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Automorphisms of Baire Measures on Generalized Cubes 

J. R. Choksi* 

1. Introduction 

Let/~ be a finite, Lebesgue-Stieltjes measure on I = [0, 1], (or more generally 
a finite Borel measure on a Polish space X). If ~b is a measure preserving auto- 
morphism of the measure algebra of (1, #), it was shown by von Neumann [7] 
that ~b is induced by a (1-1) invertible Borel measurable measure preserving point 
mapping T on I. The theorem generalizes to any space which is point isomorphic 
to a Lebesgue-Stieltjes measure on the unit interval, in particular to any finite 
measure on S = I~ I~, a~A, A countable, I~ = [0, 1]. Further q5 need not be measure 
preserving, in which case, of course, T will only preserve sets of measure zero. 

Von Neumann's result was generalized by Maharam [5] to the direct product 
of uncountably many normalized measures on [0, 1], i.e. to the direct product 
measure on S=I-[ I  ~, c~eA, A possibly uncountable. Making heavy use of the 
ideas and techniques of Maharam we generalize the result to a wide class of finite 
measures (including most measures encountered in probability theory) on the 
product a-algebra (which is the Baire a-algebra) of S = I~ I~. As in Maharam's 
paper we do not need q~ to be measure preserving (and the same proofs work 
when S is the product of uncountably many Polish spaces). 

We do not know if the result is true for an arbitrary finite Baire measure on 
S = IF[ I~. However if it were true, and if further T could be chosen to be Borel 
measurable on S=] - [  I~ (instead of just Baire measurable), then we could show 
that if q~ were an automorphism of the measure algebra of a finite regular Borel 
measure on S, (which is canonically isomorphic to the measure algebra of its 
Baire restriction) then it could be induced by a (1-1) invertible Borel measurable 
point mapping of S. By a standard embedding procedure this would generalize 
to a Radon measure on an arbitrary compact space X. These results are however 
false, as an example due to Panzone and Segovia ([8], Sec. 5 Example (c)) shows. 
The example even shows that the result is false for Baire measures on an arbitrary 
compact space X (as opposed to S = y[ I~). 

An early version of this paper contained "proofs"  of all the above (hypo- 
thetical) statements. The error in the argument was discovered by J.C. Taylor. 
My thanks are due to him and also to K.N. Gowrisankaran and D.A. Dawson 
for their comments and suggestions. 

We note, however, that on a compact (and even a locally compact) Hausdorff 
space a set isomorphism of a Radon measure is always induced by a point homo- 
morphism (i. e. a not necessarily invertible map). See [2], Chapter X, Theorem 1. 

* This research was supported by a grant from the National Research Council of Canada.  
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2. Notation 
We follow the notation of Maharam's paper [5]. Let S and S' be measure 

spaces and E and E' their respective measure algebras. A point isomorphism T 
from S to S' is a bijection of S to S '  such that T and T -1 map measurable sets 
into measurable sets, and sets of measure zero into sets of measure zero. A set- 
isomorphism 4) from S to S' is simply an isomorphism of E and E', but not 
necessarily a measure preserving isomorphism. When S = S' and E = E' we speak 
of point and set automorphisms. Measurable subsets of S are denoted by X, Y,, etc., 
elements of E by x, y, etc., points of S by p, q, etc. Every T induces a 4) by the 
rule 4)(x)={T(X)} where X e x ,  and {Y} denotes the element of E to which Y 
belongs. 

We write S = S ( A ) = [ I  Is, c~sA where each I~ is the closed interval [0, 1]. For  
subsets B c A  we write S(B)=I-[I  ~, eeB. If CoB,  the projection from S(B) to 
S(C) is denoted by rCBC; rCAC is abbreviated to rc c. Each S(B) is a measurable space, 
the measurable sets being the product a-algebra of the Borel a-algebras of the Is. 
If B is uncountable this product a-algebra is the Baire a-algebra of S(B) and not 
the Borel a-algebra. S B denotes the a-algebra of cylinders in S(A) of the form 
7c~-1 (X), where X is a measurable subset of S(B). Let # denote a fixed probability 
measure on S=S(A), (i.e. a Baire measure on S). Then, via S B and n~, g induces 
measures #B on each S(B). The measure algebras of S, S B and S(B) are denoted 
respectively by E, E B and E(B). ~B induces a canonical isomorphism of E B and 
E(B). [Note that in Maharam [5], /~ is always a direct product measure.] We 
write e(B) for {S(B)}, the equivalence class of S(B). 

