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Covering the Line with Random Intervals 

L.A. Shepp 

To each point (x, y) of the upper half-plane H associate the open interval 
(x, x + y )  on the x-axis R. Let S be the Poisson random subset of H generated 
by 2 x/~ on R x I1, where 2 is Lebesgue measure on R and # is a given measure 
on the upper y-axis Y= {y: 0 < y <  ~} .  We give in this note a simple necessary 
and sufficient condition on # for the union of the intervals associated with each 
point of S to cover all of R with probability one. 

1. Introduction 

Let / l  be a nonnegative measure on Y finite on intervals [e, T], 0 < ~ < T < 
and form 2 x/l. Let S be the random subset of the upper half-plane H - - R  x Y 
where the number N(A) of points of S in each Borel subset A of H has a Poisson 
distribution with mean 2 x #(A) and N(Ai), i= 1 . . . .  , n, are independent if A1, ..., A~ 
are disjoint. Let U denote the (a.s. countable) union of the intervals associated 
with points of S. We show that U = R  with probability one if (1) holds, and with 
probability zero if (1) fails, where 

,[ dx exp .[ ( y -  x)/1 {dy} = oo. (1) 
0 x 

The problem of finding necessary and sufficient conditions for U = R was posed 
and studied by Mandelbrot [M], who was mainly interested in cases where U :~ R 
because the complement of U then becomes a random perfect set whose distribu- 
tion is invariant under translations. An earlier, closely related problem, due to 
Dvoretzky [D] is to determine the conditions for the union of independently 
and uniformly distributed arcs of given lengths I,, n=  1, 2 . . . .  to cover a circum- 
ference C of unit length. Dvoretzky's problem was settled in [S] and we show 
here that Mandelbrot 's problem can be settled by a similar application of the 
methods of IS]. Mandelbrot states that his version is "more  natural for applica- 
tion to both mathematics and physics" and indeed its solution appears much 
simpler and more natural than that of Dvoretzky's version. Mandelbrot con- 
jectured (personal communication) that the condition (1), which appears in [M] 
in the equivalent form (40) below, is necessary and sufficient for covering. 

The final section gives some examples and remarks. 

2. A Lower Bound for the Probability of not Covering an Interval 

The method of this section is virtually identical with that of w of [S] and 
is due to Billard and Kahane [K]. 
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Fix a and T and let U(a, T) denote the (a.s. finite) union of intervals associated 
with those points of S for which e=<y=< T. Let m--re(a, T) denote the measure 
of that part of [0, 1] which is left uncovered by U(a, T). That is 

1 

m= ~ z(x) dx (2) 
0 

where 
Z(X)=[1 if x(~U(e, T) 

0 if xe  U(e, r ) .  (3) 

Let go denote the indicator of the event that [0, 1] ~: U(a, T): 

Since go = 0 implies m = 0, we have 

if E0, 1] ~= U(e, T) 
(4) 

if [-0, 1] ~ U(e, r) .  

m=mgo. (5) 

Applying Schwarz's inequality we have 

(E m) 2 < E m 2 E go2. (6) 

Since E(p2=Ego=P([O, 1] r U(~, T)) we have 

e([o, 13 r u(~, T)) >_ (~ m)2/E m 2. (7) 

The first two moments of m are easy to obtain since from (2) and the invariance 
of the distribution of S under translations parallel to the x-axis, we get 

E m = E X (0) = P(0 r V(~, T)), (8) 
1 1 

E rn 2 =- S ~ P(x, ~ U(e, r),  x 2 r U(8 ,  T ) )  dx 1 dx 2 
0 0 

1 x2 
= 2 ~ ~ e(or v(~, T), x2 -  ~,~ V(~, r)) dxl dx2 

o o (9) 
J. 

--- 2 5 (1 - t) P(0~ U(e, T), t~ U(a, T)) dt 
0 

1 

<2 ~ P(O~ U(e, T), t4 U(e, T)) at. 
0 

From (7), (8) and (9) we obtain 

P([0, 1] c~ U(e, T))>�89 T)) P(0r U(a, T), rr r))dt, (10) 

which is the lower bound we will need for the probability of not covering. 

