
Ingenieur-Arehiv 51 (1982) 287--299 
Ingenieur-Archiv 
�9 Sprirtger-Verla.g 1982 

A Thermomechanical Description of Materials with Internal Variables 
in the Process of Phase Transitions 

K. Tanaka, Osaka and S. Nagaki, Okayama 

Summary: A continuum mechanical description is presented for thermoplastic materials in the process of 
solid-solid phase transition. The material is assumed to be characterized by three different internal state 
variables: two internal variables which specify the crystallographic structural change during the plastie 
deformation, and a set of scalar internal variables which deseribes the extent of phase transition. Applying 
Edelen's decomposition theorem, the plastic quantities are determined from the dissipation potential, 
while the elastic quantities are specified by the internal energy. The explicit form of the flow rule and the 
evolutional equations for the internal variables are derived. The constitutive equations for the stress and 
the entropy are obtained in rate-type. I t  is shown that the continuous cooling transformation (C-C-T) 
diagram and the isothermal time-temperature-transformation (T-T-T) diagram could be derived from the 
theory developed here. The infinitesimal ease is discussed in detail. 

Eine thermomechanische Besehreibung von iVIat~rialien mit inneren Variablen beim Phaseniibergang 

tJbersicht: Eine kontimmmsmechanisehe Darstellung fiir thermoplastische Stoffe wghrend eines Phasen- 
iibergangs wird gegeben. Das Material wird mit Hilfe yon versehiedenen Zustandsvariablen charakterisiert: 
zwei Variablen, die kristallographische Anderungen w~hrend der plastisehen Deformation angeben und 
ein Satz yon Variablen, welehe den Umfang des Phasentibergangs besehreiben. Stoffgleiehungen werden 
hergeleitet. Augerdem wird gezeigt, dab C-C-T- und T-T-T-Diagramme aus der entwiekelten Theorie her- 
geleitet werden k6nnten. 

1 Introduction 

Phase transition of materials is one of the most interesting phenomena in the field of material 
science. The related topics extend from quantum mechanics to thermochemistry, and also from 
ferromagnetic dielectrics to carbon steels [1--10].  

The phenomena have been discussed extensively not  only from the point  of physics but  also 
from the point  of thermodynamics  and of cont inuum mechanics. Among the works, Landau ' s  
theory  of the second order phase transit ion [5, 10], which is based on the consideration of 
statistical physics, seems to be one of the prominent  start ing points in the cont inuum mechanical  
s tudy  of phase transitions. One could also list the s tudy  of Enz [11, 12], who formulated the 
displacive transitions of the thermoelastic solids in order to discuss the soft phonon mode of 
lattice vibration. Recent ly  Murdoeh [13] carried out a cont inuum mechanical s tudy  on the phase 
transit ion for elastic materials. He  regarded the material  as a mixture of the two separate phases, 
and demonst ra ted  tha t  the Classical results for the l'iquid-gas and the solid-solid transitions 
could be derived by  tracing the method  in modern cont inuum mechanics. 

I n  the process of the second order phase transition, the so-called long-range order which 
measures the extent  of phase transition, plays a very  impor tan t  role [5, 7]. F rom the cont inuum 
mechanical  point  of view this parameter  could be interpreted as an internal state variable which 
specifies the position of the system in the range from the initial state to the final state [14]. 
I t  likely corresponds, for example, to the extent  of reaction in the theory  of reacting media or 
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the volume fraction in the theory of mixtures [15]. This suggests that  the phase transitions 
might be described by means of the internal state variable theory in the continuum mechanics 
[14, 16]. 

Generally speaking, the phase equilibrium condition of the solid-solid transition is so severe 
that the material inevitably reacts over its elastic limit [17]. And the plastic deformation of the 
material is always a very important factor to expect the mechanical response of materials after 
the phase transitions [3, 18]. 

