. Then h(rd co)= h(#~), rd #,~ =# i  by the uniqueness of the measure, 
and so: h(poS>h(#j) ( j �9  A 

3. Construction 
Let (kj)j~N, (rj)/~N, (nj)j~ N be the sequences of natural numbers defined by 

k 1 = 1, nj = 1-[ kj 
i<j 

rj= [eaJ"Q, kj+l=kj! rj, 

(notice that k2 ! = rl ! = 20 ! > 10) and (A)j~N a sequence of finite sets with 

Aa={0}, ]Ajl=kj, Aic~Aj= {0 } (i@j). 

Set A J= U Ai, A = U Aj as in the last section. Construct a sequence (Nj)j~ N of 
i<_1 
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block systems ~ f2a~s ,  each of constant length nj, such that [Nj[=kfi and 

fie(0) = 1  for PeNs (i.e. 0 occurs exactly once in each PeNs), as follows. 
ns 

Let N 1 = {0}. If Nj is constructed, let a: A s+ ~ ~ Nj be a mapping with [o- ~ I(P)] = rj 
(PeNs). a is onto, because IAs+ll = rslNjl. For aeAs+ 1 let Pa be the block in f2IaS+,, 
obtained when 0 in a(a) is replaced by a, and 

~={PalaeA)+l},  N S + I = N s  . 

m 
INsl=ks+l, INs+l[=ks+x!, and_ 0 occurs once in each element of Ns+ 1, because 
there is only one element of Nj in which it occurs. PeNs+ ~ has the length ks+ 1 ns= 
F / j + I  �9 

Let rd be as before. Choose Ls, F~eNj such that 

and define i/e OA by 

L s is the tail of rdLs+l,  

Fj is the head of zdFi+l, 

~s r/(( - n  s, n s -  1 ) ) = L  s �9 F s. 

Theorem 3.4. t/is strictly ergodic and h(fi,)= oo. 

Proof. We show that rdt/is strictly ergodic and eventually h (rd t/)>j. 

rd t /may  be constructed in the following way: r d Nj = N s. rdNs+ 1 is the set of 
blocks of length nj+l, composed of Niblocks, where each block occurs exactly 
rj times. More generally, rd Nj+,+ t is the set of blocks of length nj+.+l, composed 

k j + n + i  / ' / j + n +  1 times. of 7dNj+,-blocks, where each block occurs I~JNj+.I- nj+.lrcJN~+.[ 
Further, for n > j ,  

~SL, is the tail of 7zJL,+1, 

~zSF,, is the head of rdF,+l. 

This means, one could construct a permutation sequence with alphabet Nj and 

( �9 ks+" ~ , and then substitute the block PeNs for repetition frequencies 

the element P of the alphabet. By the Lemmas 1.9 and 3.1, the resulting sequence 
rdt/is strictly ergodic and 

h (re s 17) > 1 log INs[ = log kj ! > k s (log k s -  1) 
= 2n s 2n s 2ksns_l 

=(2ns_O-l ( logks_l ! - l+logrs_O>j  (j>__3). / 

I wish to thank my adviser, Prof. K. Jacobs, for suggesting the problem. 
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