3. Preliminary Lemmas 

The following lemma is stated in Maharam [5] for the case when # is a direct 
product measure but the proof works equally well for an arbitrary probability 
measure ~ on the product e-algebra of S. 

Lemma 1. (Maharam, Lemma 2.) Let 4) be a set automorphism of S = l ~  Is, 
~ A, and let T be a (1-1) mapping of S onto itself such that for each finite set C ~ A 

and for each measurable set K of S c, T(K)64){K} and T- I (K)e4) - I  {K}. Then T 
is a point automorphism of S, and induces 4). 

Definition. (a) Let 4) be a given automorphism of E. A set B c A will be called 
invariant under 4) if 4) (E B) = E B. Restricted to E ~, 4) will be an automorphism of E ~ 
and so will induce an automorphism of E(B). 

(b) Let T be a given point automorphism of S. A set B c A  will be called 
invariant under T if T(S B) = S B. 

Lemma 2. (a) (Maharam, Lemma 3.) I f  4) is a set automorphism of E, then 
each countable set B c A  is contained in some countable subset B of A which is 
invariant under 4). 

(b) I f  T is a point automorphism of S then each countable set B c A  is contained 
in some countable subset B of A which is invariant under T. 

Proof (a) The proof is unchanged from that given in Maharam [5] for the 
special case when # is the direct product measure. 
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(b) The proof of (a) works for (b) with only minor verbal changes. 

We also need the following, which is a slight generalization of von Neumann's 
original theorem. 

Lemma 3. (Maharam, Lemma 4.) Every set automorphism of a Lebesgue- 
Stieltjes measure on the unit interval can be induced by a point automorphism. 

In addition to these lemmas from 1-5] we need 

Lemma 4. Let p be a Lebesgue-Stieltjes probability measure on I = [0, 1] and T 
a point automorphism of (I, p). Then there exists a point automorphism T' d!ffering 
from T only on a p-null set, such that T' and T' -1 are of Baire class at most 3 or 
equivalently of analytically representable class at most r 

Proof By Lusin's Theorem there exists an ~ set H = ~) F, such that F, closed, 

F, c F,+ 1, # ( I - H ) = 0  and T[F, is continuous. Since each F, is compact it follows 
that TJF, is a homeomorphism, that TH is also an ~ set, and that T and T -1 
are of class r from H to TH, and TH to H respectivley. 

Since T is (1-1), and I - H  and I - T H =  T ( I - H )  have the same cardinal and 
since these are both ff~ sets the cardinal can be finite, countable or c. If I - H  is 
finite, T i I - H  is a homeomorphism; if countable T and T -1 are of Baire class 
at most 1 on these sets (the inverse image of any closed set being at worst an ~ ) .  

If I - H  is of cardinal c, since it is a fro, it can be metrized to be a complete 
separable space, and the same is true of I - TH. By a Theorem of Kuratowski 1-3], 
(p.451, Remark (ii)), there exists a (1-1) map Ta of I - H  to I - T H  such that 
T~, T~ -1 are both of Baire class 1. In the first two cases we put T ' =  T, in the last 
case we put 

T' p= Tp if p e H ,  

T 'p=T~p if p ~ I - H .  

T'IH is of Baire class 1 and H is of multiplicative Baire class 1, T' ]I - H is of Baire 
class at most 1 and I - H is of multiplicative Baire class at most 2. Similar remarks 
apply to T ' -1 .  

Let F be closed in I, let FI=Fc~T'H,  F 2 = F c ~ ( I - T ' H  ). F 1 is closed in T'H, 
T'IH is of Baire class 1, so T'-IF1 is of Baire class 1 in H; since H itself is of 
Baire class 1 in I, T ' -IF~ is of Baire class 1 + 1 = 2  in I. F2 is closed in I - T ' H ,  
T ' I I - H  is of Baire class 1, so T'-IF2 is of Baire class 1 in I - H ;  since I - H  is 
of Baire class 2 in I, T' -1 F2 is of Baire class 1 + 2 =- 3 in I. So 

T ' - I  F= T ' - I  Fl w T ' - I  F2 

is of Baire class at most 3 in I, and so T' is of Baire class at most 3. The same 
holds for T' -1. Now on I, the functions of Baire class 3 coincide with the analyti- 
cally representable functions of class r so T', T' -1 e r 

(Remember that f ~ r  if f ( p ) =  lira lim lim fm . . . .  (p) where each f . . . . .  is 
continuous.) 

