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Duality of L6vy Systems 

R. K. GETOOR* 

1. Introduction 

This paper is a continuation of [2]. In [2] we set up a duality theory for 
multiplicative functionals (MF's) of dual processes. In the present paper we apply 
this duality theory to the study of L6vy systems and to the closely related subject 
of quasi-left-continuous (q.l.c.) pure jump additive functionals (AF's) of such 
processes. Since this paper is a sequel tO [-2] and depends heavily on the results of 
that paper, we follow scrupulously the notation and terminology of [-1] and [-2]. 
In order to save space we do not include a lengthy resum6 of the results of [-2]; 
rather we give specific references as they are needed. 

Throughout this paper X and Xare two standard processes in duality relative 
to a Radon measure ~ (dx)= dx. More specifically X and 2 satisfy the conditions 
on p. 259 of [1]. However, we make no regularity assumptions on the resolvents 
(U ") and ( ~ )  of X and X. 

We now outline the contents of this paper. In Section 2 we give an important 
example of dual terminal times (see (4.11) of [-2]) which is the key to later results. 
A corollary to our main result is the following. Let d be a metric for E and let K 
and L be Borel subsets of E such that d(K, L)> 0. Then 

TK, L=inf{t: Xt_eK, Xt~L } 
0.1) 

TL.K=inf{t: 2,_eL, 2,eK} 

are dual exact terminal times. 
In Section 3 we show that the L6vy systems (N(x, dy), H,) and (R(dy, x), g)  

for X and J? may be chosen so that H and / )  are dual CAF's in At(X) and At(X) 
and if/~ is the measure associated with H and/-) (Section 9 of [2]), then N and/V 
are dual kernels relative to #, that is, S f (Ng)d / l=S( fN)g  d# for nonnegative f 
and g. Here At(X) denotes the class of CAF's of X which are finite on [0, 0. 
Finally in Section 4 these results are applied to the study of q.l.c, pure jump AF's. 
Combining the results of Section 4 with those of Revuz [-7] and [8] yields a 
complete description of all AF's of X and an explicit duality theory for finite 
additive functionals. 

Throughout this paper we often omit the qualifying phrase "almost surely" 
when writing equalities between random variables. Also the equality of MF's or 
AF's always means equivalence. Finally we often (but not always) omit the hat 
"" '  in those places where it is redundant; for example, in the notation of (1.1) we 
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often wr i te /~  {f(X,); t < TL, K} in place of ~ { f(J?t); t < TL. K}- Our guiding prin- 
ciple is clarity rather than consistency! 

2. Some Dual Terminal Times 

Let d be a fixed metric for E and d2 be the metric on E x E defined by 

dz [(x,, x2), (y,, Y2)] = d (xl, Yl)+ d (x2, Yg. 

Let D be the diagonal of E x E and let F = E  x E - .D  = {(x, y)eE x E: x t-Y}. Since 
D is closed, F is open in E • E and is a locally compact separable metric space 
in the relative topology. Let i: E x E ~ E x E be defined by i(x, y)=(y, x). If B. 
is a Borel subset of E x E define B = iB. Clearly/~ is again a Borel subset of E x E 
and Is(x, y)=I~(y, x). In particular if B < F  t h e n / ~ = F .  

If  B is a Borel subset of F which, of course, is the same as requiring B to be 
a Borel subset of E x E contained in F, define 

T(B)=inf  {t: (X~_, X~)EB} 

(2.1) T(B) = inf {t: (J?~_, J(,) ~ B}. 

Here and in the sequel Xo_ = Xo and a similar convention holds for X. We can 
now state the main result of this section. 

(2.2) Theorem. I f  B is a Borel subset of F, then T(B) and 7"(fi) are dual terminal 
times. 

The proof of Theorem 2.2 is rather long and so we will break it up into several 
steps. Recall that if T and ~ are terminal times for X and 2,  then T and T are 
dual provided 

E f {g (Xt); t < T} = Eg (f(X,); t < T} 

for all t => 0 and f g ~ C~. Here E y {. } = Sf(x)  E x {" } d x. We write T~-~T if T and 
are dual terminal times. 

