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Every c-finite* measure # on the set G of the lines on the plane such that 

(0) #({g~G: PEg})=0 

for every point P~R 2 generates a pseudo-metric F on the plane when one puts 
F(P1, P2)=�89 separates the points P1 and P2}). The pseudo-metrics which 
are generated in this way possess the property of linear additivity, that is 
F(P1,Pa)=F(P1,Pz)+F(Pz,Pa) for P1,Pz,Pa on a line, Pz between P1 and P3, and 
are continuous with respect to the Euclidean topology in R 2 x R 2. In this paper 
we prove the converse: every linear additive and continuous pseudo-metric F 
is generated as above by some c-finite measure # on G for which (0) holds. 

The method of proof shows that values of linearly additive and continuous 
pseudo-metric F inside every bounded convex polygon C are determined com- 
pletely by the values of F on (0C) 2. 

The representation of pseudo-metrics by measures is useful in derivation of 
inequalities for the former. 

1. The Theorem 

Denote by G the set of lines o n  R 2. Every geG may be parametrized by a pair 
(p, ~0), p>0,  0<cp<2~,  which is the pair of polar coordinates of the foot of the 
perpendicular from the origin on g. The set {(p, qo)} is naturally endowed with 
the topology of the semi-infinite cylinder in R 3. We will consider the topology 
on G which is induced by the bijection (p, ~p) ~ g. 

Denote by ~ the class of Borel subsets of G. Note, that N may be equivalently 
defined as the minimal a-algebra of subsets of G which contains the sets 
{geG: g separates P1 and P2},/]1 and P 2 ~ R  2. 

We also introduce the notations A for the class of finite linear segments 
(either closed, open or semi-open) on R 2, 

[X]={g~G: gc~X~:~} for X c R  2. 

* A measure is called c-finite if it is finite on compact sets 
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Assume that # is a c-finite measure on ~ with the property that 

(1) # [PJ  =0  for every P~R 2, 

/~ [X] is the shortening of usual notation/I([X]).  
By virtue of (1), for every segment 6cA with P~ and P2 for its endpoints 

#[5]  = #  ({g: g separates 111 and P2}). 

Define a function F: R 2 • R 2--)" [0, 00) 

(2) F(P1, P2) =�89 # [6]. 

Proposition 1. The validity of (1) implies the following (obvious) properties of F: 

I) v(P~, P9 = F(P~, PO; 
II) F is linearly additive: for Px, P2,1'3 on a line, Pz between t]1 and P3 

F(P11, P3) = F(P~, Pz) + F(P2, P3); 

III) F satisfies the triangle inequality: 

F(P1, P9 _< F(P~, g ) +  F(P~, g )  

for every P1, t)2, P3 cRz ; 
IV) F is continuous with respect to the Euclidean topology in R 2 • R 2. 

Taken separately, the condition I)-IV) imply 

F > 0  and F(P,P)=O 

and therefore they define a continuous and linearly additive pseudo-metric on 
the plane. 

The question arises naturally whether the converse of Proposition 1 is true, 
and the answer is given by the following theorem. 

Theorem. 1. Every function F(P1, P2) satisfying the conditions I)-IV) is generated 
in the way of (2) by some (unique) measure I~ on ~ possessing the property (1). 

2. Let F 1 and F 2 be two functions satisfying I)-IV). I f  for a bounded convex 
polygon C c R  2 

F1 (P1, P2) = F2 (P~, P2), P1, P2 c~C 

then 

FI ( P1, P2 ) =- F2 ( P~ , P2 ), P1, P2 c C . 

In the sequel we use when suitable the notation 

F(5) = F(P~, Pg. 

Before giving a detailed proof in the next paragraph, we would like to say 
a few words on the nature of the problem. 

The class {[6]: 5cA} is neither a ring nor a semi-ring, so it fails to be of a 
standard type for which the procedure of extension of a measure upon the 
containing minimal a-algebra is well developed. 
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A reduction to a standard case may be achieved by considering the semi-ring 

H =  [-31]" 3isA , i=1  . . . .  ,n, n = 0 , 1 , 2 , . . . .  
i 

Here the problem arises whether for any c-finite measure m on N satisfying 
m([P])=0, P ~ R  2, the values of m on the class {[~]: 3~A} determine the values 
of m on H. The answer is yes, and this in principle enables one to carry out the 
reduction (it was in fact the starting point of the present study). 