Note. For all results on Bairc classes, analytically representable classes r 
and mappings of ~ sets see Kuratowski 1-3], w167 30, 31, 33, 36, 37. 
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4. Main Lemmas and Theorem 

The following lemma is similar to Lemma 5 of Maharam. 

Lemma 5. Let B be any subset of A such that C= A - B  is countable. (a is a 
set automorphism of S such that c~]E B is the identity mapping. Then there exists a 
point automorphism T of S inducing ~ and such that ~B T= ~B. 

Proof By Lemma2(a)  there exists C c C c A  where C is countable and 
invariant under qS. So ~b 1 =Tce~b~c 1 is an automorphism of E(C) induced by qS, 
and as in Maharam, S(C) is point isomorphic to a Lebesgue-Stieltjes probability 
measure (or even Lebesgue measure plus a countable number of atoms) on I. 
So there exists a point isomorphism T 1 of S(C) which induces q51. Put D--- C -  C. 
Then D c B. 

Suppose first D:#]~. Then S(C)=S(D) • S(C). Now if xeE(D)Yc = e ( A -  C) x 
x• e(C) belongs to both E B and E e. Since ~blE B is the identity it follows that 

=q~(~)=e(A - C) • x • e(C). It follows that 

ff91(x • e( C))= x • e( C) 

for each x eE(D). Thus, if X is a measurable subset of S(D), TI(X x S(C)) differs 
from X x S ( C )  by a null set. Apply this to the sets T~i(X,) ( i=0,  _+1, _+2,..., 
n = 1, 2, 3, ...) where X~, X2 . . . .  form a separating sequence of generators of the 
Borel a-algebra of S(D); we obtain countably many null sets with union N, say. 
Thus N is a null set with T1 (N) = N = ~ 1 (N) and 

T~E(X, x S ( C ) ) - N ] = ( X ,  x S ( C ) ) - N  (n= 1, 2, 3, ...). 

Define a transformation T2 on S(C) by 

T 2 (p) = T~ (p) 

Tz (p)= p 

if p e S ( C ) - N  

if peN.  

Thus T2 is a point automorphism of S(C) also inducing ~1 and 

T2(X,•215 ( n = l ,  2, 3 . . . .  ). 

Since X1, X2, ... is a separating sequence, it follows that for each peS(D), 

T2 (p x s(c))=p x s(c)  

and hence for each XcS(D) ,  

T2(X x S(C))=X x S(C). 
Define T on S = S (A) by 

T(p, q) = (p, T 2 (q)) 

where p E S (A - C-) and q e S (C). We certainly have r~ B T = rc B . Further { TX} = d2 {X } 
if X e S  B or S e. Since the set of X such that {TX} =q~ {X} forms a a-algebra and 
S B and S c generate the product a-algebra of S(A), it follows that {TX} =~b {X} 
for all X in the product a-algebra, i.e. that T induces q~. 

If D =~, T x = T 2 and T, as defined, obviously has all the required properties. 
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Note. The above proof differs from the corresponding one in Maharam only 
in the argument showing that T induces ~b. However as the lemma is vital and 
nontrivial we include the whole proof. 

Lemma 6. Let B be any subset of A such that C= A - B  is countable, c~ a set 
automorphism of S such that B is invariant under c~ and so c~JE B induces an auto- 
morphism (a' of E(B). Suppose there exists a point automorphism T' of S(B) inducing 
(o' and suppose further that there exists some point automorphism P of S(A) 
extending T', i.e. such that ~ P = T' rcB. Then there exists a point automorphism T 
of S(A) inducing c~ and such that r~ B T= T' rcB. 

Proof Let 0 be the set automorphism of S induced by P. Then ~b 0-1 is a set 
automorphism of S and q~ O-I[EB is the identity. So by Lemma 5, there exists a 
point automorphism Q of S inducing ~b ~-1,  and such that ~ZBQ=~ B. Then QP 
induces ~b ffj--1 ~/= ~ and rc n QP = rc B P = T' rcB. 

