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Metric Spaces in which Prohorov's Theorem Is Not Valid 

David Preiss 

I. Preliminaries 

Let X be a Hausdorff topological space. By a measure on X we understand 
a tight Borel probability measure on X. The set of all measures on X is denoted 
by P(X); this set is a topological space with the usual topology. This topology 
can be described as follows: 

If #~ is a net in P(X) and # ~ P(X) then lim #~ = # if and only if liminf #~ (G) = # (G) 
for every open set G c X. 

For  convenience a space X is called a Prohorov space if for every compact 
set M c P(X) and every e > 0 there exists a compact set A c X such that # (A) > 1 - 
for e a c h / ~ M .  

It is well known that every topologically complete space X (i. e. space which 
is a G~ subspace of some compact space) is a Prohorov space (see Corollary 1 
of Theorem 1). Varadarajan [3] claimed to prove that a metric space X is a 
Prohorov space provided that every Borel measure on X is tight (consequently 
a separable metric space which is a Borel subset of its completion is a Prohorov 
space), but his proof is incorrect. 

An example of a K~ metric non-Prohorov space (and therefore the proof 
of non-validity of Varadarajan's theorem) was given by Davies [1]. In this note 
it is proved that a co-analytic separable metric space is a Prohorov space if 
and only if it is topologically complete (consequently a separable metric space 
which is a Borel subset of its completion is a Prohorov space if and only if it is 
a G~ subset of its completion). This theorem gives also a solution of the problem 
whether the space of rational numbers is a Prohorov space (see e.g. [1]). The 
reader, who is interesting only in this problem, can find its solution in part III 
which does not depend on topological results of part II. 

We begin with the following trivial lemma which will be used without special 
mention. 

Lemma 1. I f  M is a compact set of  probability measures on a subspace Y of  
a topological space X,  then the extensions to X of  the measures # ~ M  constitute 
a compact set of  probability measures on X.  

The proof of the following Theorem 1 and Corollaries 1, 2 was communicated 
to me by Dr. Roy O. Davies. 

Theorem 1. Every G~ subspace of  a Prohorov space X is a Prohorov space. 

Proof  It is enough to show this for an open subspace G of X (then if M is 
a compact set of tight probability measures on G1 c~ G2 ~ ..., we can choose for 
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every n a compact set K , =  G, such that #(K,)>  1 - ; e  for every #~M, and then 

with K = K1 c~ K2. . .  we have K =  G1 c~ G2 ~ . . .  and #(K)> 1 -  e for every #~M). 
Let M be a compact set of tight probability measures on G. Given ~ >0, 

choose a compact set K o c X  with ~t(Ko c~ G)> 1- �89 for every #eM.  
Since any #~M is tight, there exists for it a compact set K = G  with #(K)> 

1 -  �89 e. Since K and Ko \ G are disjoint compact sets, then there exists an open 
set G*=K with G~c~(Ko\G)=~. Thus the sets {#~M; #(G*)>l - �89  as G* 
runs over the open sets satisfying G~c~ (Ko \ G)=~, constitute an open covering 
of M. Since M is compact, it is covered by a finite number of these, say 

{ ~ M ; # ( G * ) > I - � 8 9  m = l , . . . , k .  

The set K = K o \ ( G *  u ... u G*) is a compact subset of G and #(K)> 1 - e  for 
every pe M. 

Corollary 1. A topologically complete topological space is Prohorov. 

Corollary 2. A locally compact Hausdorff space is Prohorov. 

II. Some Topological Theorems 

In this part some conditions are given under which a metric space contains 
the space of rational numbers as a G~ subspace. 

We denote by J/fk (k= 1, 2,...) the set of all sequences of natural numbers 
with k members. 

The union of the sets J~k will be denoted by Jr .  For ZEJ/k, Z = [n, . . . . .  nk] 
and natural number n the symbol [z, n] means the sequence I-n,, . . . ,  nk, n] ~ J//k+l 
and for 1 <j<=k the symbol zj means the sequence [nl . . . . .  nj]6 J/{j. 

The set of all infinite sequences of natural numbers is denoted by ~ .  For 
WE~/~ w = [ n l , n 2 , . . .  ] we put Wk=[nl, ...,nk]G~/~ k and for z~J/k we put A/~= 
{weN; Wk=Z}. The sets ~ (z6M) constitute a basis of some topology on ~A/'; 
it is well known that the space Y is homeomorphic to the space of irrational 
numbers with the usual topology (see [2]). 

