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Metric Spaces in which Prohorov’s Theorem Is Not Valid

David Preiss

I. Preliminaries

Let X be a Hausdorff topological space. By a measure on X we understand
a tight Borel probability measure on X. The set of all measures on X is denoted
by P(X); this set is a topological space with the usual topology. This topology
can be described as follows:

If i, isa net in P(X)and pe P(X) then lim u, = u if and only if liminf p,(G) = u(G)
for every open set G < X.

For convenience a space X is called a Prohorov space if for every compact
set M = P(X) and every &> 0 there exists a compact set A = X such that u(4)>1—¢
for each ue M.

It is well known that every topologically complete space X (i.e. space which
is a G4 subspace of some compact space) is a Prohorov space (see Corollary 1
of Theorem 1). Varadarajan [3] claimed to prove that a metric space X is a
Prohorov space provided that every Borel measure on X is tight (consequently
a separable metric space which is a Borel subset of its completion is a Prohorov
space), but his proof is incorrect.

An example of a K, metric non-Prohorov space (and therefore the proof
of non-validity of Varadarajan’s theorem) was given by Davies [1]. In this note
it is proved that a co-analytic separable metric space is a Prohorov space if
and only if it is topologically complete (consequently a separable metric space
which is a Borel subset of its completion is a Prohorov space if and only if it is
a G, subset of its completion). This theorem gives also a solution of the problem
whether the space of rational numbers is a Prohorov space (see e.g. [1]). The
reader, who is interesting only in this problem, can find its solution in part ITI
which does not depend on topological results of part II.

We begin with the following trivial lemma which will be used without special
mention.

Lemma 1. If M is a compact set of probability measures on a subspace Y of
a topological space X, then the extensions to X of the measures ue M constitute
a compact set of probability measures on X.

The proof of the following Theorem 1 and Corollaries 1, 2 was communicated
to me by Dr. Roy O. Davies.

Theorem 1. Every G4 subspace of a Prohorov space X is a Prohorov space.

Proof. It is enough to show this for an open subspace G of X (then if M is
a compact set of tight probability measures on G, G, ..., we can choose for
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every n a compact set K, =G, such that u(K,)> 1—51;8 for every ueM, and then
with K=K, nK, ... we have KcG;nG, ... and p(K)>1—¢ for every ueM).

Let M be a compact set of tight probability measures on G. Given >0,
choose a compact set Ko<= X with u(K,n G)>1—3 ¢ for every peM.

Since any peM is tight, there exists for it a compact set K <G with p(K)>
1—%e Since K and K, G are disjoint compact sets, then there exists an open
set G*>K with G* (Ko~ G)=#. Thus the sets {ucM; u(G*)>1—3¢}, as G*
runs over the open sets satisfying G* (K, ~ G)=#, constitute an open covering
of M. Since M is compact, it is covered by a finite number of these, say

{ueM; u(GH>1-%e}, m=1,... k.
The set K=K,~(Gfu---UG¥) is a compact subset of G and u(K)>1—¢ for
every ueM.
Corollary 1. A topologically complete topological space is Prohorov.
Corollary 2. A locally compact Hausdorff space is Prohorov.

II. Some Topological Theorems

In this part some conditions are given under which a metric space contains
the space of rational numbers as a G; subspace.

We denote by .4, (k=1,2,...) the set of all sequences of natural numbers
with k members.

The union of the sets .4, will be denoted by .#. For ze My, z=[ny, ..., n]
and natural number n the symbol [z, n] means the sequence [, ..., m,n] € My,
and for 1<j<k the symbol z; means the sequence [ny, ..., n;]€ ;.

The set of all infinite sequences of natural numbers is denoted by 4. For
weN, w=[ng, n,,...] we put wy=[ny,...,m]e, and for ze.#, we put A=
{weN; w,=z}. The sets .4, (ze M) constitute a basis of some topology on A
it is well known that the space 4" is homeomorphic to the space of irrational
numbers with the usual topology (see [2]).

