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The Markov Processes of Schrodinger

Benton Jamison*

Introduction

Let {X,,tel} be a stochastic process on a finite or semi-infinite interval I.
For each J =1, let .o/, be the o-field of events generated by X,, teJ, and %, be the
o-field generated by X,, teI~J. We say that {X,, tel} is a reciprocal process if,
for any subinterval J =(s, t) of I,

P(AnB|X,, X)=P(A|X,) P(B|X,), Aec%, Be%,. 1)

The concept was formulated in 1932 by Bernstein [2] in connection with the
processes introduced in 1931 by Schriodinger [10]. Consider the transition
gq(s, x; t,y) for Brownian motion {Y;,a<t<b} on an interval [a, b]:

_y—x)?
e 2079 g<s<t<bh. )]

1
Q(S,X;I,J’)=*—21/ﬁ )

If we prescribe an initial distribution p, for Y,, the finite dimensional distributions
of {Y,,a<t<b} are determined by (2) and y,; in particular the distribution of Y,
is so determined. Schrodinger asks the following question. Suppose we prescribe
in advance not only a distribution g, of Y, but an arbitrary distribution g, of ¥,
as well, what is the most likely way for Y; to evolve as ¢ goes from a to b? His
answer amounts to the construction of a new process {X,,a=<t=<b}. He obtains
from the original process the “intermediate probabilities”

.t ‘v
P(s,x;t,y;u,z)=q(s’x"y)q(’y’u’z), als<t<uZh. (3)

We see that p(s, x; ¢, y; u, ) is the value at y of the conditional density of ¥, given
Y,=xand Y,=z. Let u be any two dimensional probability measure with marginals
u, and . (There are in general many such measures.) The distribution y is used
as the joint distribution of X, and X, in the new process {X,,a<t<b}, whose
finite-dimensional distributions are as follows. Let a<t <---<t,<b. Let
A, B,E,, ..., E, be measurable sets in the state space. Let E=[['_, E;, A=AXExB.
Define

B;(A)zAjnB du(x, J’)gp(a, X5ty X5 b, Y) plty, X585 %55 b, ) -

p(tn-—la Xn_15 tm Xns b7 y) dxl A dxn'

4

It follows from the results of [8] that (3) defines a consistent set of finite-dimensional
distributions such that the stochastic process {X,,a<t<b} defined by them is a
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reciprocal process. Furthermore p(s, x; ¢, y; u, ) is the value at y of the conditional
density of X, given X,=x and X,=z. We say that the process {X,,a<t<b} is
derived from {Y,,a=<t=<b}. All this goes through if the Brownian transition
function (2)is replaced by any strictly positive Markov transition density g(s, x; t, y).
Schrédinger’s processes are not so general. Given marginals p, and p,, he uses as
endpoint measure a particular y with these marginals, one which can be written

in the form
WE)= g qla, x; b, y) va(dx) vy(dy), )

where E is an arbitrary two-dimensional Borel set and where v, and v, are o-finite
one-dimensional measures. Schrédinger’s physical intuition convinced him of
the existence of a unique such u with the given marginals p, and u,. Indeed,
a slight extension of a result of Beurling [3] yields existence and uniqueness
(see [8]).

In [8], it is shown that it is precisely for those measures which have the rep-
resentation (5) that the derived process {X,,a<t=<b} has the Markov property.
In this paper we show that these Markov processes of Schrodinger are h-path
processes in the sense of Doob [5], where h is a space-time harmonic function for
the original process {¥,, a <t < b}. This fact is exploited to show that under certain
conditions the sample paths of {X,,a<t<b} are almost surely continuous on
[a, b]; in particular the {Y} process “tied down” at t=a and t=b is well-defined.
We then treat the case where {Y,,a<t=<b} is a diffusion in Euclidean space. We
show that if the coefficients of the diffusion equation satisfy some regularity
conditions, the derived process {X,, a<t<b)} turns out also to be a diffusion, with
the same diffusion coefficients, plus an additional drift term.