Since the process t ~ (X,_, X~) on E • E is progressively measurable, it is an 
immediate consequence of (IV; T.47) and (IV; T.52) of [3] that T(B) is a stopping 
time. Obviously T(B) is then a terminal time. Of course, if B is an arbitrary Borel 
subset of F, then T(B) may be identically zero. However, if d2(B, D)>0 then 
T(B) > 0 almost surely, and hence is a thin exact terminal time. By duality these 
remarks apply to T(B) as well. 

We will need the following elementary lemma in our discussion. 

(2.3) Lemma. Let F(xo, xl . . . . .  xn) be a bounded Borel function on E T M  and let f 
and g be bounded nonnegative ~-integrable functions. I f  0 = to < t~ <. . .  < t,, with 
t j - t j _ l = s  for j =  1, 2 . . . . .  n, then 

E "r {F(X, o, Xt , , . . . ,  X,,) g(X,,)} =F,g {F(Xt,, Xt . . . .  ..., X,o) f (X, , )} .  

Proof It suffices to consider the case in which F(xo, x,, ..., x , )= f l  fj(xj) 
j=O 

with each f f i b  g+. In this case the proof proceeds by a straightforward induction 
on n. We leave the details to the reader. 
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(2.4) Corollary. Let G(x, y) be a bounded Borel function on E x E. I f  f g, and {tj} 
are as in Lemma 2.3, then 

EI {j~=xG(Xtj-~,Xtj) g(Xt.)}=Eg {j~= G(Xtj,Xtj-,) f(Xt.) }. 

Proof Apply (2.1) with F(Xo, x 1 .... , x . )=  f iG(xj_l ,  xj) and observe that 
j = l  i1 

F ( x , ,  X n _ l , . . .  , X0)= I-[ G ( X j ,  Xj_I). 
j = l  

With these trivialitities out of the way we come to the main step in our proof. 

(2.5) Proposition. Let G be a nonvoid open subset of F such that d2 (G, D)>0. 
Then T(G) and T(G) are dual (exact) terminal times. 

Proof Let {G.} be an increasing sequence of open subsets of G with compact 
closures G. such that G. = G.+I for each n and U G. = G. Let 3. = 1/2 d2 (G., G~+0. 
Since G. is compact 6~ > Ofor each n. To simplify the notation let T=  T(G), 7". = 
T(G.), T= T(G), and T. = T(G.). Now fix t > 0. In what follows we omit the phrase 
"almost surely" in those places where it is obviously required. Define g. = 1 - IG. 
and ~ . = 1 - I ~  . Thus ~.(x,y)=g.(y,x). For each k > l  let tk, j = j t 2  -k, O~j<=2 k, 
be the dyadic points of subdivision of the interval [0, t]. For each n >  1 and k >  1 
define 

2 k 

(2.6) M(n, k)= [ I  gn(Xtk,j-~ , Xtk,j) 
j = l  

and define 2~(n, k) similarly using ~, and the process )(. In particular M(n, k)= 1 
if and only if (Xtj~,j_~, Xtk,)r for every j, 1<=j<2 k. We now discuss T but the 
results apply to T as well by duality. 

Note first of all that g, and M(n, k) are decreasing functions of n. Since s ~ X~ 
is right continuous and has left limits, given ~ > 0 we can choose 0 = ro < r~ < " "  < 
�9 q=t so that the oscillation of s~X~(o)) on [rj_~, vj) is less than e for l<j<q.  
Of course, {rj} depends on o2 in general. 