Lemma 2. Let X o be a metric space and let X c X o. Suppose that G~ subsets 

F~ of X o are given for every z~J/[ and put Y= U ~ Fwk' Let the following con- 
ditions hold. w~X k= l 

(i) Xn Y=~. 
(ii) Fwk~Fwk+l for every w ~ .  

(iii) X mFz is dense in F~ for every zedg. 

(iv) ~) FEz ' ,1 is dense in F~ for every zeJ/g. 
n = l  

(v) F~ is dense-in-itself for every zeJg.  
(vi) There exists zeJgl such that F~ ~-~. 

Then X contains a countable dense-in-itself G~ subspace. 

m ~ m-fz. Proof Let G~ be open subsets of X o such that G~ - 
m=l 
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We will construct the points of some countable dense-in-itself G0 subspace S 
of X by induction. We will define the systems of points x2 for z~ ~ (the set of all 
points xz will be the required set), the system of their neighbourhoods U~ and 
some subsidiary natural numbers rn2. 

I. We can find z o ~dg 1, Zo = [ko] such that F~o 4:~[. As X m F~o is dense in F~o 
and F2o is nonempty and dense-in-itself we can choose a sequence X~.leXnF~o 
and a sequence Ut. 1 of open neighbourhoods of x[. j such that U~. l n Ut., 1 = g for 
every n4:n' (it is sufficient to consider some convergent sequence of different 
points of X n  F~o ). We put m~=k o for every zE/r 1 . 

II. Let k>  1 be a natural number and let the points xz, the open neighbour- 
hoods U~ of x~ and the natural numbers, m~ be defined for every zsJgi, i<k. 
Suppose that x~FEmz, .... . . .  k-ll for every Z ~ / ~ k _  1 and that U~n U2,=~ for every 
z ,  z '  E d///k_ ~ , Z #: Z'. 

For every Z~Jgk_ 1 we can find a sequence xE~,. ] and natural numbers m[~,. l 
such that 

a) xtz,.l~X n U~mF~m.. ...... k_~.~E~,.1J" 

b) lim xc2 ' .1 = x~. 

c) x~, .j 4= x~ for every n and x~, .l 4:x[2 ' .,1 for every n + n'. 

For every Z~Jgk_l and every natural n we choose open neighbourhoods UE~ ,.] 
ofxE~.. ~ such that UE~,.]~ U~n (-] G[,.., ...... ~) and UE~,.ln UE~ ' .,1=r for every n4:n'. 

i , j<k  
Go 

Let Sk be the set of all x2, Z~Jgk and let S=  ~ Sk. The set S is clearly count- 
k = l  

able and a dense-in-itself subspace of X. We only have to prove that S is a G0 
subset of X. 

Let Hk, q---- U U~n~x~Xo;dist(x, Sk )<l~ .  It is e a s y t o  prove that S ,=  
z~Mk 

Hk, q, therefore Sk is a Go subset of Xo, it follows that ~) S~ is a Go subset 
q=l j= l  

of X o . We choose open subsets Gp, q of X o such that 0 Sj= f i  Gp, q. 
j = l  q = l  

Let Qp, q= () U~uGp_Lq for natural p,q (we set Go, q=gf). Clearly S~Qp, q 
z e ~ p  

for every p, q, therefore S ~ (-] Qp, ~. 
P,q 

Suppose that x6 ~ Qp, q. If x6 U U~ for some p then x6Gv_Lq for every q 
p, q z ~ / p  

and therefore x~S. I f x ~  (-] Qv, q'-.S then x~ U Uz for every p. Thus there exists 
p, q ze~lp 

ze~ff such that xeU~ for every p. For every i,j we choose p,p>i, p>j. Then 
Uzp ~ i G[,,, ....... ,,,~), therefore x~ (~ ~ �9 it follows that G[m~ ... . .  m~) = F[m~ ..... m~fl, 

i~1  
x~ ~ F~ . . . . . . . . . .  ) =  Y, therefore xCX. 

j = l  
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Now it can be easily seen that S=Xc~ (] Qp.o and therefore S is a G~ subset 
of X. P'q 

Theorem 2. Let T be a metric space which is of the first category in itself. 
Then T contains a countable dense-in-itself G~ subspace. 

Proof There exist T, c T, T, closed and nowhere dense in T, T =  0 T,. We 
k n=l 

set in Lemma 2 Xo = X =  T, Fz=T'.. U Tj for Z~J~'~ k. 
j=l 

It is easy to prove that the conditions (i)-(vi) are valid; it follows that Theorem 2 
is a consequence of Lemma 2. 