§1

Let (S,d) be a g-compact metric space, with 2 the o-field generated by the
open sets of S. Let [a, b] be a closed interval of real numbers. Let 2, Q,, and Q, be,
respectively, the set of all functions from [a, b], [a, b), and [a, u] into S (here
a<u=<b). We denote by X, the coordinate function on Q; that is, X,(w)=w(t) for
we®, tela, b]. We also use X, to denote the coordinate functions on Q; and Q,.
The smallest o-field # on Q relative to which X, is ¥ —X measurable for each
te[a, b] is denoted by .£. The o-fields 4, and .4, are defined in the same way on
Q, and Q, respectively. Let Q(s, x;t, E), aSs<t=<bh, xe8, EcXZ, be a Markov
transition probability function. We assume that Q is given by a strictly positive
density relative to some o-finite measure A on X; that is, there is a strictly positive
function ¢(s, x;t,y) defined for a<s<t<b and (x, y)eS x S, Z-measurable in
(x, y) for each s and ¢, and for which

Q(s, x,t, E)= [q(s,x;t, ) A(dy), a=<t=b, xeS, EeZ. (6)
E

For each a<s<t<u=<b and (x, y,z)eS xS xS we define p(s, x; t, y; u, z) by (3).

Now set .
P(s,x;t, E;u, )= | p(s, x; t, y; u, 2) A(dy),
E

(™

ass<t<uZbh, (x,y)eS xS, EcZ.
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It is observed in Section 3 of [8] that P(s, x;t, E; u, y) is a reciprocal transition
function. Let u be a probability measure on X x 2. Then p and P(s, x; ¢, E; u, y)
define a measure P, on .# relative to which {X,,a<t<b} is a reciprocal process.
(See Theorem 2.1 of [8]. It is clear that 2.2 of [8] can be written as (4) of this
paper.) We assume that there are o-finite measures v, and v, on Z for which (5)
holds for EcX xX. Then, by virtue of Theorem 3.1 of [8], {X,,a<t=b} is a
Markov process relative to the probability space (2, .7, B). We denote by g,
and p, the marginals of y, that is, u(E)=u(E x S) and y,(E}=u(S x E) for each
EeZ. Let P be the probability measure on .# (constructed in the usual way) for
which {X,, a<t<b} is a Markov process with initial distribution g, and transition
function Q(s, x; t, E). We will show that P, can be obtained from P by means of a
multiplicative functional; in fact we can use Doob’s construction of an “h-path
process” to go from P to E,. First, define h on [a, b) xS by

h(t, x)=[q(t,x; b, ) v,(dy) ~ x€S, te[a,b). ®)
It is easily verified that h is space-time harmonic relative to Q; that is,
h(s,x)=[ Q(s, x;t,dy) h(t,y) x€S, a<s<t<b. 9)

Following Doob [5] we define a transition probability operator Q" by

,¥), a<s<t<b, xe§, EeX. (10)

h(

Let P" be the measure on (QO, 49 for which {X,,a<t<b} is a Markov process
with initial distribution u, and transition probability operator Q"(s, x; t, E). Note
that for a<s<t<b, Q"(s, x; t, E)= ¢ 4"(s, x; 1, y) A(dy), where

q(s, x; t,y) h(t, y)
h(s, x)

q'(s, x;t,y)=

(11)
Leta<s<t<b. By (3), (4) and (5)
P(X€E, X,eF)
=[vadx)vy(dy) | [aa, x;5,20) qls, 2151, 25) q(t, 225 b, y) Aldzy) Adz,)
F E

=[vodx)[f a(a, x; 5, 21) (5, 2131, 2,) hlt, 7,) A(dzy) Aldz,).

But by (5),
1ol A)= [v,(dx) | qla, x; b, y) vy(dy) = [ v,(dx) h(a, ),
A A

so the last expression for B(X,eE, X,eF) is equal to

i Ha(dX)
Wa, x)

f j‘](a X5 8,21) 4(S, 215 8, 2,) h(t, 2,) A(dz,) Adz,),

which is equal to PY(X e E, X,eF). A similar argument shows that

B(X,eE,X,eF)=P"X,eE, X,eF) for a<t<b.
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Since ﬁ(XaeE)=Ph(XaeE)=ua(E), and since {X,,a<t<b} is a Markov process
relative to both P, and P’ this shows that, if a<t<b, the restriction of B, to
{X,,a<s<t)} (that is, to .%) is given by P". If we define

t__ h(ta Xt)
" k(s X,)

assZt<b, (12)