In  this study a continuum mechanical description is presented for thermoplastic materials 
in the process of solid-solid phase transition. The material is assumed to be characterized by 
three different internal state variables: two internal state variables which specify the crystallo- 
graphic structural change during the plastic deformation [19, 20], and a set of scalar internal 
state variables which describes the extent of phase transition. The present theory has, therefore, 
a close similarity with the theory of reacting media [15]. Applying Edelen's decomposition 
theorem [21, 22] the dissipative or plastic quantities are determined from the dissipation 
potential, while the elastic quantities are specified, as usual, by the internal energy. The explicit 
form of the flow rule and the evolutionM equations for the internal state variables are obtained 
by means of the Legendre transformation. This enables us to derive the rate-type constitutive 
equations for the stress and the entropy. 

In  order to show how the theory works in practice, some topics are discussed in the last 
section. First of all, it is shown that  the expression of the continuous cooling transformation 
(C-C-T) diagram as well as of the isothermal time-temperature-transformation (T-T-T) diagram 
[23] can be derived from the theory developed here. Then the theory is reduced to the case of 
infinitesimal deformation with isotropy. The constitutive equations and the governing equations 
are written down explicitly. 

2 Preliminaries 

Consider a thermoplastic body in three-dimensional space, the motion of which we write 

x = x(X, t), (2.1) 

where X and x stand for the position vectors in the reference and the current configurations, 
respectively, while t means the time. The deformation gradient F is then defined by 

ax 
F -~ aX'  det F > 0. (2.2) 

As usual we shall use in this study the terms, the material point and its position in the reference 
configuration, without distinction. 

Let  us next assume that at any instant of deformation there exists an intermediate con- 
figuration which would be attained if a deformed materiM element could be unstressed elasticMly 
[24--26]. The material point X which occupies a position x in the current configuration, is 
transformed under such a process to a position X in the intermediate configuration. Since the 
dastic deformation gradient corresponding to this transformation may be defined by  

ax 
EF ~ aX, (2.3) 

the chain-rule permits us to decompose the deformation gradient F into the elastic part  ~F and 
the plastic part pF ~ ~x/OX as follows: 

F = EF. pF, (2.4) 

where, and throughout this study, the prefix E represents the elastic part, while P indicates 
the plastic part. In the sequel, we employ the following notation: 

[A. B] ...~j... ~ A...~Bkj . . . .  [A:B] . . .w. .  ~ A...~klB~tj . . . .  
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and grad and Grad mean the gradient with respect to x and X, respectively, while div and Div 
are the divergence with respect to x and X, respectively. The suffixes T and --1 stand for the 
transpose and the inverse. The superposed dot denotes the material time derivative. 

As the result of the decomposition proposed for F, the deformation velocity tensor 

--1 
L ~- ~ .  F (2.5) 

is also decomposed as 
--1 

L : EL -4- , F "  vL" EF, (2.6) 

where the elastic and the plastic parts of the deformation velocity tensor, EL and pL, respectively, 
are defined as 

--1 --1 
~L ~ EF" ~F, pL ~ p F .  p F .  (2.7) 

We also define the strain tensor zE by 

EE ~--- 1/2(EC -- 1) with Ef3 -~ z F  T" ~F, (2.8) 

where 1 stands for the unit tensor of the second rank. The strain tensor ~E turns out to be the 
Green strain tensor 

E = I / 2 ( F  T - F - l ) ,  

while the tensor EE is the stretching tensor 

D - ~ - I / 2 ( L + L T ) ,  

(2.9) 

(2.m) 

when the deformation is limited within the elastic range, hence the prefix E on E in (2.8)1 is 
reasonable. 

For later use we write here a formula, which is derived from (2.6), and will play an important 
role in the following discussion: 

= EE -+- p D ,  (2 .11)  

where D and pD are given by 

-~ z~ T- D �9 uF, eD = 1/2[EC �9 pL + (EC" eL)T]. (2.12) 

This expression states that  the stretching tensor can also be decomposed in the intermediate 
configuration. 

Corresponding to the decomposition in the kinematical quantities, we propose the entropy 
density U be also written as [27] 

?? ---- E?] -~- p~]. (2.13) 

As the thermodynamic state variables which describe the thermodynamic state of the mate- 
rials treated here, we employ the following set of variables: 

j ~ (uE, ~ ,  g, =, ~, ~), (2.14) 

where g stands for the material temperature gradient determined from the temperature gradient 
in the current configuration, grad 0, by 

g ~ zF T �9 grad 0. 

