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Asymptotic Properties of Eulerian Numbers 

L. Carlitz*, D.C. Kurtz, R. Scoville, and O.P. Stackelberg** 

1. Introduction 

The Eulerian numbers [1, 3] may be defined by means of 

1-A @ A,(A) x" 
1 -2e -X  ,=o~ 0 , - 1 ) '  nT. (1.1) 

and 

A,(2)= ~ An, k 2k. (1.2) 
k=O 

It follows that 
Ao, o = l ,  A, ,o=0  (n>0), (1.3) 

A,+l,k=(n--k + 2) A,,k_1+k A,,k (1.4) 
and 

An, k = A  . . . .  k+l (l_-<k<n). (1.5) 

The following table of values of A,, k, 1 < k-< n < 6, is easily computed using 
(1.4): 

1 

1 1 

1 4 1 

1 11 i1 1 

1 26 66 21 1 

1 57 302 302 57 1 

The number A,,k has the following combinatorial interpretation [-6, Ch. 8]. 
A permutation (al, a z . . . .  , a,) of (1, 2 . . . .  , n) is said to have a rise at al if ai<ai+l; 
also it is customary to count a conventional rise to the left of a I. Then A,, k is 
the number of permutations of (1, 2, ..., n) with k rises. 

Kurtz [-5] has proved that 

AZ, k>An, k_rAn, k+r (O<r<k<n). (1,6) 

It follows that, for odd n, A,,k has a unique maximum at k= �89  1); for even n, 
the maximum occurs at k =�89 n and �89 n + 1. 

It follows from (1.1) that A,(2) satisfies the recurrence 

A,+t (2)= (n+ 1)2 A,(2)+ (1 -  2) 2 - -  
dA.(2) 

d2 
(1.7) 
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Frobenius [3] has noted that the n - 1  roots of 2-1An(2) are real, negative and 
distinct; if 4o is a root then 2o I is also a root. Moreover the roots of 4-~An+t(2) 
are separated by those of 4-1A,(4). 

It follows from (1.4) that 

~ A.,k=n!. (1.8) 
k=O 

Also by repeated differentiation of (1.7) we get 

and 
A;(1)=l(n + 1)! (n=> 1) 

A2(1)=~(3n-2)(n+l)! (n>l).  

(1.9) 

(1.10) 

In the present paper we shall prove the following two theorems. 

Theorem l. We have 

1 [x~] 1 
lim - -  ~' A, k - -  ~ e x p ( -  t2/2) dt, 

n! Vl ' 

where 
x , = ~ l ) x + � 8 9  (1.11) 

Theorem 2. For x, defined by (1.11), we have 

1 A 6 2 +O(n-�88 
n !  m i x . ] :  e 

uniformly for all x. 

The proof of Theorem 1 was suggested by Harper's proof [4] of the similar 
result for Stirling numbers of the second kind. The proof of Theorem 2 makes 
use of a Berry-Ess6en type rate of convergence theorem [2, p. 251] and also the 
strong logarithmic concavity property (1.6) of the Eulerian numbers. 

2. Random Variables and Moments 

Following Harper [4J, we introduce a triangular array of row independent 
random variables X,k taking on only the values 0 and 1 by giving their probability 
densities: 

P[X'~k=O]=r,k/(l+r,k), P[X'k=lJ=l/(l+r,a) 

for k=  1, 2 . . . . .  n; and n= 1, 2, ..., where 0 = r n l < r n 2  < " "  <rnn are the negatives 
of the roots of A,(2). Setting 

S', ~ ' = X n  k 
k=l  

we have 

ES'~= ~ 1/(l +r,k) (2.1) 
k=l  
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and 
Var S; ~ ~ (i/(I + r,k)-- I/(I + r,k)2). (2.2) 

k = l  

Now 
n 

A, (2) = 1-[ (2 + r,,k), (2.3) 
k=l 

and differentiating logarithmically, we get 

(2 + r,,k)- I ~ A', (2)/A, (2). (2.4) 
k = l  

For 2 = 1  we have then by (1.7), (1.8), (2.1) and (2.3) that 

ES'. = A" (1)/n ! = (n + 1)/2. (2.5) 

In similar fashion we get from (1.8), (1.9), (1.10) and (2.2) 

Var S~ = (A~'(1) + A' . (1) ) /A . (1) - (A ' , (1) /A , (1) )  2 = ( n +  1)/12. (2.6) 

Next we compute the distribution function 

F,' (x) --- P IS;, < x] (2.7) 
by noting that 

P[S', = p ]  =Pl-exactly p of the X;,, are 1] 
(2.8) 