M; is a multiplicative functional for the Markov process {X,,a<t<b} relative
to P and BE,(=R) on each .4, a<t<b, is obtained from P via transformation by
M [6]. This amounts to the same thing as observing, as does Doob [4], that

B(A)=[k(t,X)dP, Ae4, (13)
A
where k(t, x)=h(t, x)/{ h(a, y) u,(dy). The measure B, on .#, as distinct from the
sub-o-fields £, may not be obtained from P by a multiplicative functional trans-
formation, because we need not have F, <P on .#. For instance, the marginal
distributions p, and Q, u, of P, and P respectively, where

Qb ,ua(E): E“ Q(a, x5 b, E) ﬂa(dX),

may be mutually singular, as they indeed are if 4, and A are mutually singular.

For each xeS, we denote by B, the measure on £ for which {X,,a<t<b}isa
Markov process with initial measure 6, (where J,({x})=1) and transition function
Q(s, x; t, E).

Theorem 1. Suppose that for each xS, the set C of all continuous paths on
[a, b] has outer measure one relative to B.. Suppose in addition that for each y,eS
the following holds: given >0 and £>0 there is a ty such that if d(y, yo)=06 and
to<t<b, then q(t,y;b,yo)Se. Then, for each probability measure p on Z, the
measure F, defined by (4) also assigns outer measure 1 to C.

Proof. 1t is clear that it suffices to prove the theorem for measures x4 concen-
trating all their mass on an arbitrary pair (x,, yo)€S x S. Let u be such a measure.
Then h(x,t)=q(t, x; b, y,). Since F,=B <E, on .4 for each a<t<b by virtue
of (11), it is clear that P, assigns outer measure 1 to the set of all paths on [a, b]
which are continuous on [a, b). Observe with Doob [5] that {1/h(t, X,): a<t<b}
is a martingale with respect to P*-measure on .#°. It follows from the non-negativity
of hthatas t1b 1/h(t, X,) converges P*-almost surely to a finite limit, hence h(z, X,) =
q(t, X,; b, yo) converges to a non-zero limit. Now the assumption on g contained
in the hypothesis of the theorem shows that, given f: [a,b)—S, q(t, f(2); b, yo)
cannot converge to a non-zero limit as ¢7h unless f(f) converges to y, as t1b. It
easily follows that P* hence B, also assigns outer measure 1 to the set of all paths
on [a, b) which have limit y, as ¢1b. Thus the F-outer measure of C is 1, and the
proof is complete.

§2
We now consider the case where S is equal to d-dimensional Euclidean space
E%and X is the o-field of Borel subsets of S. We assume that the underlying Markov
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process is a diffusion in the sense of Stroock and Varadhan [11]. Leta;;, i, j=1, ...,d
and b;, i=1, ...,d be real-valued functions on E?x [a, b) such that the following
hold

(D1) ay;is continuous and bounded on E*x[a,b—e)foreache>0andi, j=1,...,d.
(D2) The matrix ((a;;(x, t))) is positive definite for each (x, t)e E* x [a, b).

(D3) b, is measurable and bounded on E? x [a, b—¢] for eache>0andi=1,...,d.

We denote the matrix ((;,)) by o and the vector (b;) by f. Let o =a'/* (see [11],
p. 347). For each sela, b) let C[a,s] be the subclass of £° consisting of all con-
tinuous real valued functions on [q, s], and let .#*={En CJ[a,s]: Ee.#°}. Then
A* is a o-field over C[a, s]: in fact if we consider C[aq, s] as a metric space with
metric given by the uniform norm, .#° is the o-field generated by the open spheres.
Under conditions D1-D3, Stroock and Varadhan show that for each
(s, x)e[a, b) x E* there is a probability measure B, on .#° which solves what they
call “the martingale problem.” That P, , is a solution to the martingale problem
is equivalent to the existence of a Wiener process {W,a<t<s} on (C[a,s],
A°, B, ) for which

t t
X,=x+ [ B, X,)du+ [o(u, X,)dW, a<tZs, (14)

where the second integral on the right is a stochastic integral in the sense of Ito.
Relative to B, {X,:a<t<s} is a strong Markov process with a transition
function denoted in [11] by P(¢, x; u, E) for a<t<u<s. From the results of [11]
and assumptions D1-D3 it is easy to see that the processes {X,,a<t<s}, s<b
can be extended to a process {X,,a<t<b} with transition function Q(s, x; t, E).
We refer to {X,,a<t<b} as the diffusion corresponding to the diffusion matrix o
and drift vector f. Eq. (14) holds throughout [a, b); that is, there is a Wiener
process { W, a<t<b} constructed from {X,, a<t<b} for which

t 1
X,— X,= [ B, X,) du+ [o(u, X,) dW,, a<s<i<b. (15)