Definition. Let q5 be a set automorphism of S and let B c A  be invariant 
under q5 and such that the set automorphism ~b' induced by q~ on E(B) is induced 
by a point automorphism T' of S(B). We say that ~b has the countable extension 
property relative to B if for every set B x ~B,  invariant under ~b and such that 
B 1 - B  is countable, the set automorphism q~' induced by ~b on E(BO is induced 
by a point automorphism T; of S(B1) such that n~IB T;=T'~B1B. If ~b has the 
countable extension property relative to B for every B invariant under q~ such 
that the set automorphism qS' induced by 4) on E(B) is induced by a point auto- 
morphism T' of S(B), then we say that ~b has the countable extension property. 

Lemma 7. Let S=I- ] I~, ~ A ,  let # be a probability measure on the product 
(Baire) a-algebra of S. Let ~ be a set-automorphism of S such that (a has the 
countable extension property. Then there exists a point-automorphism T of S 
which induces c~. 

Proof Consider the family of ordered pairs (Bz, T~) where (i) B~ is a subset 
of A invariant under q~, (ii) T~ is a point automorphism of S(Ba) and (iii) the auto- 
morphisms of E(B~) induced by ~blE B~ and by T~ are the same. We say that 
(Bz, T;.)< (B~, T 0 provided that Ba c B~ and nyz T~ = T~ rcyz on S(By). (We abbre- 
viate rcB~ B~ to rcy~, rc~, to rcz). This partial ordering is transitive. Further every 
linearly ordered sub-family has an upper bound in the family. Let {(By, T~): v eM} 
be the linearly ordered sub-family. Put B ' =  ~ By, then B' is an invariant subset 
of A under ~b. Given paS(B') and aEB', choose any v such that eeBy and let 
q~=(Ty(ny(p))), which is independent of v since M is linearly ordered. Define 
T' (p) by 

(T'(p))~=q~ for all ~ B ' .  

A straightforward calculation using Lemma 1 shows that (B', T') is a member of 
our family and that (B,, T~) < (B', T') for each v E M. 

By Zorn's lemma there exists a maximal member (B, T) of the familY (which 
is clearly not vaccuous since there exist countable subsets of A invariant under q~ 
by Lemma 2(a), and these belong to the family by Lemma 3). It is enough to 
prove that B = A  for then by condition (iii) above T induces ~. Suppose not, 
there exists c ~ A -  B, and a countable set D c A, invariant under q~, such that e eD. 
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Let B * = B u D ,  then B* is also invariant under 4), and 4)*=nB. 4)TCB; 1 is a set 
autornorphism of S* =  S(B*). Since 4) has the countable extension property, 4) is 
induced by a point automorphism T* extending T. But then (B*, T*) is a member 
of the family, B + B*, (B, 7")< (B*, T*) contradicting the maximality of (B, T). 
This completes the proof of the lemma. 

Note. This proof is virtually identical with that of the theorem in Maharam [5]. 

Lemmas 6 and 7 give us a good idea of what sort of conditions we need for a 
set automorphism 4) of # on S to be induced by a point automorphism. Lemma 7 
tells us that 4) need only have the countable extension property. Lemma 6 tells 
us that 4) has this property if (and clearly only if) every point automorphism T' 
inducing 4, on a partial product can be extended to some point automorphism 
(not necessarily inducing 4)) for every larger partial product with only countably 
many additional factors. Let us try to analyze heuristically, when this can happen. 
As in Lemma 6, let B be invariant under 4), such that C = A - B  is countable, 
let 4)' be the automorphism induced by 4) on E(B) and suppose 4)' is induced by 
a point automorphism T'. Suppose now a disintegration (or decomposition) of/~ 
over #~ exists, i.e. for all (or /l~-almost all) peS(B), there exist probability 
measures/lp on S(A), such that supp (#p)c rCa] (p), such that for Y measurable in 
S(A), kip(Y) is a #e-measurable function on S(B) and such that 

# (Y)=  ~ I~p(Y) l~(dP). 
s (B) 

Then, for the existence of a point automorphism P of S(A) extending T', it is 
clearly necessary that for almost all p,/~p and/~T'p are isomorphic under an iso- 
morphism Pp and that 

P(p,q)=(T' p, Ppq) where peS(B), qeS(C). 