Similarly, g is the material version of a symmetric second order tensor in the current con- 
figuration, ~, i.e. 

~ z F  T �9 ~ �9 EF. 

The tensor ~ and the scalar = are introduced as the internal state variables in order to specify 
the internal crystallographic structure of the materials [19, 20]. Of course, the internal structure 
of the materials may be characterized not only by ~ and = alone but also by more internal state 
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variables of the same order as well as of the higher order tensors. This does, however, not produce 
any essential change in the following formulation. 

The quanti ty ~ represents a set pf the scalar internal variables which characterize the extent 
of phase transition [15, 18]. When the phase transition among N -[- 1 phases is discussed, ~ may  
be composed of the volume or mass ~ractions of any N components. In  the present study, however, 

is regarded ~s a set of N scalar variables without any practical physical interpretations. 
We note here that  the variables that  constitute j are all invariant with respect to any rigid 

rotations in the sense of modern continuum mechanics [28]. 

3 Consequence on Clausius-Duhem Inequality 

The equation of energy balance is written in the current configuration as 

~// --  T :L ~- div q --  oa = 0, (3.1) 

where T, q and a denote the Cauchy stress tensor, the heat flux vector and the heat production 
term, respectively, while e is the density. As is proposed in the preceding section, the internal 
energy U is specified by the state variable ], i.e. 

U : U(i). (3.2) 

From (3.1) we can derive an alternative version of the energy equation in the intermediate 
configuration. The result reads 

eoU -- K : ~ E  -- K:pI)  ~- Div Q - - eoa  : 0, (3.3) 

where the second Piola-Kirchhoff stress tensor and the material heat flux vector are introduced 
through the definitions 

- - 1  - - 1  

K ~ (~o0/e) ~F- T .  (EF) T, 
(3.33) 

- - 1  

In  the above equations, the density in the intermediate configuration, ~, has already been re- 
placed by the density in the reference configuration, e0, since the relation 

det F : (det ~F) �9 (det pF) : (Y/e) det pF : e0/Q 

which is derived from (2.4) and the balance of mass, implies ~ ~- ~o0, provided that  the incom- 
pressibflity condition of the plastic deformation, det pF = 1, is assumed. 

By taking a similar procedure, the Clausius-Duhem inequality in the current configuration 

~ -- ~ ~- + div ~ 0 (3.4) 

is transformed to the formula in the intermediate configuration: 

1 
--  U ~  --  U ~ . ~  -- ~ Q. Gard 0 2 0, (3.5) 

where we have used (3.2). The partial differentiation of U is denoted by the suffix, i.e. 

U~E ~ ~ U / ~ E ,  Ug ---.: ~U/~g, ere, 

The same way of writing is also employed for qa,/ ' ,  F ,  A and k in the later discussions. 
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When a standard argument  of the type employed by Coleman and Curtin [14] is used in 
(3.5), we are led to the following results: 

u U(j),  j ~ (~E, ~ ,  ~,  ~, ~), 

1 
- - K  = U ~ ,  0 = U , ,  (3.6) 
o0 

2 ( W , J ) ~ W * J ~ 0  with ~(W,  0 ) = 0 ,  

where the ordered sets in the (N + 17)-dimensionM space E N+17, W and J, are introduced by 

( W ~  K, 0 , I I , / / , g , - o Q  , (3.7) 

J ~ (PD, ~oe~, 7t, ~, A, Grad 0), 

together with 

I I  --= --~o0U~, H ~- --~o0U~, A ~ - -e0U~.  (3.8) 

The operation W .  J in (3.6)~ means the inner product in E ~+:~ defined by 

W * J ~  A : a  § Bb 4- C : c  + D d +  E .  e + F . f  (3.9) 

for a n y B ,  D ,b ,  d c E  ~, F , f ~ E  3, A , C , a , c ~ E  6 a n d E , e C E z q  
I t  is not meaningless to point out here that  W and J in (3.6)~ are called the generalized force 

and the generalized flux, respectively, in the irreversible thermodynamics [29]. 
Inequali ty (3.6)5 states that  the entropy production has a minimum at J : 0. If  we assume W 

being at least of class C 1 with respect to J, this minimum is analytic, and hence, W = 0 f o r  
J : 0, which means tha t  the force vanishes whenever the corresponding flux vanishes. 