Note that a separable metric space X is called a co-analytic space if there 
exists a complete separable metric space 2- such that X ~ 2 and 2- \ X is analytic 
(see I-2]). 

Theorem 3. A co-analytic separable metric space is topologically complete if 
and only if it contains no countable dense-in-itself G~ subspace. 

Proof If T is topologically complete metric space and S c T a countable G~ 
subspace then S is also topologically complete. Therefore S is not dense-in-itself 
because in the opposite case S is of the first category in itself and this is a contra- 
diction. 

Suppose T is not topologically complete. Let T o be a separable complete 
metric space such that T c  T o and T o \ Tis analytic. Then T O \ T is nonempty and 
consequently there exists a continuous mapping cp of Jff onto T o \ T. Let ~ be 
a countable basis of Y. Let ~1 be the set of all B 6 ~  for which there exists an 
F~ subset F B of T O such that q~ (B) c F 8 c T o \ T. 

We set G=U~I, T = J V \ G ,  F=U{FH; He~)l}. Then F is an F~ subset 
of To, q~ (G) ~ F c To \ T and T is nonempty because in the opposite case F = To \ T 
and T is a Ga subset of To. 

We set in Lemma 2: Xo = To, X = T, F~--q~(~4/~ n T). It is easy to prove that 

Y= U (~ Fz~=tp(T) therefore the condition (i) o fLemma 2 holds. The condition 
z~#/ k=l 

(ii) is obvious. If we suppose that the condition (iii) is not fulfilled then there exists 
an open subset J of To such that F~ n J + ~ and F~ n J n T =  ~. We set Fo = F w (~ n J), 
Fo is an F~ subset of To and F o c To \ T. Now r (JV~ n q~- t (j)) c Fo c To \ T therefore 
q~ (B) c/7o c To \ T for every set B e ~ ,  B c jV z c~ q~- ~ (J). From this it follows that 
JV'~nqg-l(J)cG but Y z n ~ o - l ( J ) n  T : ~  and this is a contradiction. Thus the 
condition (iii)holds. It is clear that 

q~(~/'zt~ ~'/)C 0 (~'/(-~[z,n] )C 0 F[z,n]" 
n=l n=l 

Thus the condition (iv) is also fulfilled. As both q~(T) and TnF~ are dense in Fz 
and q~(T)n T = ~  the set F~ is dense-in-itself, consequently the condition (v) is 
also valid. 

The condition (vi) holds because Y = q~ (T) ~ ~J. 
According to Lemma 2 there exists a countable dense-in-itself G~ Subset of T. 
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IlL Some Non-Prohorov Spaces 

In this part some conditions on the space X are given in order not to be 
Prohorov space. These results will be used in the next part to prove the main 
theorem. 

Theorem 4. Let Xo be a compact Hausdolff space and let ~:~ X c X o .  Let, 
for every natural n, ~n be a system of open subsets of X o and let H n be the union 
of all the sets of (Yn. Suppose that the .following conditions hold. 

(i) There exists a set B c X0, B ~ X o "-, X which is measurable for every measure 
#~P(Xo) such that for every compact K c B and every natural n there exists G6(r 
such that K ~ G. 

(ii) For every compact K c X and every sequence L, of finite subsets of X there 

exist a natural number n o and x ~ X \ K  such that xr  ~fl Hn and if x~G6~m then 
Gc~Lm-~. .=no 

Then X is not a Prohorov space. 

I f  in addition, X o is a metric space then the condition (ii) can be replaced by the 
following condition 

(a) There exists a sequence of sets X k c X  \ ~J H n such that 
n = k  

(aa) The set Tk'-.X is nonempty for every sequence T k of open subsets 
k ~ l  

of X o such that TI ~ X 1 and TkD Tk+l~ Tk~ Xk+ 1. 

(ab) For every xeXn and for every finite set L c X  there exists a neighbour- 
hood U of x such that GeN,  and Xc~ U c~ G~f~ implies Gc~ L=~. 

P r ~ 1 7 6 1 7 6  " n  

The set Mo=~l~eP(Xo); ~(G) < 1  for every G~N,,~ is a compact set of tight 
n 

probability measures on X o. If K is a compact set, K c B  and if # ~ M  o then 

# ( K ) <  1-- for every n and therefore (the set B is #-measurable) #(B)=0.  Thus 
n 

for every # e M  o the measure T# which is equal to # on Borel subsets of X is a 
tight probability measure on X; moreover T#eM.  If #~ is a net in Mo which 
converges to # �9 Mo then liminf T#~ (G c~ X) = liminf #~ (G) > # (G) = T# (G n X). 
Therefore T is a continuous mapping of M o onto M and thus M is compact. 