Lemma 2. Let X,, be a metric space and let X < X,,. Suppose that G; subsets
E, of X, are given for every ze # and put Y= U N E,,. Let the following con-
ditions hold. wed k=1
(i) XnY=4. '
(i) E, oF,,., for every we A
(iti) X N E, is dense in E, for every ze M .

e o]
(iv) | Ry, n is dense in F, for every ze M.
n=1

(v) E is dense-in-itself for every ze M.
(vi) There exists ze M, such that F,=+{.
Then X contains a countable dense-in-itself G subspace.

Proof. Let G™* be open subsets of X,, such that () GI'=E,_.
m=1
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We will construct the points of some countable dense-in-itself G; subspace S
of X by induction. We will define the systems of points x, for ze .# (the set of all
points x, will be the required set), the system of their neighbourhoods U, and
some subsidiary natural numbers m,.

I. We can find zye.#,, zo=[k,] such that F,_+@ As X nE,_ is dense in E,
and F, is nonempty and dense-in-itself we can choose a sequence XX NEF,
and a sequence Uy of open neighbourhoods of x, such that Uy Up,,=§ for
every n=n’ (it is sufficient to consider some convergent sequence of different
points of X N E, ). We put m, =k, for every ze 4.

II. Let k>1 be a natural number and let the points x,, the open neighbour-
hoods U, of x, and the natural numbers, m, be defined for every ze .#;, i<k.
Suppose that X €Hm, . oma ) for every ze.#,_, and that U,n U, =0 for every
z, 2 €My_y,z2¥Z.

For every ze.#, , we can find a sequence x, , and natural numbers my,
such that

a) x[z,n]EXm l]szimz .

greees Mzg gy Mz, nil”
b) lim x;, ,=x,.
R0
C) Xp,mF X, for every n and x;, ,,+x, ,q for every n+n'.

For every ze ./, _, and every natural n we choose open neighbourhoods U,
of X, y such that U, yc U, () G, , mey @0 Uy O U, =0 for every n+n'.

i,j<k

Let S, be the set of all x,, ze.#, and let S= U S;. The set S is clearly count-

vees

able and a dense-in-itself subspace of X. We only have to prove that S is a G,
subset of X.

Let H,,= |J U, r\{xeXO, dist(x, S,) < q} It is easy to prove that S,=

zeM,
© %

p
() H,,,, therefore S, is a G, subset of X, it follows that | JS; is a G; subset
g=1 Jj=1

P w©
of X, . We choose open subsets G, , of X, such that () $;=()G,,
i1 =1
Let Q, ,= |J U,uG,_, , for natural p,q (we set Gy ,=#). Clearly ScQ,
ze My

for every p, g, therefore Sc ﬂ Q4

Suppose that xe ﬂ 0, 4- If x¢ | ) U, for some p then xeG
ze My
and therefore xeS. If xe ﬂ 0, S then xe U U, for every p. Thus there exists
ze./%p
ze N such that xeU,, for every p. For every i,j we choose p, p>i, p>j. Then

U, <G, .. > therefore xeﬂG[m veme)=Fim,, . omp> it follows that
J J
xe ﬂ Fip.,, ..., m; 1 < Y, therefore x¢X

»_1,q fOT €very q
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Now it can be easily seen that S=X n () Q,,, and therefore S is a G, subset
of X. p.a

Theorem 2. Let T be a metric space which is of the first category in itself.
Then T contains a countable dense-in-itself G5 subspace.

Proof. There exist T,<T, T, closed and nowhere dense in T, T= | ) T,. We
k n=1
setin Lemma2 Xo=X=T, F,=T~ | ) T, for ze .#,.

j=1
1t is easy to prove that the conditions (i)-(vi) are valid; it follows that Theorem 2
is a consequence of Lemma 2.
Note that a separable metric space X is called a co-analytic space if there
exists a complete separable metric space X such that X = X and X \ X is analytic

(see [2]).

Theorem 3. A co-analytic separable metric space is topologically complete if
and only if it contains no countable dense-in-itself G; subspace.