Combination of (3.3) with (3.6) yields an alternative version of the energy equation: 

( 1  ) 
~o00/tq- D i v Q - -  e 0 ~ -  ~q-~Q'Grad~ = 0  (3.10) 

which will be used later. 

4 Constitutive Equations for the Plastic Parts 

Let us assume that  the constitutive equations for the plastic quantities W take the form 

W = W(J;  j), (4.i) 

where, as was explained in the preceding section, W is at least of class C 1 in J. Following the 
decomposition theorem by Edelen [21, 22], we can write the explicit form of (4.1) as 

W = Cj(J;  j) q- U(J; J), (4.2) 

where the anomaly term U(J; j) has the following property:  

J .  U = 0, U(0; j) = 0V j. (4.3) 

In  the following discussion, we restrict ourselves to the case in which 

U = O. (4.4) 

The scalar function q)(J; j), which is called the dissipation potential, is of class C 2 in J, and 
is given as a solution of the differential inequality 

2 = ~ j  �9 J ~ 0. (4.5) 

This is solved to be 
1 

q~(J; j) = h(j) + ~ (W;)d)  -- , ,  (4.6) 
2 

0 

where h(j) is an arbitrary, physically irrelevant function. 
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The complete expression of the plastic quantities W is now available in the form 

K = r  0 = r 

1I = q ~ ,  H = q)~, (4.7) 

= 'PA, _ L  Q : r 
0 

For later convenience, we employ the following ordered sets: 

V7r ------ (K, 0, ~ ,  n ) ,  

_= ( 1 q ) ,  gv 
\~' - T  (4.s) 

;i ~= (p~, e0p~, 9, ~), 

~ (A, Grad 0). 

The constitutive equation (4.7) is then rewritten as 

-~r = q~(j ,  i ;  j), (4.9) 

and the inequality (3.6)~ takes the form 

=- W ,  J = W , J  + f u  J >  0. (4.10) 

In the above equation, every symbol �9 means the inner product but in different dimensional 
spaces. The definition of the last two inner products can, although it is not written explicitly, 
be understood from (3.9) and (4.8). 

Let us assume that  the plastic deformation is characterized by the dissipation potential 

r J) = ~(J;  j) + r  J), (4.11) 

where the first part of the potential, ~($; j), is proposed to be homogeneous of order one in 
$; i.e. 

~ ( ~ ;  j) = ~ ( J ;  j) v ~ > 0. (4a2) 

Then, Euler's theorem states that 

~ ,  $ = ~ (4.13) 

holds. 
Differentiating (4.13) with respect to $, we obtain 

~ �9 j = 0 .  (4.14) 

For this to hold for all J, 

det ( ~ )  : 0 (4.15) 

must be satisfied for all J :4: 0. Provided that  

rank (55~) : dim (~) -- 1, (4.16) 

this suggests the existence of a scalar function ~('VV; j) which has the property [30] 

F = 0  if $~=0 .  



K. Tanaka and S. Nagaki: Description of Materials in the Process of Phase Transitions 293 

Now we can conclude that  there exists such an inverse transformation of (4.9)1 that  

{0A 
- ~ T . .  ~ - 

j = /~w(W, 1) V W r F  = 0, (4.16) 

V W l f 4 o ,  

where A is a multiplier to be determined. Without loss of generality we put such additional 
assumption for the scalar function P introduced above that  

F@4=0  while F = 0 .  

Equations (4.9), (4.10) and (4.13), together with (4.11), combine to yield a formula for 
in the form 

= q~(J; j) ~- r  j) * ? ~  0. (4.17) 

We could show that  under the condition considered this implied 

~ ( J ; ] ) > 0  and $ ~ ( J ; j ) * 5 > 0 .  (4.t8) 

Equations (4.13) and (4.18 h ensure ~ = 0 only at $ = 0, otherwise ~ > 0. Then, the inverse 
transformation (4.16) can be rewritten as 

$ = [ A F  w if F = 0  and A ~ 0 ,  
if P < 0, (4.19) 

where the condition f =4= 0 has been replaced by _r < 0 without any loss of generality. The 

multiplier A is determined from the c o n d i t i o n / ~ :  0. 
If the one-one correspondence of the constitutive equations for the elastic processes (3.6)3,4 

is taken into account, the dependence on the ordered set, (~'; j) may be replaced by the dependence 
o n  

r 0, r:,~) and g. 