Thus (at least if the required disintegration were true) some sort of homogeneity 
condition on the/~p might be sufficient to ensure the extension. Unfortunately 
the truth of the required disintegration theorem is unknown except when B is 
countable. Our next lemma is essentially a device to enable us to assume this. 

Lemma 8. Let 4) be a set automorphism of S. In order that 4) have the countable 
extension property, it is sufficient that 4) have this property for every countable 
invariant subset of A. 

Proof. Let B be invariant under 4), 4)' the induced automorphism of E(B), and 
suppose 4)' is induced by a point automorphism T' of S(B). It is clearly enough 
to assume that C = A - B  is countable and show that T' has an extension to a 
point automorphism T of S(A) which induces 4). By Lemma 6, it is enough to 
show that T' has an extension to some point automorphism P on S(A). 

By Lemma 2(a), there exists, C c  (~cA where (~ is countable and invariant 
under 4). Let D = C - C = B c ~ C .  If D # ~ ,  then by Lemma2(b),  there exists a 
countable set F, D c F c B ,  such that F is invariant under T'. Thus for YeS(F) ,  
there exists Y ' c  S(F) such that 

T'(Y x S (B-F) )=  Y' x S (B -F) .  
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Apply this to a separating sequence of sets Y, in S(F); we see that for each peS(F), 
there exists Z c S (F) such that r '  (p x S ( B -  f))  = Z x S ( B -  F) and so p x S ( B -  F) = 
T ' - l ( Z x  S(B-F)).  Since F is also invariant under T ' - I  and both T' and T ' -1 
are (1-1) it follows that Z cannot contain more than one point p' and so 

T'(p x S(B-F))=p'  x S ( B -  F). 

Thus there exists a (1-1) map T on S (F), which is obviously a point automorphism, 
such that 

7r, BF T'= TT~BF. 

By hypothesis T can be extended to a point automorphism t3 of S(F u C). Put 
G = F u C. Since F ~ D, G = F ~ C and so G is invariant under ~b. (F, being invariant 
under T' is certainly invariant under qS.) Let q~ be the automorphism induced 
by q5 on E(G). By Lemma 6, q~ can be induced by a point automorphism T of 
S (G) such that ~GF T= T ~ v .  

Define T o n  S(A) as follows: Put 

(Tp)~ = (~p)~ if ~ G  

= (T' p)~ if ~eB.  

This is consistent, since for c~ ~ F = G c~ B, 

(Tv)~=tT' p)~=(~)~. 

T is thus a (1-1) map of S(A) onto itself, rCAB T= T' ~AB. Further {TX} =q~{X} 
i f X e S  B or S t. So as in the proof of Lemma 5, T induces ~b. 

If D=~,  C is invariant under q5 and so 4 induces an automorphism (~1 of 
E(C) which by Lemma 3 is induced by a point automorphism T 1. Define T 
on S (A) by 

T(p,q)=(r' p, 7"1 q) 

where paS(B), qeS(C); it is easily seen that T has the required properties. 

We now state the disintegration (decomposition) theorem that we need. 

Disintegration Theorem. Suppose F, G countable sets, F c G, # a probability 
measure on S(G), C = G - F .  Then there exist measures #(p, Y) on S(G) for each 
peS(F), such that 

(i) supp # ( p , ' ) c ~ ( p ) ;  

(ii) for #r-almost all p, #(p, ") is a probability measure on S(G); 

(iii) for each YeS(G),  #(p, Y) is measurable on S(F); and 

(iv) #(Y)= ~ #(p, Y)#F(dp). 
S (F) 

#(p, .) may be regarded as a measure on ~ff~(p), and since all such fibres are 
canonically isomorphic to S(C), each #(p, .) may be regarded as a measure 
on S(C). Let C =  {c~ 1, e2,. . .} be a fixed ordering of C. Let C , =  {cq, ~2 . . . . .  e,}. 
Let % denote points of S({cq}), p as usual points of S(F). Let 

#(') (p, q~, q~ . . . .  , q~,_~, .) 
14 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 22 
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denote the disintegration of ]..tFuCn over #F~C.-I, /~m(p, .) that of/~v,~c, over/ t  F. 
Then if X c S (F w C,) 

(X x S ( G -  (F u C,))) = ~ I~v (dp) ~ i ~'1, (p, dq~l)~... S ~(")(P, q . . . . . . .  q . . . . .  dq~,); 

and if Z c S (C,), 

p (p, Z x S ( C - C,) ) = l #(1) (p, d q~ ) I " " ~ #(") (P, q~ , - " , q~, -1, d q~,) . 