3. An Upper Bound for the Probability of not Covering an Interval 

The method of this section is similar to that of w 3 of [-S] but is considerably 
simpler because the role of the basic inequality (4) of [Sl is here played by an 
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equality ((11) below) which in turn results from the basic property of the Poisson 
generated set S that the numbers N(A~) of points in disjoint sets A~ are independent. 

Lemma. I f  q< ... < tj < t < x then 

P(xr U] tr U; tiff U for all i) = P(xr U] tr U). (11) 

Proof Let A(~), t f R  denote the wedge-shaped region of the upper half plane 
defined by 

A(t)= {(x, y): x<t,  t - x < y } .  (12) 

The region A(x) -A( t )  is disjoint from A(t) so that 

P(N (A (x)) = O, N(A (t)) = O) = P(N(A (x ) -  A (t)) = 0; N(A (t))= O) 
(13) 

= P(N(A (x) - A (t)) = O) P(N(A (t))= 0). 

Similarly the region A(x)-A( t )  is disjoint from A(t)~A(ti) for all i, and so 

P(N(A(x))=O; N(A(0)=0;  N(A(ti))>O for all i) 

=P(N(A(x)-A(t))--O; n(A(t))=O; X(A(ti))>O for all 0 (14) 

= P(N(A (x)-  A (t)) = O) P(N(A (t)) = 0; N(A (t~)) > 0 for all i). 

From (13) and (14) and the fact that aCU if and only if N(A(a))=O we have, 
respectively 

P(x r U, t r C / = P(N(A (x) - A (0) = 0) P(t r C7/, (151 

P(xCU, tCU, t lsU for all i)=P(N(A(x)-A(O)=)P(tCU, tifU for all i). (16) 

Dividing in (15) by P(tCU) and in (16) by P(tr U, t i fU for all i) we obtain (11) 
immediately. This proves the lemma. 

Fix k > 0  and let ~k=j/k if 0, 1/k, 2/k, . . . , ( j -1) /k  belong to U but j/kCU, 
j = 0 ,  1, 2, ... setting ~.k = oO if there is no such j. Thus ~k is the first uncovered 
point of the sequence 0, l/k, 2/k .. . . .  Define rn(a, b) for a < b to be the measure 
of the uncovered part of the interval (a, b), so that 

b 

m(a, b)= ~ X(X) dx = 2((a, b ) -  U) (17) 
a 

where • is given by (3). We have 

Em(O, 2)= ~ E[m(0, 2)l~k=j/k] P(~k=j/k) 
0<j<co 

> ~ E[rn(O, 2)l~k=j/kJ P(r (18) 
O<=j~k 

>= ~ E[m(j/k,(j/k)+ 1)r~k=j/k]P(~k=j/k),  
O < j ~ k  

noting that for j <  k, the interval (j/k, (j/k)+ 1)c (0, 2). Using (17), we have 

(j/k) + i 

E [m(j/k, (j/k)+ 1)] ~k=j/k] = ~ P(xr U] ~k=j/k)dx. (19) 
j /k 

I2" 
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The event {~k=j/k}={j/k~U; (i-1)/ksU, i=1  .. . .  ,j} and applying (11) with 
t=j/k, ti=(i-1)/k to the integrand in (19) we obtain, setting x=(j/k)+t, 

(j/k) + 1 

E [m (j/k, (j/k) + 1)l ~k =j/k] = ~ P(x ~ U[j/k~ U) dx 
ilk 

1 

= ~ n((j/k)+ t(i UIj/kr U) dt (20) 
0 

I 

= ~ P(tr dt 
0 

where we have used the translational invariance of the distribution of U in the 
last equation. From (18) and (20) we get 

1 

Era(O, 2)> ~n( t~U IO~U) dt ~ P(~k=j/k)" (21) 
0 O<-j<k  

Since the sum on the right in (21) is simply P(~k_--<I) and ~k<l  if and only 
if 0, 1/k,..., k/k are not all covered we have from (21), 

P(j/k(~U for some j<k)<Em(0,2 P(t~glo(~g)dt. (22) 

Letting II~,T(I)=#(Ic~[e, T-I) and applying (22) to the U set thus obtained we 
see that (22) is also valid for U replaced by U(e, T). From (8) and (22) we obtain 
then 

P(j/kr T) for some j<k)<2P(OCU(e, T)) P(0r T),t(~U(e, T)dt. (23) 

As k ~ oo through powers of 2, the left side of (23) increases to 

P(tr U(e, T) for some t a binary rational, 0<  t<  1). 