=- ~ I-I (1 + r,k~) -1 ]-[ r, kJ(1 + r,k,) 
k ~  k j  

where the ki's are the k's for which X~k ~-- 1, and the kfs are the k's for which X~k =0 ,  
the number of ki's is p and the number of kj's is n - p .  Since Anp is the elementary 
symmetric function of degree n - p  of r,,1, r~ 2 . . . .  , r,,~, it follows from (2.3 and (2.8) 
that 

P [S', = p] = A, ,p/n !. (2.9) 
Hence 

Ix] 

F,'(x)= Z A,,k/n!" (2.10) 
k = l  

Let 

and 

3. The Central Limit Theorem with Error Term 

x , .~  = ( x ' , . k -  EX',.k) 

, l l t S, = iS, - ES, ) / (Var  S,) . 
(3.1) 

Let F~, k be the distribution function of Xn, k. Now it is easy to see that the Linde- 
berg condition 

l im~. ~ x2dF,,,.k(X)=O 
n k Ix[>~ 

4 Z. Wahrsdleinlichkeitstheorie verw. Geb., B& 23 



50 L. Carlitz, D.C. Kurtz, R. Scoville, and O. R Stackelberg: 

holds and the array X,, k satisfies the central limit theorem. The distribution 
functions F, of S, converge pointwise to the normal distribution 

that is 

x t 2 

N ( x ) = ~ _ ~  e-Z-dr 

F,(x)=P[s, Nx] ~, N(x) for all x. (3.2) 

But by (2.5), (2.6) and (3.1) 

I-,~, . - ~  n+11 
P[S <=x] =P [~.~-x V - ~ - + - - ~ ]  " (3.3) 

Put 
, n ~ l  n + l  (3.4) 

X'=x V 1 2 - q  2 
Then by (2.7) and (2.9) 

Ix .1 
F.(x)= ~ A,,k/n! , ,  g(x) for all x. (3.5) 

k=l 

This proves Theorem 1. 

We state now a Berry-Ess6en type theorem giving a rate of convergence to 
the normal distribution for triangular arrays. The result is similar to and proved 
in exactly the same manner as the Theorem in [2, p. 521] : 

I f  for k = l ,  2, ..., n; and n =  1, 2, ... 

(Var X.k )- 1 ElX.kl3 < 2 (3.6) 

where 2 is a constant, and the left side of (3.6) is 1 if Var X.k=O, and if 

Var S . -~ .  oe, (3.7) 

then for all n and for all x 

]F.(x)-N(x)] < 10 2 (Var S.) -&. (3.8) 

To apply this estimate to our array we compute 

E ]X.kl 3 =EIX'. k -  1/(14-rnk)[ 3 

=(1 - 1/(1 + r.k))3 (1 +r.k) -1 +(1 +r,g) -3 r.k(1 +r.k) -1 

=rnk(r2k-f-1)  (rnk + l )  - 4  . 

Then 
(Var X.k )- 1 E [X.a I a = (rzk + 1) (rnk + 1)- 2 =< 1 

since r.k>O, and (3.6) holds with 2=  1. The condition (3,7) is also satisfied, and 
hence by (3.8) 

E~I A,.k --N(x) < 10 ] / ~ ( n +  1) -~ (3.9) 
k=l  n !  

for all x and for all n. 
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4. Asymptotic Estimates of A.,[~.l 

We can use the central limit theorem (3.5) and the logarithmic concavity of 
the {A,,k}, (1.6) to establish a local limit theorem giving asymptotic estimates 
of A.,[~.I 

where 

For 0 < x < y  we have by (3.4) and (3.5) 

1 ~, A.,k= e-Tdt ,  (4.1) 
g/" {x,d + t 

1 n / ~ l  n + l  
Y " = Y V ~ 2  -q 2 

Since A., k is monotone over the range of summation we get 

and 

A.,tx. 1 _> 1 [y.l 
( [ y . ] - [ x . ] )  n! n! ~ A"'k 

[Xn] + 1 
(4.2) 

Next we divide both sides of (4.2) and (4.3) by y - x ,  and noticing that 

l i p  I-y.-1- Ex.] l / q - 2  1, 
I/7 5 = 

we get from (4.1) that 

i f  n V ; 1  A. ,~. ,> ( y - x )  -1 re-  ~dt (4.4) l i m n _ _  "! = x 

and 

s u p ] / 3 + l  A.,Er. a< (y_x)_l  y ,2 lira . [ /  12 n! = ~ ~e- -Sdt '  (4.5) 

If we fix x and let yJ, x in (4.4), and if we fix y and let xTy in (4.5) we get 

X 2 ,. l ~ An,[x~] 1 2 
l lm ~ i 2  //! l ~  e (4.6) 

for all x>0 ,  Actually we can take x = 0  in (4.4) but we cannot take y = 0  in (4,5). 
In similar fashion we get equation (4,6) for all x < 0 ,  but x = 0  presents a 