Proof. If T is topologically complete metric space and S<=T a countable G,
subspace then S is also topologically complete. Therefore S is not dense-in-itself
because in the opposite case S is of the first category in itself and this is a contra-
diction.

Suppose T is not topologically complete. Let T, be a separable complete
metric space such that T< T; and Ty~ T'is analytic. Then T~ T is nonempty and
consequently there exists a continuous mapping ¢ of A" onto T,~T. Let & be
a countable basis of A Let %, be the set of all Be# for which there exists an
E, subset Fy of T such that ¢ (B)c Fc Ty~ T.

We set G=|) %, P=A G, F=|) {Fy; Hec#,}. Then F is an F, subset
of Ty, (G)= F = Ty~ Tand ¥ is nonempty because in the opposite case F =Ty~ T
and Tis a G, subset of Tj,.

We set in Lemma 2: X,=T,, X=T, E,=¢(W#,n V). It is easy to prove that

Y= ) () E,=¢(¥) therefore the condition (i) of Lemma 2 holds. The condition
zed k=1
(ii) is obvious. If we suppose that the condition (iii) is not fulfilled then there exists

an open subset J of Ty, such that . nJ#+@and E,nJ N T=@. Weset F,=FU(EnJ),
F,is an F, subset of T, and Fy = Ty~T. Now ¢ (A, n ¢~ (J)) = Fy< Ty T therefore
@(B)cFyc Ty~ T for every set Be #, Bc.A,n¢~(J). From this it follows that
N, ' (J)=G but &, ne~(J)n P +¢ and this is a contradiction. Thus the
condition (iii) holds. It is clear that

(p(/Vzr\'I’)c U ('Ilr\*/‘/‘[z,n])C U Ez,n]'
n=1 n=1

Thus the condition (iv) is also fulfilled. As both ¢ (¥) and T E, are dense in E,
and @(P)n T=@ the set F, is dense-in-itself, consequently the condition (v) is
also valid.

The condition (vi) holds because Y=¢ (P)+{.

According to Lemma 2 there exists a countable dense-in-itself G; subset of T.
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III. Some Non-Prohorov Spaces

In this part some conditions on the space X are given in order not to be
Prohorov space. These results will be used in the next part to prove the main
theorem.

Theorem 4. Let X, be a compact Hausdorff space and let §+X <X,. Let,
Jor every natural n, 4, be a system of open subsets of X, and let H, be the union
of all the sets of 9,. Suppose that the following conditions hold.

(i) There exists a set B X, B> Xy~ X which is measurable for every measure
ueP(X,) such that for every compact K < B and every natural n there exists Ge ¥,
such that K = G.

(ii) For every compact K < X and every sequence L, of finite subsets of X there

exist a natural number ny and xe X ~K such that x¢ | ) H, and if xeGe9,, then
Gn Lm =g_ n=ng

Then X is not a Prohorov space.

If, in addition, X, is a metric space then the condition (ii) can be replaced by the
Jollowing condition

W
(a) There exists a sequence of sets X, =X ~. | | H, such that

© n=k
(aa) The set () T,~X is nonempty for every sequence T, of open subsets

k=1
of X, such that T>X, and To>T, >T,nX, ;.
(ab) For every xe X, and for every finite set L=X there exists a neighbour-
hood U of x such that Ge%, and XU n G+ implies G L=4.

Proof. We set M“={,ueP(X); u(GmX)§% for every Gegn}.

1 .
The set Moz{,ueP(Xo); y(G)é; for every Ge %} is a compact set of tight
probability measures on X,. If K is a compact set, K<B and if ue M, then
1
u(K)g—n— for every n and therefore (the set B is y-measurable) u(B)=0. Thus

for every peM, the measure Ty which is equal to u on Borel subsets of X is a
tight probability measure on X; moreover TueM. If p, is a net in M, which
converges to ueM, then liminf Ty, (G X)=Iliminf u,(G) = u(G)=Tu(Gn X).
Therefore T'is a continuous mapping of M, onto M and thus M is compact.