The general disintegration theorem (for spaces which are not product spaces) 
can be found in [-1], Theorem 1 or [2], Chapter IX, Theorem 5 (as well as many 
other places). The forms with repeated, product space integrals are most con- 
veniently found in Lo~ve [4-], p. 360 et seq. 

We next show that if/~(p, .) and #(T'  p, ')  are isomorphic the desired extension 
always exists. 

Lemma 9. Suppose F, G are countable sets, F ~ G, C = G - F ,  I ~ a probability 
measure on S(G), 4) a set automorphism of # such that F is invariant under 4), 4)' the 
set automorphism of  S(F) induced by (~. I f  gp' is induced by a point automorphism T' 
of  S(F) such that, for t~v-almost all pES(F), I~(p, ") and #(T' p, .) considered as 
measures on n~l(p) and -1 , can n~F(T p) respectively are point isomorphic, then T' 
be extended to a point automorphism of  S (G) inducing c~. 

Proof By Lemma 6 it is enough to prove that T' has some extension to a 
point automorphism of S(G). Let N be the set of p in S(F) for which #(p,-) and 
/~(T' p, ") are not isomorphic or for which/~(p, .) is not a probability measure. 

/~F(N)=0. Replacing N by ~) T '"N we may assume that T ' N = N .  On N we 
n ~  - o 9  

may change #(p, .), putting #(p, Y)=0 for all p ~ N  and all Y/~(p, -) is then point 
isomorphic to I t(T'p, ' )  for all peS(F). Let ~ be a point isomorphism of 
(n~(p),#(p,  .)) to (n~e(T p ) ,u ( r  p,-)) (P~ may be even assumed measure pre- 
serving, though this is unnecessary). 

Since each n~(p)  is canonically isometric to S(C), each ~ defines a point 
automorphism (~p of S(C). If pr by Lemma 4, 0p may be chosen so that both 
(~p and (~-1 a r e  of Baire class 3 or analytically representable class ~b 3 at most. 
If p~N,  let Qpq=q, qeS(C), which is a homeomorphism and so of class 0. On 
S(G) define 

P(p, q)=(r '  p, Qpq) where p~S(F), qeS(C).  

P is bijective. If 0p were continuous for each p, then P would be measurable. [Note 
that if X, Y,, Z are Polish spaces, and f :  X x Y ~ Z  is such that for each ye  Y,, f is 
Borel measurable on X, and for each x ~ X ,  f is continuous on Y, then f is Borel 
measurable on X x Y. See [9], Theorem 2, its proof and the remark following the 
theorem.] Since measurable maps into separable metric spaces are closed under 
pointwise sequential limits, it is still true that P is measurable if 0p is of class q~3. 
Clearly, P extends T'. To show that P is a point automorphism, it is enough to show 
that #(Y) = 0 implies I~(PY) = 0. (The reverse implication follows by considering p-1 
in place of P.) Now if ~(Y)=0, it follows, since #(Y)= I #(P, Y~n~(p))l~F(dp) 

S(F) 
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that/~(p, Y n  n~Fl(p)) = 0  for #F-almost all p. Now since ~ is a point isomorphism, 
# (p, Y n  ~Z~F ~ (p)) = 0 implies # (T'  p, P Y n  n ~  (T'  p)) = 0; so this holds for gF-almost 
all p. Since r '  is a point automorphism,  it follows that  #(p, P Y n n ~ F ( p ) ) = O  for 
/~F-almost all p, and so 

# ( P Y )  = ~ #(p, P Y n  n ~ ( p ) )  #F(dp)=0.  
S(F) 

This completes the proof  of the lemma. 

Lemma 10. Suppose F, G are countable sets, F o G ,  C = G -  F = {al, c( 2 . . . .  }, 
C, = {:q . . . .  , c(,}. Let  12 be a probability measure on S (G), pta)(p, . ) the disintegration 
of  #v~c~ over #v, #t,)(p, q~,, ..., q~_, ,  .) that o f  #v~c.  over #v~c . . . .  #(p, ") that o f  
# = # a  over #F. I f  for  all n>=l, #t,)(p, q~,, ..., q~._~, .) and #(")(p', q'~ . . . . . .  q'~ . . . . .  ) 
are point isomorphic for  every pair o f  points (p, q~ . . . .  , q~._~) (p', q'~ . . . . . .  q'~._~) in 
S ( F u  C~_1) (wi th  Co=[J), then #(p, .) is isomorphic to #(p', .) for every pair o f  
points in S(F). 

