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Asymptotic Properties of Eulerian Numbers

L. Carlitz*, D.C. Kurtz, R. Scoville, and O.P. Stackelberg**

1. Introduction
The Eulerian numbers [1, 3] may be defined by means of

-1 2 A0 x

= — 1.1
1—de~ ,,;0 -1y n! (L1)

and
A=Y A, 2 (1.2)

k=0
It follows that

Ago=1, A,0=0 (n>0), (1.3)
An+1,k=(n-—k+2)An,k—1+kAn,k (14)

and
An,k:An,n—k+1 (lékél’l) (15)

The following table of values of 4, ,, 1Sk<n<6, is easily computed using
(1.4):

26 66 21 1
57 302 302 57 1

1

1 1

1 4 1

1 11 11 1
1

1

The number A, ; has the following combinatorial interpretation [6, Ch. 8].
A permutation (a,, a,, ..., a,) of (1,2, ..., n) is said to have a rise at g, if a;<a;_ ;;
also it is customary to count a conventional rise to the left of ¢;. Then A4, , is
the number of permutations of (1,2, ..., n) with k rises.

Kurtz [5] has proved that
A2 > Ay Ay ey O<r<k<n). (1.6)

It follows that, for odd n, 4, , has a unique maximum at k=% (n+1); for even n,
the maximum occurs at k=3%n and $n+1.

It follows from (1.1) that A,(1) satisfies the recurrence

dA4,()
di =

A D) =(m+1)AA4,()+(1~2) (1.7)
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Frobenius [3] has noted that the n—1 roots of 17! A4,(1) are real, negative and
distinct; if A, is a root then Ag! is also a root. Moreover the roots of 174, ;(4)
are separated by those of 1714, (1).

It follows from (1.4) that
Z An,k=n!' (1.8)

k=0
Also by repeated differentiation of (1.7) we get

A,()=3(@n+1)! (nz1) (1.9)
and
A(N=%GBn=2)n+1D!  (@m>1). (1.10)

In the present paper we shall prove the following two theorems.
Theorem 1. We have

[xn]

lim —- Z Ay =

n' exp(—t?/2)dt,

l/— 5
Xo=V M+ 1) x+1(n+1). (1.11)

Theorem 2. For x, defined by (1.11), we have

1 6 o s
A= e YO0

The proof of Theorem 1 was suggested by Harper’s proof [4] of the similar
result for Stirling numbers of the second kind. The proof of Theorem 2 makes
use of a Berry-Esséen type rate of convergence theorem [2, p.251] and also the
strong logarithmic concavity property (1.6) of the Eulerian numbers.

where

uniformly for all x.

2. Random Variables and Moments

Following Harper [4], we introduce a triangular array of row independent
random variables X, taking on only the values 0 and 1 by giving their probability
densities:

PIXu=0]=r/(1+ry, P[Xu=1=1/(1+ry)

for k=1,2,...,n; and n=1,2, ..., where 0=r,,<r,,<--<r,, are the negatives
of the roots of 4,(4). Setting

h
1 !
S=Y Xni
k=1
we have

ES, = i 11 +r,) 2.1)
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and n
Var ;=Y (1/(1+ 1) — /(1 +1.4)%). (2.2)
k=1
Now
A,(A)= H(/H‘ wk)> (2.3)

and differentiating logarithmically, we get
Y (Atrw) ™ =4, (A)/ A4, (2). (24)
k=1

For A=1 we have then by (1.7), (1.8), (2.1) and (2.3) that
ES,=A4,()/n!=n+1)/2. (2.5)
In similar fashion we get from (1.8), (1.9), (1.10) and (2.2)
Var S, = (A4, (1)+ 4,(1)/4, (1)~ (4,(1)/4,(1))* = (n+ D)/12. 2.6)
Next we compute the distribution function

E (x)=P[S,=x] @2.7)
by noting that
P{S,=p}=P[exactly p of the X, are 1]