We can, therefore, introduce a new scalar function, the so-called yield function in the theory 
of plasticity, through the relation 

r ( w ;  ]) = r(to,  ~). (4.20) 

I t  was proved that  the yield surface F = 0 is a convex surface in the stress space. The form of 
the yield function might be further restricted, provided that the pressure-insensitivity of the 
plastic deformation is taken into account. 

Equation (4.20) gives us an alternative expression of the constitutive equation (4.19) in the 
f o r l r l ,  

$ : [ A / ' c o  if / ' : 0  and A : 0 ,  
/o if r < 0, (4.m) 

which is called the flow rule in the ordinary theory of plasticity. With the multiplier A deter- 
mined from 

f ( w ;  i) = ?(r ~) = 0, 

the constitutive equation J ~ AT'co can be written explicitly as 

~D = a ( r ~  | ~K): /(  + G(Gd'0) O + G(F K | r ~ ) .  ~, 

eo~  = a(r0c~):  k + c(roro) 0 + a(rorg) . ~, 
(4.22) 

= a(r~rK):  ik + a(C, ro) 0 + a ( r ~ r g ) .  ~, 
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where 

G ~ --[Fn: _Fz~ -~ Yfl~=] -*, (4.22a) 

and the symbol (~ stands for the tensor product. 
Equations (4.22) and (4.9)u constitute a full set of constitutive equations for the thermo- 

plastic process. The last two equations of (4.22) and the first equation of (4.9)u or (4.7)5 are called 
the evolutional equations [14, 16], which specify the growth of the internal state variables 
~, z and ~, respectively. The second equation of (4.9)~ or (4.7)6 may be regarded as the constitu- 
tive equation of the heat flux q. 

In summarizing, the thermoplastic materials in the process of phase transition can be com- 
pletely described by (3.6)a,a, (4.22) and (4.9)~. The behavior of the material is, therefore, specified 
through the internal energy U and the dissipation potential q}. The former characterizes the 
elastic process and the latter the plastic process. In this theory, a part of q~, ~ which determines 

~V, is shown to be replaced by the yield function F. This will be explained in practice in Section 6. 

5 Rate-Type Constitutive Equations for K and 

A set of rate-type constitutive equations for K and ~] is derived in this section. We first diffe- 
rentiate (3.6)a,4 with respect to time. Assuming that  the elastic deformation is not influenced 
by the plastic deformation [31], i.e. 

U EU = 0 ,  U E . = 0 ,  

U vu = O, U s .  = O, 

we get the following formulas: 

(5.1) 

R = A:EE + OO + K ~ ' ~ ,  

1 (5.2) 

~0 ~o 

where we have introduced the material tensors defined by 

a ~ e o [ g . ~  - (U. , . , )  -~ (U~E.~ | U. , .E)] .  

0 ~- ~oo(U ,.,~) -1 U ~ . , ,  
(5.2a) 

c ~ e0(U ,~,) -1, 

1 
,~  ~ - -  (U,~,,) -1 A~. 

00 

The tensors h and 0 correspond to the elastic moduli tensor and the thermoelastic moduli tensor, 
while c has the dimension of the specific heat when divided by the temperature. 