. . . . .. 0
We say that a function f on E*x [a, b) is smooth if the partial derivatives a—j: and
2

exist and are continuous throughout E¢ x [a, b), i, j=1, ..., d.
0x;0y;

Theorem 2. Let h be a smooth and everywhere positive space-time harmonic
function for the process with diffusion matrix o and drift vector B. Then the process
with diffusion matrix o and drift vector f+o grad(logh) has the transition density
q"(s, x; t, E) given by (11).

Proof. The proof consists mainly of calculations based on Ito’s lemma. From
(15) and Ito’s lemma (as stated in [ 117, p. 352) we have

t t
h(t, X,)—h(s, X)= | G(u, X,)du+ [H(u, X,)dW, ass<t<b, (16)
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where G and H are defined on [a, b) x E* by

oh oh 1 0%h
=3t Ly, o Loamax, T

i S J.k

G

on (17
H=(H1"°',Hd): Hk=2£0'ik, k=1,,d

The space-time process {(X,,?),a<t=<b} can be considered a Markov process
with state space E x [a, b). The process can be started out at any point (x, s) in its
state space, and we use P*® and E®¥ to denote the corresponding probability
functions expectation operators. Because h is space-time harmonic, we have

Eq o h(t, X)=h(s,x) (s,x)eE*x[a,b); | (18)

in fact, from the optional stopping theorem for martingales ([4], p. 376) we have
E(s,x) h(Ta Xr)zh(sa x) (19)

for any stopping time 7 with s<t<b'<b. Let U={(s,x):a<s<b, G(s, x)>0}.
Suppose U=, and (s, x)e U. Let b'e(s, b) and define 7 to be the first exit time’
after s of {X,} from U, or b, whichever is smaller. Because {X,} has continuous
sample paths and U is open, F ,,[t>s]=1. Taking t =7 in (16), we have

h(z, X.)—h(s, X;)= jTG(u, X)) du+ jEH(u, X,)daw,. (20)

Since {[{ H(u, X,)dW,,te(s,b)} is a martingale, E [ | H (u, X,)dW,]=0, again
by the optional stopping theorem for martingales. Applying E ,, to both sides
of (20) and using (19) we obtain E ,[[G(u, X,)du]=0. Since G(u, X,)>0 for
ue(s,7), and since By ,(t>s)=1, we have a contradiction. Thus U =#, so G0.
A similar argument shows that G20, so G=0. Since a;;=) 4 6,4 04;=) 4 0ix O
(17) yields

oh 1 oh oh

AT [P, AR 21
ot +2 %a”axiﬁxj—i_lz Yox; 0 1)

for any smooth space-time harmonic function h. Applying (15) and Ito’s lemma
to logh instead of h, we have

13 t
loghl(t, X,)—logh(s, X)= | G(u, X,) du+ [ H(u, X,)dW, a<s<t<b, (22)
where G and H are defined on E? x [a, b) by

8(logh) < d(logh)

ot +Za

i

1 o*(logh)
X, ﬂi+7i,j,km Oix Ojis

= = = — d(logh
H=(Hy,...,Hy), szz (55)01'1:-

13 |2

G:
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Using matrix multiplication and interpreting vectors as column vectors, we can
write H =grad(logh)o. Simple computations together with an application of (21)
yield G=—(1/2)<H, H). Setting y=grad(logh) we have G=—(1,2){c7,07),
and (22) becomes

logh(t, X,)—logh(s, X,)=[ <oy, dW,> —%[<oy,07) du. (23)

Since dX,=cdW,+ fdt, {y,dX,> =y, 0 dW,>+y, B> dt, and since ¢ is symmetric,
we have

logh(t, X,)—logh(s, X,) = | <y, dX,» — [ (<3, B> +5 {07, 07)) du. (24)