2.8
=S L1070 T (1 +72) @8
ki
where the k;’s are the k’s for which X, =1, and the ks are the k’s for which X, =0;

the number of ks is p and the number of k;’s is n—p. Since 4, , is the elementary
symmetric functlon of degree n—p of ., %3, ..., I, it follows from (2.3 and (2.8)

that
P[S,=p]l=A, ,/n'. (2.9)
Hence
Ix]
E(x)= ) A, /n!. (2.10)
k=1
3. The Central Limit Theorem with Error Term
Let

Xn,kz(Xr/Lk EX’ k)
and 3.1
S,={S,—ES,)/(Var S;,)%.

Let F, , be the distribution function of X, ,. Now it is easy to see that the Linde-
berg condition
lim} | x*dF, ,(x)=0
Pk x[ze
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holds and the array X, , satisfies the central limit theorem. The distribution
functions F, of S, converge pointwise to the normal distribution

12

N(x)= 24t

L.
V2m

E(x)=P[s,=x] - N(x) forall x. (3.2)
But by (2.5), (2.6) and (3.1)

]/ 1 1
P[S.,éx]=P[S;,§x "1+2 +"—12L——] (3.3)

that is

Put
n+l n+1l
= — . .4
X, =X l/ 2 + 5 (3.4)
Then by (2.7) and (2.9)
[xn]
E(x)= ) A, /n'—=> N{x) forall x. (3.5)
k=1

This proves Theorem 1.

We state now a Berry-Esséen type theorem giving a rate of convergence to
the normal distribution for triangular arrays. The result is similar to and proved
in exactly the same manner as the Theorem in [2, p. 521]:

If fork=1,2,...,n;andn=1,2, ...
(Var X,) " *EIX,, <4 (3.6)
where J is a constant, and the left side of (3.6) is 1 if Var X,,,=0, and if
Var S, =~ o, 3.7
then for all n and for all x
|E,(x)—N(x)| <10 4 (Var §,)"*. (3.8)
To apply this estimate to our array we compute
E Xl =EIX,— 1/A+ndP
=(1= 11+ 7P L+ 1) + (1) (L4 10)™

=1 A+ 1) e+ 177
Then
(Var X, ) ' EIX, P =0Z+ D) e+ 1721

since r,, =0, and (3.6) holds with 1=1. The condition (3.7) is also satisfied, and

hence by (3.8)
fxn) A &
Z -
k=1

n
n!

<10y/12(n+1)°% (3.9)

N(x)

for all x and for all n.
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4. Asymptotic Estimates of 4, ;. |

We can use the central limit theorem (3.5) and the logarithmic concavity of
the {A,,}, (1.6) to establish a local limit theorem giving asymptotic estimates
of A, 1x.1-

For 0<x <y we have by (3.4) and (3.5)

[ynl

]1m—1—~ Y A4 I/_je 2dt 4.1)

i n' {xal+1

where
n+1 n+1

Bt

Y=Y

Since 4, , is monotone over the range of summation we get

[ynl

Ty~ D) el >‘.[]ZIA"* 42)
and
1 [ynl
(Lyn) =[x, D) —= "“"’ n![]ZlA.,,k. 4.3)

Next we divide both sides of (4.2) and (4.3) by y—x, and noticing that
[yal = [x,]

lim —1,
ln y—X n+1

we get from (4.1) that

. ]/ 14 -ty
lim inf] /" "[""]>(yl/x.) f Zdt 4.4

1 _
limsupV 7 A"’[y“ls(y X f 2dt @.5)

n'“l/-

If we fix x and let y|x in (4.4), and if we fix y and let x1y in (4.5) we get

and

lim n+1A,,[x] 1 =

12 m ]/:27;

for all x>0. Actually we can take x=0 in (4.4) but we cannot take y=0 in (4.5).
In similar fashion we get equation (4.6) for all x<0, but x=0 presents a

4.6)

. 1 1
special problem. If x=0, then x, =ﬁ2——. Let m= [Ejz_——] . By symmetry,

A,m= max 4
n,m 15ksn .k

By (4.4) with x=0 we have
. n —l— 1 A,, " 1
lim inf

: Vo

%

@.7)

4%
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To bound 4, ,, above use the logarithmic concavity (1.6) applied to 4, ,,, 4, . ;
and A4, |, ,, where z, is chosen so that

[xn] —m= [Zn] - [xn] (48)
and x is positive. Now

An [xn] = A An[z,,] (49)

and

n+1 2
( 2 An,[xn]/n!)