Proof  Since for each fixed pair (p, q~l . . . . .  q~._,) and (p', q'~, . . . .  , q',._,), there 
is a measure preserving isomorphism of 

#(")(p, q . . . . . .  , q . . . . . .  ) and #(")(p', q'~ . . . . . .  q'~ . . . . .  ), 

and these measures can be canonically regarded as being on S({a,}), this iso- 
morphism induces a measure preserving point isomorphism of 

(S({e,}), #(")(p, %~, .. . ,  q~._~, .)) and (S({:(,}), #(")(p', q'~, . . . ,  q'~._l, .)). 

Now let p, p 'eS(F) .  There exists a measure preserving point isomorphism o (1) ~r 
of pro(p, ") and p(1)(p,, .) on S({cq}). Put G (1) (1) q,, =Qp q,~, Tin(p, q~)=(p,,  Q(1)q~). 
If XcS({cq}),  using the repeated integral formula for #(p, .) given by the dis- 
integration we see that  

# ( p ,  X X S ( C - -  C1) ) =#(p', pp(1) X M S ( C -  C1) ), 

Assume that  we have defined Pv (~-1) on S(C,_  0 so that  Pv ("-~) is a measurable 
bijection which is an extension of Pv ("-2) and 

# ( p ,  X x S ( C -  Cn_x) ) =#(p', G(n-1) X x S ( C -  Cn_l) ) 

for X c S (C,_ 1); there exists a measure preserving point isomorphism 

Q(") of (S({a,}), #(,O(p, q~,, q~,,,_~, .)) 
P'q=l ' ""'qe~n-1 " " " ~ 

and 

Put 
(S ({a~}), #(~)(p', Pp(~-l)(q~l, ... , q . . . .  ), .)). 

~)(q~l ' " ,  q,.)=(pp(,-1)(q~,, q . . . .  ), Q(,) %.). 
" " " ~ P'q~l' ""'q~n-I 

Then using the repeated integral formula 

#(p, X x S ( C - C n ) ) = # ( p ' , P p ( " ) X x S ( C - C n ) )  for X c S ( C , ) ,  

and P~(") is an extension of pp(,-1). By this means we obtain a measurable bijection 
of S(C), which is a measure preserving map of #(p,-)  and #(p', .) for sets which 
are cylinders with bases in S(C~) for each n, and hence for all measurable sets 
14" 
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in S(C). T(p,q)=(p',Pvq ) where qeS(C), is the required, measure preserving 
isomorphism of fibres. 

We are finally in a position to state and prove our main theorem. 

Theorem. Let S= H I~, c~A. Let # be a probability measure on the product 
(Baire) a-algebra of S, with the 
and every ~ ~ A - F, let #(F, ct) (p,  �9 ) 

over #v on S(F). Then for every 
point isomorphic. 

following property: For every countable F c A ,  
denote the disintegration of #vu~i on S(F u {c~}) 
pair, p, p' e S (F), #(v, ~) (p,.) and #(F, ~) (p,,.) are 

Then every set automorphism if) of # on S is induced by a point automorphism 
T o f  S. 

Proof By Lemmas 10 and 9, q~ has the countable extension property for 
every countable set F invariant under ~b. By Lemma 8, ~b has the countable 
extension property. The result then follows by Lemma 7. 

Corollary. I f  the finite dimensional marginal distributions of # are defined by 
positive densities then every set automorphism d? of # on S is induced by a point 
automorphism. 

Proof ! n this case each #(F, ~)(p,.) is equivalent to, and so point isomorphic 
to Lebesgue measure and the condition of the theorem is satisfied. 

The corollary covers measures such as Wiener measure. Slight modifications 
cover many other measures of various stochastic processes. 

We do not know whether the theorem is true with no additional hypothesis 
on the measure #. Possibly the homogeneity condition on fibres must always 
be satisfied. It might be possible to show this using the much harder measure 
algebraic disintegration theorem of Maharam [-6]. 

Added in Proof. The theorem is true without additional hypothesis on the measure. The proof 
will appear in a subsequent paper in this journal. 
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