With the use of (2.11) and (4.22)~.2 together with (5.2), we arrive at the final rate-type con- 
stitutive equations for K and V: 

1 - 1 (5 .3 )  

~o ~o 

where we have defined the material tensors by 

-= a - g(a:  r K ) |  (~K: a ) ,  (5.a~) 

e) o - g ( a :  (to + oi ,  
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with 

K .~'~. ~ K~.~ - -  ~/(A:/~K) @ ( / ~  ~- -rK: K'~'), 

- -  c + g(F0 + O :  F~() ~, 

~.-.~--~ --g(Fo+O:rK)(r~+TK:~Z), 
~o 

(5.3a) 

~ IrK: iX:/~x --  G-~] -*- (5.ab) 

In closing this section, we give a brief scheme for solving the boundaw-vMue problems. 
The quantities estimated in the intermediate configuration can always be transformed to their 
version in the current configuration by means of, for example, (a aa). The same is possible for 

the rate quantities, such as I(, although the transformation formulas are somewhat complicated 
in this ease. We could, therefore, derive a se~ of governing equations for the displacement and 
the temperature in the current configuration, i.e. the equation of motion and the heat con- 
duction equation. In  fact, they might be given in rate or incremental form. 

6 Some Comments and Consequences 

In this section, the general theory developed in the preceding sections is explained in detail 
on some topics. 

6.1 C-C-T and T-T-T diagram.s" [23] 

As a general expression of the evolutionM equation for ~, we proposed in (4.7)~ and (4.ll) the 
following form: 

---- • ( J ;  j) ---- Ca(J; j). (6.1) 

In this subsection, let us limit our attention to the case in which the dissipation potential 
be further restricted to 

r  ]) = 5 (J ;  j) + ~ (Z;  J) 

= ~(J;  j) q- Q<b(Grad 0; j) -~ ~ ( A ;  j). (6.2) 

Each part of the potential should of course be chosen so as to be compatible with (4.18.) We 
assume that  this is the case in the following discussion. The evolutional equation (6.1) thus 
reduces to 

- - -  (/)A = ~(~i~A(A; J)" (6.3) 

In order to proceed further, let us suppose the case in which the deformation of materials 
has no effect on the progress of phase transition, and then, the far right-side of (6.3) may be 
expressed as 

--1 
---- gCA{A ; j) M(g) .  N(O). (6.4) 

We emphasize that  this type of evolutional equation for ~ has a sound experimental background 
[18]. Equation (6.4) could be integrated for an arbitrary uniform temperature history O(t) from 
(t, ~) ---- (0, T0) to an arbitrary generic point (t, ~), where T0 ~ ~!t=t0- The result reads 

t 

f dE f d,. (6.5) 
~o o 

This equation suggests the existence of an expression for the extent of phase transition ~ that 

= ~I(t). (6.6) 

Equation (6.6) corresponds to the eonl~inuous cooling transformation (C-C-T) diagram which is 
studied in detail in metallurgy. In order to dear  the situation discussed, let us consider a process 
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of constant cooling rate; O(t) = v~t + ~9 o with the constants t9 and v~o. Equation (6.6) could 
now be written ~s 

= ~( t ;  0, ~). (6.7) 

When (6.7) is plotted in the 0 --  t plane with v~ as ~ parameter and ~ as the parameters along 
the curves, the diagram obtained is no other than a C-C-T diagram. 

When the temperature history is chosen so that  

/ t~ -- v~________20 t _t_ ~o; 0 % t < ~ 
o(t)= ~ ~ - (6.s) 

! ; t > ~  

for the given temperatures v~ and v~ o, and (6.5) is estimated for sufficient small values of ~, 
a formula for ~ derived, which could be written as 

= ~( t ;  v~), (6,9) 

corresponds to the isothermM time-temperature-transformation (T-T-T) diagram. 
Returning to (6.1), the equation could be said to specify the progress of the phase transition 

which is strongly influenced by the elasto-plastic deformation of the materials. Therefore, the 
C-C-T diagram, if it could be constructed in this case, depends on the full history that  the material 
has been experienced before. 

6.2 Constitutive Equation/or 

The constitutive equation for the heat flux (4.7)6 reduces to 

q = - - x .  Grad 0, (6.10) 

if the potentiM Q~(Grad 0; j) in (6.2)2 is chosen with a positive definite tensor of the second 
rank x in the form 

1 
Qr 0; j) = ~ - x :  (Grad 0 @ Grad 0). (6.11) 

6.3 In]initesi~al Theory 

In this subsection we reduce the theory to the case of infinitesimal deformation. The concrete 
procedure of the linearization is not discussed here since one could find a similar discussion 
elsewhere [31, 32]. 