Let K ~ X be a compact set. Let N be the set of all functions r/: X--* (0, + oo) 
such that 

(a) r/(x) = 0 for x �9 K, 

(b) ~ q(x)< 1 f o r  every G~ff , .  
x e G c ~ X  n 

According to the Zorn's 1emma there exists a maximal element qo of N (as 
usual, we write ql </12 if ~h (x) </72 (X) for every x e X). We prove that ~, qo (x) = + ~ .  

x 6 X  
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Suppose, on the contrary, that y '  ~/o (x) < + ~ .  Then for every natural n there 
x e X  1 

exists a finite subset L. of X such that ~ qo (x) < 2~-n" According to the condi- 
x e X \ L n  ~o 

tion (ii) there exist a natural number no and Xo e X \ K such that Xo ~ U H, and if 
x o ~ G e ~  then G n  L,,=-~. We put ,=,o 

1 
~h(x)=-~lo(X ) for x . x  o and ql(x~176176 2no" 

If G ~ , , ,  xo~G then 1 

E 
x e G n X  xeGr~X n 

If G~ff, ,  xoeG then n<n o and 

1 
Z + Z Z + -<__ �9 

X~G A X x~G n X x ~ X \  Ln 

Therefore ~h e N, but ~h > 11o and this is a contradiction. Thus ~ 7o (x) = + oo. 
x ~ X  

We can find a function ~: X--*R such that 0<~(x)<qo(X ) and ~ ~(x)=l .  
x e X  

If we put #(A)= ~ ~(x) then # e M  and #(K)=0.  Thus the set M is not tight and 
x e A  

X is not a Prohorov space. 
If X o is a metric space, we prove that (a) implies (ii). Let Lk be a sequence of 

finite subsets of X and let K be a compact subset of X. For every x e X ,  we choose 

an open neighbourhood U,(x) such that diam(U,(x))< j-~- and G n L , = ~  for 
every Gent, such that X n  U,(x)n G+~. n 

k oo 

We put Tk= n U U,(x). Let yo e n T k \ X  Then yo(~K and therefore there 
n = l  XnnTk-1 k = l  

exists a natural number n o such that dist (Yo, K) > . Let x o 6 T, o n X,o such that 
n o  

yo~U,o(Xo). Then xor  and xor for Ge(~ ,  m>no. For every m<n o there 
exists x~ ~ X,, such that xo e U~ (x,,) therefore if Xo ~ G e ffm then X n G n U,,(x,,). ~; 
it follows that G n  Lm--~. 

Remark I. If the space X in the preceding theorem is countable, some maximal 
element of N can be construct by induction in the following way. 

Let x~ be a sequence of all elements of X such that x~: xj for i ~ j. We put 

t/o(xO=inf ; xxeG~N. (here we use the convention i n f ~ = + o o )  and, if 

tlo (Xx) . . . . .  I/o (xk) are defined, 

�9 ~ 1 Ge~.}. ~/0(Xk+0=mf_ - -  ~ ~/0(Xi); Xk-,le 
( n x ieG 

i<k  

Thus the proof of the preceding theorem is, in case X is countable, constructive. 

Lemma 3. Let X be a metric space of the type K~ (i. e. X is a countable union 
of compact spaces) and let X be of the first category in itself Then X is not a 
Prohorov space. 
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Proof We can write X = ~ K.  where K.  are nonempty compact sets nowhere 
n = l  

dense in X. We put X1 = K~ and define the sets X. for n > 1 by induction. If 3(._ 
is a compact nowhere dense subset of X, we choose, for every natural m, finite 
sets Sm c X such that 

(~) S,. c~ X._ 1 = ~ for every m, 
t 

(fl) dist(s, X._I)  < l - -  for every s~Sm, 
m 

(y) dist(x, Sin)< 1 for every x s X . _ l  and every m 
m 

oO 

and put X . = X . _ I  w U Smw K.. The set S,. can be constructed in the following 
m = l  

way. Let U1, ..., U v be a finite covering of X._ 1 consisting of open sets with di- 

ameter less then --.1 For  every i = 1, ... , p we choose a point si e Ui \ X._ 1 and put 
m 

S= {sl, s2, ..., sp}. Thus X. are compact subsets of X such that X . c X . + I ,  every 
(3G 

point of X. is a point of accumulation of X.+~ \ X .  and X =  U X.- 
n= l  

As X is a separable metric space, there exists a compact metric space Xo such 
that X c Xo. ( 