Let K< X be a compact set. Let N be the set of all functions #: X — (0, + o0 )
such that

(@) n(x)=0 for xeK,

1
(b) Y. n(x)<— for every Ge¥%,.
xeGnX n
According to the Zorn’s lemma there exists a maximal element #, of N (as
usual, we write 7, <11, i, (x) S, (x) for every xe X). We prove that )" 1o (x)= +o0.

xeX
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Suppose, on the contrary, that ) #4(x)< + oo. Then for every natural n there
xeX

. . 1
exists a finite subset L, of X such that ) #, (x)<§— According to the condi-
xeX~L,
tion (ii) there exist a natural number n, and x,e X K such that x, ¢ U H, and if
xo€GeY,, then Gn L,,=@. We put n=no

1
M(x)=no(x) for x#x, and #(xe)=1o(xo)+ T
0
If Ge¥%,, x,¢G then 1
Z 1 (x)= Z ﬂo(x)é‘n—-

xeGnX xeGnX
If Ge¥9,, xoe G then n<ny and
1 1 i
ny(X)=-—+ no(X)S-—-+ Ho(X)S5—+5—=
xeéx ! 2 (o] xeGZnX 0 2 0 xe)(’z\:L,1 o 2 0 2” n

Therefore 1, € N, but 1, >, and this is a contradiction. Thus Y’ #,(x)=+ 0.

xeX

We can find a function o: X — R such that 0 S«(x)<74(x) and Y a(x)=1.
xeX
If we put p(4)= Y a(x) then pe M and u(K)=0. Thus the set M is not tight and
xcd

X is not a Prohorov space.
If X, is a metric space, we prove that (a) implies (ii). Let L, be a sequence of
finite subsets of X and let K be a compact subset of X. For every xe X, we choose

an open neighbourhood U,(x) such that diam(U, (x))<—1— and GnL,=§ for
every Ge %, such that XnU,(x)n G+

We put T, = ﬂ U Ufx)Letyye ﬂ T,~X.Then y,¢K and therefore there
n=1 X,nTi-1

1
exists a natural number n, such that dlst (yo, K)>——. Let x4e T,,n X,,, such that
No

elU,,(xo). Then x,¢K and x,¢G for Ge¥,,, m=n,y. For every m<n, there
exists x,,€ X,, such that x,e U, (x,,) therefore if x,e Ge%,, then X N G N U,,(x,,) +9;
it follows that G L,,=4.

Remark 1. If the space X in the preceding theorem is countable, some maximal
element of N can be construct by induction in the following way.

Let x; be a sequence of all elements of X such that x;%x; for i+ j. We put
o (x;)=Iinf %; x,€Ge%,, (here we use the convention inf@= +o0) and, if

Ho(x1), ... » Ho(X,) are defined,

. 1
’10(xk+1)=mf{—n~—— Y 1o (x); kaeGe?ﬁn}.

xieG
ik
Thus the proof of the preceding theorem is, in case X is countable, constructive.
Lemma 3. Let X be a metric space of the type K, (i.e. X is a countable union
of compact spaces) and let X be of the first category in itself. Then X is not a
Prohorov space.
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Proof. We can write X = U K, where K, are nonempty compact sets nowhere

n=1
dense in X. We put X, =K, and define the sets X, for n>1 by induction. If X,,_,
is a compact nowhere dense subset of X, we choose, for every natural m, finite
sets S,,< X such that

() S,nX,_, =@ for every m,
1
(B) dist(s, X,,_l)g—n; for every seS,,,

1
(y) dist(x, Sm)§7n‘ for every xe X,,_, and every m

and put X,=X,_,uU | S, UK,. The set S,, can be constructed in the following
m=1

way. Let Uj, ..., U, be a finite covering of X,_, consisting of open sets with di-
1 .

ameter less then —. For every i=1, ..., p we choose a point s, U;~ X, _, and put
m

S={s1,5,,...,8,}. Thus X, are compact subsets of X such that X, <X, ,, every

point of X, is a point of accumulation of X, ;~ X, and X = U X,.
n=1

As X is a separable metric space, there exists a compact metric space X, such
that X = X;.