We employ the dissipation potential written by (6.2)2. The yield function might have the 
following form, provided that  the absence of the Bauschinger effect is assumed: 

I " : K : r : K - - I = 0 ,  (6.12) 

r = r(~5, ~), ~5 -=  (0, = ,  = ) ,  

where the material tensor r has the same symmetry properties as the elastic moduli tensor A. 
I t  is worth noting here that  according to the linearization K, ~ and D coincide with their 

alternative version in the current configuration, i.e. T, ~ and-I), respectively. 
If the pressure-insensitivity of the plastic deformation is taken into account, the yield function 

(6.12) is shown to be expressed as [33] 

F :  K*: r :  K* -- I = 0, 

(6.13) 
K * ~  K - - 1 1  t r K ,  

3 
together with 

l : r = r : l  = 0 .  
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In order to proceed further we assume that  the material tensors are isotropie, and hence 
can be written as 

O i i =  a(~i i, 
(6.14) 

The material constants 2,/~, a, b, ~ and fl are in general functions of d~ and g. Equation (6.14)a 
states that  the phase transitions discussed here exhibit only the isotropie change in kinematics. 
Combination of (6.13 h and (6.14)4 leads to 

F : ~ l  K * : K * - - k = 0 ,  
2 

1 
4 ~  

(6.15) 

which is no other than von Mises' yield condition generalized to our context. 
The rate-type constitutive equations for x and ~ are now reduced to 

k = 2 1  t r D  d-2#D d -a l0  + ( 1 @ b ) .  ~ --2~g(2#K*: D --koO - - k ~ .  ~)K*,  

1 1 1 (6.16) 
. . . .  a t r  D + - -  cO + ~ .  ~ - - - -  9k0(2SK*: D -- koO - -  k ~ .  ~ ) .  

9o ~o Po 

From (6.16)1 we can derive the formula 

tr O -- 1 tr I~ 3a 6 , 3  b. ~. (6.17) 
32 + 2z 32 + 2z 32 + 2z 

Integrating this from t = 0 to t along the path under the condition of stress-free, i.e. K = 0, 
we obtain 

t t t 

/ / t r  D d t  = --  32 + 2-------~ 32 d- 2# 
0 0 0 

t 

Relation (6.18), which is often called the dilatation curve [18] once plotted f t r  D dt vs. O, 

o 
reveals that the change in volume, the term on the left-hand side, is composed of the thermal 
expansion, the first term on the right-hand side, and the expansion due to the phase transition, 
the second term. The relation also suggests that  the material tensor b could be determined 
experimentally from the dilatation curves, provided that  the evolutional equation for ~ is expli- 
citly given. 

The heat, conduction equation follows from the energy equation (3.10) along with (4.22), 
(6.15) and (6.16) in the form 

x:  grad grad T - -  ~ "  - -  ~0~ = - - 0 o  a t r  D + 2/~g~K* : D, (6.19) 

with 

9o 

- ~  2 k  - -  20okr  - -  ~ : k ~  - -  ~ k ~  , 

(6.19a) 
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where the  cons t i tu t ive  equa t ion  for the  hea t  f lux (6.10) was employed,  while 0o and T s t and  for 
the  reference uni form t e m p e r a t u r e  and the  excess t e m p e r a t u r e  above  it, respect ively ,  i.e. 

T = 0 - -  00. (6.20) 

The excess t e m p e r a t u r e  T is assumed to he small  compared  to 00, i.e. IT lOci ~ 1. 
The second pa r t  of (6.19a)1 ~ " and  the second t e rm on the  r igh t -hand  side of (6.19) come from 

the  assumpt ion  (2.13). Among the  terms,  the  second pa r t  of (6.19a)~ represents  the  hea t  produc-  
t ion  due to the  phase  t ransi t ions ,  i.e. the  l a t en t  heat .  

The  hea t  conduct ion  equat ion  (6.19) need be supp lemen ted  b y  the  equa t ion  of mot ion,  which 
reads  under  the  assumpt ions  considered here 

@0x = div K + ~0f, (6.21) 

in order  to complete  the  governing equat ions  for the  d i sp lacement  and  the  t e m p e r a t u r e  fields. 
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