["21] special problem. If x = 0, then x, = ~ - - .  Let m = - -  . By symmetry, 

A n  m =" I/laX ' 1 < ~ < n  A n ' k "  

By (4.4) with x = 0 we have 

. /n-Ti-  1 
l iminf V -~-2- A.,,. > 

n! - ] / ~  
4* 

(4.7) 

(D. ]  ,_ ~._A,,,b.j < 1 t"~ 
--LX,3) nl = n! ~ A,,~. (4.3) 

�9 [ x ~ ]  + 1 
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To bound A..,. above use the logarithmic concavity (1.6) applied to A ... .  A..~x.] 
and A.,L~.1, where z. is chosen so that 

[ x . ]  - rn = [ z . ]  - [ x . ]  

and x is positive. Now 
A. a, [~.j > A..m A.[z.l 

and 

n+ i )2 
n + l  A,,m < 

n! = ] n ~ l  
]/ 12 A.,~z.~/n ! 

Simple computations establish 

2 I n/~+n+l n + l  
< 3 ,  z , -  x v  12 2 

and we get from (4.6) 
X 2 

n ]  n ~ l  A.,m (e -2/]/~)2 
limsup]/ 12 n! < (2~)2 

e 2 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

for all x>0. The left hand side of (4.11) is independent of x, and so letting x - , 0  
we get 

l i m s u p V n + l  A,,,, < 1 (4.12) 
12 n! = ~ "  

Now (4.12) combined with (4.7) proves (4.6) for all x. 
Finally, we can apply the central limit theorem with Berry-Ess6en type error 

estimates (3.9) to prove Theorem 2. As before, let 0 < x < y. Then by (3.9) 

<_ ~ ~e -~dtq  2 0 1 ~  (4.13) A..[y.I 
([y.]--[x.]) n! --]/2rc~ ~ 1  

We fix y, let x = y _  n_+ (for n large) and divide both sides of (4.13) by (y_ x ) ]~.n + l 
Now 

[y.] - Ix.] - (y -  x) V ~  --< 2, 

and we have by (4.13) 

since by (4.6) 

,2) 
A.,Ey.I < ] /  12 1 1 -~d t  +O(n-~), 

=V n+IV  , e 

l/n+ 1 n -.2 An,[y,dl./! -----O(~-�88 as gt ---~ 0(3. 

(4.14) 
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By applying the law of the mean we get 

1 y t2 y2 
e 2 d t = e  2 +O(n-+). 

n - �88 y_ -~ 

Hence altogether we get 

A,,ty.l < 1 /  12 1 Y2 
n! V n + l  ]//2n e 2 +O(n-�88 (4.15) 

for all y>0 .  The constant in O is independent of y. 

In similar fashion we get (as before) 

A,,txd ] / /  12 1 x2 
n! > n + l  ] /~7  e 2 +O(n-~) (4.16) 

for all x > 0. These arguments carry over to the case y < x < 0, and so we have 

A,,txd 1 /  12 1 x2 
n! V m + l  1 / ~  e z +O(n-~) (4.17) 

for all xee0. For x = 0  we have only (4.16). To finish the proof of Theorem 2 we 
use the logarithmic concavity of {A,,k}. We choose x, and z, as in (4.8). For 
convenience we work with logarithms. By (4.9) 

and by (4.17) 

log An'm <2log  An'Ix"] log A"tz"i (4.18) 
n! - n! n! ' 

log A"'tx"~ - l o g  12 1 - ~- 1 
n+ l l / /~e  -O(e n -~) (4.19) n! 

for all x~0 .  If we bound x by Ixl<M, then the constant of O is independent 
of x. Now by (4.10) 

, ~ / 7 7 ] -  n + l  1 /  12 
z,=(2x+e) V ~ + ~  and [ e l < 3 V n + l  

Then (4.19) with x bounded gives 

log A.,tz.l = log - -  e 2 
n! n ( n + l )  +O(n-+) 

] ~  6 (2x)2- 1 

= log n (n + 1) e 2 + 0 (n- ~), 

and by (4.18), (4.19) and (4,20) 

(V 6 ) 
log ' < log  n(n+l) e x2 +O(n -~) as n ~ o o  

(4.20) 

(4.21) 
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uniformly for 0 < x < M. The left hand side of (4.21) is independent of x, as is the 
constant in the O term, and hence 

n! < log  +O(n-�88 (4.22) 
n + l  

Exponentiating and combining (4.22) and (4.16) we get 

A.,[~.] / 6 :,2 
n! __n(n+l----~e 2+O(n-�88 as n - , o o  

uniformly for all x This proves Theorem 2 
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