We put Jky,,-—-{ xe X,; dist(x, Xn)>%} for natural k, n. For natural n let %,

be the system of all sets of the form (X, ~ X;)nJ, , (k natural). Then X, =X ~ (JH,
(where H, is the union of %,,). n=k

If K< X,~X is a compact set and n is a natural number then dist(K, X,)>0
and therefore Kc<J,, for some natural k. As KcX,~XcX X, it is
K< (Xo~X) N Ji ,€%,. Considering that X,~X is a Borel subset of X, we
finish the proof of the condition (i) of Theorem 4.

Let T, be open subsets of Xo, Ti=>X; and T,> T, 12 X,,, and let

T= () T,. Then Tis a G, subset of X, thus T is topologically complete. Moreover

n=1 ©

TnX= U T,nX,, every set T, X, is closed in Tn X and nowhere dense in
k=1
T X (every point of T,n X, is a point of accumulation of T, 1N (X1~ X}).
Thus T X is a set of the first category in T (and T is nonempty); therefore the
condition (aa) of Theorem 4 is proved.
To prove the condition (ab} of Theorem 4 we find for every xe X, and finite
set Lc X a natural number p such that L <X, and choose a neighbourhood U

. . 1
of x with diameter less than 3 If Un(Xo~X)nJ ,+9 then UnJ, ,+¢ and

therefore k>p. Thus (Xo~X)nJ JnLe(Xo~X,)nX,=@ and the condi-
tion (ab) of Theorem 4 holds.
Thus, according to Theorem 4, X is not a Prohorov space.

Remark 2. If X is a countable dense-in-itself metric space (e.g. the space of
rational numbers) then, according to the preceding Lemma, X is not a Prohorov
space. Moreover, according to Remark 1, the proof of this fact is constructive.
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IV. Metric Spaces in which Prohorov’s Theorem is not Valid

Theorem 5. Let X be a metric space which is of the first category in itself. Then
X is not a Prohorov space.

Proof. Suppose X is a Prohorov space. According to Theorem 2, X contains
a countable dense-in-itself G; subspace. According to Lemma 3 this subspace is
not a Prohorov space but according to Theorem 1 this subspace is a Prohorov
space and this is a contradiction.

Theorem 6. Let X be a co-analytic separable metric space. Then X is a Prohorov
space if and only if X is topologically complete.

Proof. 1. If X is topologically complete then, according to Prohorov’s theorem
(Corollary 1 of Theorem 1) X is a Prohorov space.

2. If X is not topologically complete then it contains a countable dense-in-itself
G; subspace (Theorem 3). According to Lemma3 and Theorem1 X is not a
Prohorov space.

Remark 3. There exists a separable metric Prohorov space which is not topo-
logically complete.

Proof. Assume the continuum hypothesis.

Let Q be the first uncountable ordinal number, {G,; « <Q} all open subsets of
<0,1> which contains the set Q of all rational numbers from <0, 1>. Choose
V€ () Gp~{y,; y<a} for a<Q and set Y={y,; a<Q}, X=0,1)\Y.

lI]:et M be a compact subset of P(X), e>0. According to Prohorov’s theorem
(Corollary 1 of Theorem 1) applied to {0,1)—Q there exists a compact set
Ao =<0, 1>—0Q such that u(4,)>1—3%¢ for every ue M. As A;nY is countable
we can apply Prohorov’s theorem to <0, 1)~ (4, Y) and obtain a compact set
A;=<0, 1>~ (A, Y)such that u(4,)>1—3eforevery ue M. Therefore Agn 4, < X,
u(don A)>1—¢forevery ue M and X is a Prohorov space. X is not topologically
complete because Y is uncountable and contains no uncountable compact set
(if Z<=Y is an uncountable compact set then Z—Q is an uncountable Borel set,
therefore there exists an uncountable compact subset Z, of Z—Q. Clearly Z,nY
is countable and Z, < Y, this is a contradiction).
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