] /n+1 A, . <
12 n! - n+1

—12‘— An’[zn]/n !

Simple computations establish

n+1 n+1
- — <3 4.10
N ._ : (4.10)

~~’§—2 2
1imsup|/n+1 Anm (e ~1Y/27) (@.11)
: 2 al = G2
e 2 )2=n

for all x>0. The left hand side of (4.11) is independent of x, and so letting x —0

we get
n+1 A 1
i |/ ——n L 4.12
hmnsup 2 _]/ﬂ (4.12)

Now (4.12) combined with (4.7) proves (4.6) for all x.

Finally, we can apply the central limit theorem with Berry-Esséen type error
estimates (3.9) to prove Theorem 2. As before, let 0 <x < y. Then by (3.9)

and we get from (4.6)

e 2012
n[yn] 2
: X, < dt+ . 4.13
(D] =[x ] e 1/2-5 i @L3)
1 o . . 1
We fix y, let x=y—n~* (for nlarge) and divide both sides of (4.13) by (y — x) ni; .
Now
n+1
‘[yn]—[xn]—(y—X) 7 ng,
and we have by (4.13)
y _
Aupy o7/ 121 1( | ¢ d)+0m, (4.14)
nt T ont1ly2m T\ e

since by (4.6)

|/ 12 2, A"’[y"]=0(n‘%) as n— 0.
n+ln* n!
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By applying the law of the mean we get

1 y _2 2
— | e *di=e *+0(n?).
not, p-t

Hence altogether we get

A

md 1/ 12 L 5 ot (4.15)

nt =V nrt 2n ¢

for all y>0. The constant in O is independent of y.

In similar fashion we get (as before)

Ay e 12 R .
Ll > O(n* 4.16
e e Tor (4.16)

for all x=0. These arguments carry over to the case y<x<0, and so we have

i 1/ 12 L 2T 0y (4.17)

n! m+1 1/2.”

for all x+0. For x=0 we have only (4.16). To finish the proof of Theorem 2 we
use the logarithmic concavity of {4, ,}. We choose x, and z, as in (4.8). For
convenience we work with logarithms. By (4.9)

A

y 4 4
log —n-<2log — =l —log —te: (4.18)

and by (4.17)

A
log —';;['x"] =lo

2 1 -3 g
( n+117ﬁ€ )*-0(8 n ) (419)

for all x=+0. If we bound x by |x|< M, then the constant of O is independent
of x. Now by (4.10)

1 +1 ]/ 12
z,=(2x+e) nl—; +n2 and [¢]=£3 YRR

Then (4.19) with x bounded gives

A 6 _(2x+e)?
1 n, [2n] =1 2 —%
og——-—n! ogl/ n(n+1)e +0(n

1 c g B (4.20)
—ogl/ n(n+1)e +0(n™ %),
and by (4.18), (4.19) and (4.20)
log 2mm <1q ( xz) omn* 4
g 1 =log n(n—l—l)e +0n%) as n—w (4.21)
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uniformly for O<x <M. The left hand side of (4.21) is independent of x, as is the
constant in the O term, and hence

L) +On%. (4.22)

A 2
log 2" < P
R —log( n+1 130

Exponentiating and combining (4.22) and (4.16) we get

An,[x,.] 6 _122‘ — 32
o =|/1r(n+1)e +0(n"* as n—w

uniformly for all x. This proves Theorem 2.
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