We put Jk,.=~XeXo; d i s t ( x , X . ) > l t  for natural k,n. For natural n let ~. 
( 

be the system of all sets of the form (X o \ Xk) C~ Jk,. (k natural). Then X k c X  \ Q) H. 
(where/4. is the union of ~.). .= k 

If K c X o  "-.X is a compact set and n is a natural number then dist(K, X . ) > 0  
and therefore K c J k,. for some natural k. As K c X o \ X c X o \ X k  it is 
Kc(Xo'..X~)CaJk,.e~,. Considering that X o" .X  is a Borel subset of Xo we 
finish the proof of the condition (i) of Theorem 4. 

Let T. be open subsets of Xo, T~=X~ and Tk~Tk+~TkC~Xk+I and let 

T =  (~ T.. Then Tis a G6 subset of Xo, thus Tis topologically complete. Moreover 
n= l  G O  

Tc~ X =  U Tk c~ Xk, every set Tk c~ Xk is closed in T ~  X and nowhere dense in 
k = l  

Tc~X (every point of TkC~Xk is a point of accumulation of Tk+lC~(Xk+l ".Xk)). 
Thus Tc~ X is a set of the first category in T (and T i s nonempty); therefore the 
condition (aa) of Theorem 4 is proved. 

To prove the condition (ab) of Theorem 4 we find for every x eX .  and finite 
set L ~ X a natural number p such that L ~ Xp and choose a neighbourhood U 

of x with diameter less than --.1 If Uc~(Xo\Xk)C~Jk,.4=fJ then UC~Jk, n+-fJ and 
P 

therefore k > p. Thus ((Xo \ Xk) C~ Jk, .) C~ L c (Xo ". Xp) c~ Xp = ~ and the condi- 
tion (ab) of Theorem 4 holds. 

Thus, according to Theorem 4, X is not a Prohorov space. 

Remark 2. If X is a countable dense-in-itself metric space (e.g. the space of 
rational numbers) then, according to the preceding Lemma, X is not a Prohorov 
space. Moreover, according to Remark 1, the proof of this fact is constructive. 
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IV. Metric Spaces in which Pr Theorem is not Valid 

Theorem 5. Let X be a metric space which is of the first category in itself. Then 
X is not a Prohorov space. 

Proof. Suppose X is a Prohorov space. According to Theorem 2, X contains 
a countable dense-in-itself G~ subspace. According to Lemma 3 this subspace is 
not a Prohorov space but according to Theorem 1 this subspace is a Prohorov 
space and this is a contradiction. 

Theorem 6. Let X be a co-analytic separable metric space. Then X is a Prohorov 
space if and only if X is topologically complete. 

Proof 1. If X is topologically complete then, according to Prohorov's theorem 
(Corollary I of Theorem 1) X is a Prohorov space. 

2. If X is not topologically complete then it contains a countable dense-in-itself 
G~ subspace (Theorem 3). According to Lemma 3 and Theorem 1 X is not a 
Prohorov space. 

Remark 3. There exists a separable metric Prohorov space which is not topo- 
logically complete. 

Proof. Assume the continuum hypothesis. 

Let fl be the first uncountable ordinal number, {G~; ~ < g2} all open subsets of 
(0, 1) which contains the set Q of all rational numbers from (0, 1~. Choose 
y ~  ~ G~'-.{y~; ~<c~} for c~<~? and set Y= {y~; ~<[2}, X = ( 0 ,  1~'-. Y. 

B_<_= 
Let M be a compact subset of P(X), e>0. According to Prohorov's theorem 

(Corollary 1 of Theorem 1) applied to (0, 1 ) - Q  there exists a compact set 
A o c ( 0 ,  1 ) - Q  such that #(Ao)> 1-�89 for every p e M .  As Ao< Y is countable 
we can apply Prohorov's theorem to (0, 1 ) \ ( A o  n Y) and obtain a compact set 
A1 c (0, 1) \ (Ao c~ Y) such that #(A1) > 1-�89 for every #eM. Therefore A 0 c~ At c X, 
# (Ao c~ A0 > 1 - ~  for every #~ M and X is a Prohorov space. X is not topologically 
complete because Y is uncountable and contains no uncountable compact set 
(if Z c Y is an uncountable compact set then Z - Q  is an uncountable Borel set, 
therefore there exists an uncountable compact subset Zo of Z -  Q. Clearly Zo c~ Y 
is countable and Zo c Y, this is a contradiction). 
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