The combinatorial way of reasoning which led to the solution of an analogous 
problem in [2] (see also [1]) works without any substantial changes in the 
present situation and provides the formulae for calculating re(B), B ~ H  in terms 
of m[3], 3eA: 

2m i~l[c~] =2~m[c~i -] I ,_ l (~)+~m[di] In_2(d~)-~m[sJI ,_2(s~) .  (,) 

Here di~A (s~A) are of the following type: one endpoint is an endpoint of 61 
and the other is an endpoint of 6j, l+j; 3 l and 3 i lie in different (in the same) 
halfplanes with respect to continuation of d i (of s3; Ik(6)=l if the continuation 
of 6~A separates the endpoints of exactly k segments from the set {3~}~. 

The Equation (,) is valid if no three terminations of {3i}7 lie on a line. 
Therefore it is natural to define (in analogy with (,)) the mapping #: H ~ R  

by the formula 

I x (~[c$i])=2;F(6,)I._l(61)+~F(d,)l._2(d,)-~F(si)I._2(si). (**) 

The first assertion of the theorem now may be equivalently reformulated as 
follows: for every F satisfying I)-IV) the mapping # in fact acts from H into 
[0, oe) and is a-additive on H. 

Fortunately, by means of a rather special construction the proof of this 
statement can be reduced to considering (**) only in the cases of n=2  (Eq. (3) 
below) and n = 3 (Eq. (4)). 

The second assertion of the theorem also becomes clear from this construction. 
Note that the proof which follows is self-contained and does not rely on (,) 

in its general form. 

2. The Proof 

We divide the proof into three parts. 

I. Construction of the Measure Pc. Let C ~ R  2 be a bounded, convex, open 
polygon, and {ai} be the set of the sides of C. Obviously it is possible to define 
each a i as a half-open segment in such a way that 

17c] = U ([a,] m [aj]) 
i < j  

with disjoint sets under the sign of union. 
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With each pair i < j  we associate the class H u of subsets of [a~] c~ Eat] such that 

Hu={[81] nE82]: 81cai, 8 2 c a  j, 81, 82~A}. 

Obviously H u is a semi-algebra generating the a-algebra of Borel subsets of 
Ea~] n [aj]. 

Therefore every c-finite measure on [C] is determined uniquely by its values 
on the class 

He= U 
i<j 

Moreover, well known criteria may be applied to ensure that a mapping 

gc~[0 ,  ~o) 

may be extended to a measure on the Borel subsets of [C]. We apply this 
possibility to the mapping 

#c: Hc~[O, 0o) 

which is defined as follows. 
In the case of 81 and 82 situated in Figure 1 (no three endpoints of 81 and 82 

lie on a line) 

pc(E81] n E82] ) = F(Da) + F(D2)-  F(S1)- F(S2). (3) 

In the case of Figure 2 (there are three endpoints of 61 and 8 2 on a line) 

(3') #c(E81] c~ E82] ) = F(D) + F(82) :- F(S). 

$2 

Fig. 1 Fig. 2 

The following three properties of Pc are easily verified. 

a) pc>0  (follows from (II) and (Ill)). 
b) #c is additive on Hc (by the structure of (3) and (3') which provides can- 

cellation of surplus terms after addition). 

c) A n ~ 0 in H c implies Pc (A,)--* 0 (follows from (IV)). 
a), b) and c) imply, that Pc can be extended to a measure on the Borel subsets 

of Ec]. 
It is worth noting that since Ea i] c~ [a]] eH  u, pc[C] can be obtained by direct 

summation of (3) and (3'). This yields 

#c Ec-I = Y~ F(a3. 
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II. Construction of  the Measure #c,~. Let a segment s e a  be fixed inside C is 
such a way that, no vertex of  C lies on the continuation of  ~. 

Define the class H c , , c H  c as Hc,~={[61] c~[a2]~Hc: no triad of endpoints 
of the segments 32,31 and e which contains at least one endpoint of e lies on 
a line}. 