Let Q, ,, a<s<t<b, xeE? be the solution to the martingale problem with the
same diffusion matrix « but with § replaced by 6=+ grad(logh)=pf+ay. To
prove the theorem we must show that, for each a <s <t <band xe E% the restriction
Qs . of O, to .44 is absolutely continuous with respect to the restriction B, , ,
of B to .#¢ and that

’ A0ss _ i it X)

B, ' his X))’

(Here .#: is the sub-field of .#* generated by the family {X,; s<u=r}.) For this
purpose, we introduce R, ,, a<s<t<b, seE’, the solution to the martingale
problem with diffusion coefficient & and zero drift vector. On the one hand

dQs,x,t _ dQs,x,l X dRs,x,t

(25)

4B dR,. B 29
On the other hand, by the Cameron-Martin formula (Lemma 6.1 of [11])

d t T
d%”‘" =exp [j a™t6,dX,>—3[ (6, a"16) du]

s, %, s s (27)
dlz,x,t : -1 1 ‘ -1
SEmep [ [ B Xy —4[ fa~t o) dul,

S, X, 1t s s

From (26) and (27) it follows that

d t ! _ 1t — -1
e [ (7 0-P XG0 B pyau]. 29

But 60— =uay, and elementary algebra yields

<69 a_l 5> - <ﬁ: ahl ﬂ> =2 <% .B> + <O('}), ’V> .
Since {ay, y> =<0y, 07>, comparison of (28) and (24) yields

40, x,¢ ‘ :

g%jﬂxp [§ Xy = [(Gn By 43¢0, 07) du]
=exp[logh(t, X,)—logh(s, X,)] (29)
_h(,X)
ks x)

which establishes (25) and completes the proof of the theorem.
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Since k is defined in terms of v,, and since v, can rarely be obtained explicitly,
there is little possibility of applying this last theorem unless we can establish
under rather general conditions that space-time harmonic functions 4 of the sort
defined by (8) are indeed smooth. To this end, we now assume that the coefficients

a;; and b; satisfy appropriate Holder conditions, specifically, that there is a x>0
and an ae[0, 1] for which

Hag(x, 1) —ay(y, Ol Swc [x =y,
bi(x, ) = bi(y, D] S [x—y/*

for each x and y in E and te[a, b] and for which
3%, 9)— a3 (x, O] S s t]*

for each xeE? and s, ¢ in [a, b], these conditions holding for each 1<i,j<d. We
also assume there is a y >0 such that

d
Y ag(s, 1) A A; 2y Z 22,
i,j=1 i,j=1
where (x, f)e E® x [a, b]. These assumptions imply that conditions 0.23 B;, B,
and B; on p. 227 of volume II of [6] hold in the strip E¢ x [a, b]. Eq. (8) shows that
h(t, x)={q(t, x; b, y) v, (dy). The transition density g is the fundamental solution
to Eq. (21) on the strip E?x [a, b), £>0 (see Section 0.23 of [6] vol. II for the
terminology here). For each fixed te[a, b) and yeE?, ¢(s, x; t, y) is a smooth func-
tion of (s, x)e(a, t) x E%, and the inequalities (0.33)~(0.36) on p. 227 of [6], volume II
imply that h(s, x) is smooth if v, is a finite measure. This is a serious restriction,
for in general v, is merely o-finite. However, we know that there are compact sets
C,1E* with v,(C,) <o, m=1,2,.... Let v,, be the restriction of v, to C,, and let
h,(t, x)={ql(t, x; b, ) v,,(dy). Then h,, is smooth, and a solution to (21), and h,,1 k.
By virtue of Theorem 15 on p. 80 of [7], the smoothness of & follows once we show
that k is bounded on sets of the form D x [a+¢, b—&] where ¢ >0and D is a bounded
open subset of E*. If the coefficients a;; are once continuously differentiable, with
derivatives satlsfylng a Holder condmon in the space coordinate, (21) can be written
as
A Ty Z (az;h)'f'zbz h 0,

i, j= 1 a
and the Harnack inequalities of Moser [97 as extended by Aronson and Serrin [11]
then imply that the convergence of h,, to h is uniform on sets R x[a+e, b—e],
where R is a bounded rectangle in E%. Thus h is bounded on sets D x [a+¢, b—¢],
and is therefore smooth. (In applying results from the theory of parabolic equations
to the analysis of Eq. (4.14), one usually reverses the direction of time: this is
discussed in the footnote on p. 227 of volume II of [6].)
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