Because U(e, T) is a finite union of open intervals, the probability that U covers 
the binary rationals of [0, 1-1 but not all points of [0, 1] is zero and so 

1] c~ U(e, T))N 2P(0r U (e, T))2/ i  P(O r U (e, T), t r U (~, T)) P([0, dt. (24) 

But this is (10) with the inequality reversed except for a factor of 4. 

4. Proof that (1) Is Necessary and Sufficient for Covering 

The method of this section is rather simpler than the corresponding estimates 
of w167 and 6 of [S]. The simplicity here results from that of the Poisson formula 
((29), (30)) for the probability that there are no points of S in a region. 

Since 0~U(~, T) if and only if N(A)=O where 

A= { -  y<x <O, e< y< T} (25) 
we have 

P(Or U (~, T)) = P(N (A)= 0). (26) 
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Similarly, 0r U(e, T), 
by (25) and for t > 0, 

t(~U(e, T) if and only if N(AUB)=O where A is given 

B= B(t)= {max(0, t -  y) < x < t, a< y< T} (27) 
so that 

P(O• U(e, T), tr U(e, T))= P(N(A UB)=0). (28) 

Since N(A) and N(AUB) have Poisson distributions with means 2x#(A),  
2 x #(AUB) respectively and since A and B are disjoint sets, we have 

P(N(A) = 0) = exp [ - 2 x # (A)], (29) 

P(N(A US) = 0) = exp [ -  2 x/~ (A) - 2 x # (U)]. (30) 

From (26), (28), and (29) and (30), for t > 0, 

n(o~u(e, r), t~U(e, T))/P(O~U(e, T))2=exp[2x#(A)-2x#(B(t))]. (31) 

From (25) and (27) we have 
T 

;. • #(A)= f y#{dy}, (32) 

T 

2 x # (B (t))= .[ min (y, t)# {dy}. (33) 

Subtracting (33) from (32), 
T 

2x#(A)-2• .[ (y-t)#{dy}. (34) 
max(g,  t) 

From (31) and (34) integrating over z, 0 < t <  1, 

1 1 T 

.[P(O~U(~,T),t~U(e,r))/P(OCU(~,T))2dt=.[dtexp .[ ( y - t ) # { d y } .  (35) 
0 0 max (~, t) 

Denoting the right hand side by F(~, T) we have from (10) and (24) 

1 2 
T~-NP([0, 13 r U(e, T))< F(e, T) (36) 2~F(~, 

As e--, 0 and T--, 0% F(e, T) increases to F(0, oo), which is the left side of (1). We 
note that 

since the left side is clearly contained in the right while if [0, 1] is covered by a 
countable union of open intervals of U, some finite subcover exists by the 
Heine-Borel theorem and so the right side of (37) is contained in the left. From 
(37) and countable additivity, P([0, 1] r U(~, T)) decreases as e ~ 0 and T ~ ov 
to P([0, 1] r U). Thus 

1 2 
2F(0, oo) < P([0, 1] r U)< F(0, oo~--~ (38) 
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where F(0, o~J) is the left side of (1). If (1) holds F(0, oo)= oo and P([0, 1] ~: U)=0. 
Since then P([n, n+  1] ck U)=0  as well, by translational invariance of the distri- 
bution of U, P(R c U)= 1 by countable additivity of P. On the other hand if (1) 
fails so that F(0, o r )<  ~ then P(R= U)<P([0,  1] ~ U)< 1 by (38). However we 
can make the stronger assertion that if (1) fails, P(R= U)=0. To see this let 
p,=P([n, oo)~ U). Then p, 1" P~ where Po~ =P([n ,  ~ ) =  U for some n). The latter 
event has probability zero or one because it is a tail event, depending only on 
the behavior of S outside an arbitrarily large rectangle in H, Thus p ~ = z e r o  
or one. On the other hand Pn does not depend on n by translational invariance 
of U. Therefore letting n ~ - o v  