Clearly 

i<j 

Hi,z~ is the part of Hc, ~ defined by the condition 6 1 c a  i, 3 z C a  J, each Hi, j, ~ is 
a semi-algebra generating the a-algebra of Borel subsets of [all c~ [aj]. 

The mapping 

#c,~: /-/c,,-~ [0, ~) 

again is defined separately for the cases presented on Figure 1 and Figure 2. 
For 61 and 32 (Fig. 1) 

(4) #c,~(E~J~E~J) 
= 2 F(a) lay ~ (~) + ~, V(dl) I~ (di) - E F(s,) I~ (s,) 

+ F(D 0 I~ (D 0 + F(D2) I~ (D2) - F(S1) I~ ($1) - F(S2) I~ ($2). 

Here D1, D2, $1, S z have been defined on Figure 1, and I~ (z) = 1 if the continuation 
of z~A intersects a, 0 otherwise. 

The segments d i and s~ have the same significance as in (,) but here each of 
them is assumed to start from an endpoint of 3. The set {si} ({di}) consists of 
those segments of this type which place a and 3 k in the same halfplane (in different 
halfplanes) with regard to their continuations (see Figs. 3 and 4). 

Fig. 3 Fig. 4 

Furthermore Ia(d)=l if the continuation of d intersects 61, where l = l  if 
k=2,  /=2  if k = l  (in the above notation d passes through the endpoint of 6k). 
I6 (S) is defined similarly. 

Finally lay ~2(~)= 1 if the continuation of a intersects both 61 and 62, 0 other- 
wise. 

For 31 and 32 situated as shown on Figure 2 

(4') #c. ~ ([313 c~ [623 ) = 2F(a) lax , ~2 (a) + F(D) I~ (D) - F(S) I~ (S) 

+ ~, F(di) I~ (di) - ~ F(sl) I~ (si). 

Note that the only reason for defining #c,~ on Hc, ~ rather than on H c was to 
reduce the number of cases, which need special formulae for the definition 
of #c, ~" 
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Now check the properties of #c,~. 

a) #c,~(A)>O, AeHc, ~. To check this in an economical way we first note 
that #c,~ (A) is linearly additive with respect to e (for fixed A). 

Secondly, if ~,$P, PeD i or PeS  i (~=closure of c~) then 

(5) lim#c,~,(A)=0 for every AeHc, ~. 

Observing Figure 5 we conclude that 

f(sl) + f(s2) - F(D1) --* 0 

and 

F(d3)- F(s3) ~ O. 

r 
Fig. 5 

With F ( % ) ~ 0  this implies (5) for the case PeD. The case PeS  may be treated 
similarly. 

It follows from these two remarks that the check of a) may be restricted to 
the cases in which the closure of e does not intersect Dr, D2, S1, or S 2 . 

If e lies outside the convex hull of 81 and 8 2 then all the indicators on the 
right side of (4) (or (4')) vanish yielding: 

(6) gc,~([S1] c~ [32])=0 if [el c([~31] c~ [82])% 

The remaining cases for 81 and 82 (Fig. 1) are shown on Figure 6. The other 
cases are treated similarly. 

\ / \ \ \ \  i i / "  

r @2 

i~ \  i j I~ \ \ \ \  / i "  / ~ \ \ \  # i  # 

II I J  \ \  
/ I / / / / . / /  .,..\\ I / / I  I \",. 
' t  " . "~ ~ "  " " ,  

@2 @2 
Fill. 6 
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In each of the cases a) follows by repeated application of the triangle inequality. 

b) /~c, ~ is additive on Hc, ~ (obvious). 

c) A,,+~ in Hc, ~ implies I~c,~(A,)--,O. 

To prove c), assume that A,= [6[ ")] r [3(2")]. A, $~ implies that 6(~ $ 31, @ + 6= 
(the bar denotes the closure) and at least one of the 6~, 3= reduces to a point. 
Suppose 61 = P and Q1 and Q2 are the endpoints of 62. 

We will index segments appearing as the arguments of F in (4) and (4') with 
an upper (n) to associate them with A, and let T (") be their generic name. We 
assume that the upper index is ascribed in a natural way which ensures in each 
case the existence of the limit: 

= lim ~("). 

Denote by g~ the line, on which ~ lies. In what follows, the sequences r (") are 
classified according to the type of the set Z = { P ,  Q1 ,Q2 ,R1 ,R2}c~g  ~ where 
R~ and R 2 are the endpoints of e. First consider the cases when either 

card Z = 2 

o r  

Z =  {P, Q~, Q2}, {P, R1, R2}, {Qi, R1, R2}, i=  1, 2. 

In these cases the l imI.(z (")) exists. I ,  is the indicator which corresponds 
to z (") in (4) or (4'). LimI,(v("))= 1 implies that P is an endpoint of z. But from 
this the existence of another sequence follows, z~ "), such that lim ~")= lira z(")= z 
where the terms corresponding to z (k) and ~") in (4) (or (4')) have different signs. 
By the continuity of F, these two terms cancel in the limit. If for the sequence 
T (") the set Z happens to be of a type different from those mentioned above, 
then the corresponding indicator needs not possess a limit. Fortunately the sum 

~"~= Z c(~l ~ F(~I ")) I,(~l ~ 
l a Y  

where Y= {i: lira rl ") lies on the line carrying Z} and c(vi) = 1 if zi is of d or D type; 

- 1  if z~ is of s or S type; 

2 if z~=c~; 

possesses a limit which is equal to zero. 
This is an obvious corollary of the following proposition. 
Put 

J ( " ) = t l  (z("h .. . ,  z(") , . ,  q ,, I . (  r )) for {i~ . . . .  , ik} = Y. 

Proposition 2. The sum e ~"~) tends to zero .for every subsequence {nk} for which 
J("~) remains constant. 

The proof of this statement consists of checking its validity for all possible 
choices of Z and all possible values of J which admit infinite repetition in the 
sequence {J(")}. 

The diagrams on Figure 7 make clear that, for every value of J possessing 
this property and each point x ~ Z  from the line carrying the set Z 

1 (x) - m (x) + 2 I~ (x) = 0 
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where 

l (x)=card{i :  x e l i m ~  "), zl ") is of d or D type}, 

m(x)=card{ i :  x e l i m z l  "), ~I ") is of s or S type},  

l~(x) = 1 if x s e ,  0 otherwise.  

With this the proof  of the proposi t ion and with it the p roof  of c) is completed, 
because 

lim d "~) = ~ (1 (x) - m (x) - 2 I~ (x)) dF~o , 
k ~ c ~  

where dF~ is the measure on the line g generated by F(6), 6 c g  and Z c g  o. 

P 

I ' 

Q1 Q2 

P 

E f -  
I 

/ I 
/ 

/ I 
/ 

/ I 
/ 
( 

Q 
I 

Q2 

P 

/ 4  \ . . . .  N - - - - !  \ 
/ \ 

/ ! \ 
! \ 

! \ 
/ \ 

QJ Q2 

P P 

Ih'! \ 
I/ / t  \ 

Q1 Q2 Q1 Q2 
Fig. 7. 6~ "), 6(z ") and a are drawn in thick lines. Thin continuous lines show those ~!") for which I ,  (z("))= 1. 
For Z = {P, Q, R1} there are only two (up to numeration) values of J ,  which admit infinite repetition 
in the sequence ,,r (upper row). For Z = {P, Q, Ra, R2} there are three such values if J (lower row). 
cases with Q1 = Q2 may be considered analogously. 

It follows from a), b) and c) that gc, ~ may be extended to a measure on the 
Borel subsets of [C] .  

I IL  Construction of  the Measure #. Clearly [C]  ~Hc, ~ and a simple summat ion  
of (4) and (4') yields 
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By virtue of (6) #c, �9 is concentrated on [,e], that is 

#c,~ [,~3 = #c,~ [' c ]  = 2v(~) .  

At the same time one easily finds that 

['(~ll (-3 [-32] C ~ implies #C,a(['(~l] ('~ [--32"] ) =#C((~ll  O ['(~2])" 

This means that #c,~ is the restriction of #c to the set [,e]. In particular 

#c, ~ [~ ]  = #c [ ~ ] .  

Hence 

(7) #c [~] =2F(e) .  

Using the continuity of F it is not difficult to show that the restriction on location 
of c~ inside C which was adopted at the beginning of II, is not necessary for 
validity o f  (7). 