P(R c U) = zero or one. (39) 

Since P(RcU)<I  we must have P(R=U)=O. Thus we have shown that 
P ( R =  U)=zero  or one according as (1) converges or diverges. 

5. Remarks 

Integration by parts in the exponent of (1) shows that (1) is equivalent to 

1 

.[ dx exp ,f g([Y, oo)) dy = co. (40) 
0 x 

The upper limit 1 on the integral over x in (1) and (40) could equivalently be 
replaced by any positive number t, since the integrand is continuous in x. 

We remark that (1) is not equivalent to 

1 [ i ,] .[ dxexp . y#{dy =o o ,  (41) 
o 

although examples of/~ where (1) fails but (41) holds are not simple. To give 
such an example, consider a sequence {l,}, 1 = l l > l  a... > l , ~ 0  and let /~ be 
the measure assigning unit mass to each l,. We will show that in this case, U = R 
a.s. if and only if o~ 1 

n=~l ~ -  exp (l 1 +--.  + l,) = oV (42) 

which is the same condition found in IS] for the union of independent and 
uniformly distributed arcs of length I, to cover a unit circumference. Indeed, 
breaking up the integral in (1) over intervals ln+ 1 < x <  l,, (1) becomes 

oo - .[ dx exp (lj - x) 
n = i  1~+1 j 

(exp[ll+.. .+l,+l-(n+l) l,+~]-exp[l~+...+l,-nl,]) (43) 

o~ 1 
= ,~=2 (n -- 1) n exp (/1 + " "  + 1, - n [,) 
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where we used summation by parts in the last line (noting that 11 + . . - +  t~-n l~ 
increases in n). In IS], it is shown that the last term in (43) is infinite if and only 
if (42) holds. Thus (42) holds if and only if U=R a.s. On the other hand (41) 
becomes in this case by the same method, 

In 

oo= ~ ,[ dxexp(ll +...+l ,) 
n = l  / n + i  

= ~ (l~- I~+~) exp(/1 +- . .  + I~). 
n = l  

(44) 

Summing by parts we obtain (41) holds if and only if 

oo 

oo = ~ l n [exp (l 1 + . . .  + l~) - exp (ll +- . .  + l~_ ~)) 
n = l  

= ~ l,,(1-exp(-l~))exp(11 +...+l~). 
n = l  

Since In-+0 and 1 - e x p ( - u ) ~ u  as u-*0, (41) is equivalent in this case to 

(45) 

co 

l 2 exp(/, +.- .  + In)= oo (46) 
n = l  

which is condition (3) of [S]. An example (Example2) is given in [S] of a 
sequence {l,} where (46) holds and (42) fails. For the corresponding #, (41) holds 
but covering does not take place since (42) and (1) do not hold. Thus (41) is not 
equivalent to (1). 

In I-M], # is said to give a low frequency covering if R is a.s. covered by 
intervals of length > 1 and ~t is said to give a high frequency covering if R is a.s. 
covered by intervals of length < 1. Decomposing # =#L + #~ where 

oo)c  {dy}) 

,,,({dy}) = {ay}) 
(47) 

we see that # gives a low (high) frequency covering if and only if (1) holds with 
# replaced by #L (#t~). From (1), # gives a low frequency covering if and only if 

oo 

.f y { 4 , }  = oo.  (4s) 
l 

High frequency covering is more delicate; to illustrate consider the example 

~C{dy} =cy -2 dy, 0 < y <  oo. (49) 

#c gives a low frequency covering for all c > 0 since (48) holds for all c > 0. A high 
frequency cover exists only for c>  1 s ince /~  satisfies (1) only for c>  1. 
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