Let C 1 be a polygon containing C. For every measure m on the Borel subsets 
of [,C1] with the property m[,P] =0 for every P ~ R  2 for A ~ H  c either 

m (A) = m [D1] + m [,D2] - m [-S,] - m [$2] 

(the case of Fig. 1) or 

m(A) = m[D] - m [,S] - m [62] 

(the case of Fig. 2). By the continuity of F and (7) written for #c,, #c,[ P] =0 for 
every P c  C1. 

So we may pose m = #c,, and again by (7), (3') and (3) we get 

#c,(A)=#c(A) for every A ~ H  c. 

This means that #c is the restriction of #c, on the set [C]. 
Now take {C,} to be the sequence of squares centered at 0 of side length n. 
For  every Borel set A c [,C,] let 

#(A)--#c.(A). 

Clearly this defines consistently a measure on 2 with the properties. 

#[-~] =2F(a) ,  #[,P] = 0  for every pER2; 

hence the first assertion of the theorem. 
The second assertion is also a corollary of (7) and of the fact that #c is com- 

pletely determined by its values on H c given by (3) and (3'). 

3. Discussion 

As has been noted in w 1, the right-hand expressions of (3), (3') and (4), (4') turn 
out to be nonnegative because they give the values of #(A) for A =  [at] n ['~2] 
and A=[-61] c~[-62] c~[-c~] respectively. This naturally poses the problem of 
whether it is possible to derive other inequalities of the same general type 
involving a function F satisfying I)-IV) by calculating the measures #(A) for 
properly chosen classes of A eM. 
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Such a calculation may be carried out for every subset of G which belongs 
to the minimal (finite) ring containing the sets {[6i]}~. This will be done 
elsewhere. Here we would like to provide the corresponding result only for 

("~ [6,] and Q)[6i] , thereby answering the original Buffon-Sylvester problem 
i=I /= i  

posed for general (rather then invariant) measures [3]: 

/~((~ [6i]) = 2 ~ F(b~) I._ , (6,) + ~ F(d,) I._ 2 (d~) - 2 F(s,) I._ 2 (si) , 

#(U [6,3) = 2 E F(6,) I o (6,)- E F(d,) I o (d,) + E F(s,) I o (st). 

The notations, which are used here have been explained in w where (.) was 
introduced; no three terminations of the segments {6,} are assumed to lie on a 
line. Of course, in the case of "invariant" measure #, the corresponding pseudo- 
metric F is the usual Euclidean metric. 

Another point which we mention is that the combinatorial nature of the 
proof of the theorem in w 1 implies its validity in a far more general framework. 
For example, the theorem remains valid when R2 is replaced by a smooth surface 
in R s which has the property that there is a single geodesic path connecting each 
pair of its points, and G is replaced by the set of geodesic lines on this surface. 
Obviously F(P~, P2) equal to the geodesic distance between P~ and P2 satisfies 
I)-IV) and hence there exists a unique measure/~ on the set of geodesic lines 
with the property that 

p [6] = geodesic length of 6. 

This manner of introducing such # seems clearer and more thematic then that 
employing the calculus of variations (as in [4]). 

The final remark concerns the possibilities of further investigations connected 
with the triangle inequality. 

The important point is that for any random process of lines (see [5]) the 
function 

F(6)=prob {6eA is intersected by at least one line of the process} 

satisfies the triangle inequality, but in general fails to be linearly additive. In the 
case of a random line process with distribution invariant under the Euclidean 
motions of the plane 

F(6)=--F(161) 

where 161 is the length of 6. The Poisson line process, governed by the invariant 
measure on G where F x = l - e x p ( - 2 ] 6 l )  provides an example of an F(161) 
satisfying III) but not II). Any mixture of F~ (with respect to 2) has the same 
property. Apparently the intriguing problem of describing classes of F(161) 
satisfying the triangle inequality has connections with R. Davidson's problem 
of describing the class of invariant processes of lines on the plane, which has 
recently gained much attention [5]. 
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The author is greatly indebted to the referees and to K. Krickeberg for 
indicating the relation of the present work to the construction of multiparametric 
Brownian motion [6], [7] as well as for their many remarks towards improving 
the present manuscript. 
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