Now suppose that T>t. Then IG(X~_,X~)=O for all s<t. Fix n=>l and 
choose {zj} as above with e=,~,. Choose m so that t 2 - ' <  rain [zj-zj_~]. Thus 

16j<-q 
if k > m for each j, 1 < j  < 2 k, the closure of I f = (tk, j_ 1, tk,j] contains at most one zi. 
If there is no z~ in I if, then 

d(Xt~,~_~, Xt~,j)<6.= 1/2d2 (C,., G~.+ I), 

and since DcGC+l this implies that g,(Xtk,~_,,Xt~,)=l. If on the other hand 
z i e I k, then 

d 2 [(X~,_, X~,), (Xtk,,_l, Xtk,)] < 2a.,  

and since (X,,_,X~,)eGCcG~,+ 1 it follows that g,(X~k,j_,,Xtk,)=l in this case 
too. Therefore we have proved that 

(2.7) {T>t}=("]  U ~ {M(n, k)=l} .  
n m k>m 

18" 



260 R.K. Getoor: 

Next let F,= ("] U {M(n, k)= 1}. We claim that for n > 2  
m k ~ m  

(2.8) F, c { T,_ 1 > t}. 

To this end fix n > 2  and let o)sF,. Choose {zi} as above but with e=6,_1.  Let s 
be a discontinuity of u ~ Xu (o)) with s < t. Of course, s > 0. Suppose firstly that 
s=zi for some i. Choose m so that t 2 -m<  min [zj--zj_l] and then choose k>m 

l<=j<=q 
so that o)e{M(n, k)= 1}. Then there exists a j  so that S=ZieI~=(tk.j_l, tkJ, and 
since M(n, k)= 1 we must have (Xtk,j_,, Xt~,j)eG~. Also 

d2 [(Xs_, Xs), (X,~,,_,, X~k,,)3 <26,_1  

and so (Xs_, X,) is not in G,_I. Next suppose s+zi for all i. Then we can choose 
a k so that o~e{M(n,k)=l} and t2-k< min [s--~il. Again there exists a j so 

1<i<_q 

s~I~., and by the choice of k the closure of Iff contains no zi. Therefore, 
d(X~_, X~)<~,_ 1 and so (X~_, X~) is not in G,_I in this case also. Consequently 
T~_ 1 (eg) > t establishing (2.8). 

It is immediate since dz(G, D)>0  that {T>  t} = 0 {T~_~> t}, and so it follows 
from (2.7) and (2.8) that ,=2 

(2.9) {T>  t} c N liminf {M(n, k)= 1} c @ limksu p {M(n, k)= 1} c {T>  t}. 

Finally using (2.4), (2.9), and the dual of (2.9) we see that for f, geC~  

E -c {g (X,); t < T} = lim lira inf E I {M (n, k) g (X,)} 
n k 

= lim lira inf/~ g {M(n, k) f(Xt) } = / ~  {f(X,); t < T}. 
n k 

But this states that T =  T(G) and T =  T(0) are dual terminal times, proving 
Proposition 2.5. 

(2.10) Proposition. (i) If  {B,} is an increasing sequence of Borel subset of F with 
union B ~ F, then T(B,) ~ T(B). 

(ii) I f  {B,} is a decreasing sequence of Borel subsets of F with intersection B 
and if d 2 (B1, D)> O, then T(B,)~ T(B) and T(B,)= T(B) for all sufficiently large n 
on { T(B) < oo }. 

Proof. We restrict our attention to (ii) since (i) is clear. Obviously {T(B,)} 
increases and T(B,) <- T(B) for all n. Suppose T(B) = t < oo and T(B,) < t for all n. 
Then for each n there exists s, with 0 < s , < t  such that (X~._, Xs.)~B, cB1. But 
r = d 2 (B1, D)>0  and since there are only a finite number of discontinuities of 
u ~ Xu on [0, t] with a saltus exceeding r, there are only finitely many distinct s,. 
Thus by passing to a subsequence we may assume that s, = s < t for all n. Conse- 
quently (X~_, X~)e c~ B,=B and so T(B)<s contradicting the fact that T(B)= 
t >  s. Hence T(B,)= T(B) for all sufficiently large n if T(B)< 0o. If T(B)= oo the 
same argument shows that T(B,)'[ T(B), completing the proof of (2.10). 

Let {B,} be a sequence of Borel subsets of F which satisfies the conditions 
in (2.10i) or in (2.10ii). Then it is an easy consequence of (2.10) and its dual that 
if T(B,).-.7"(B,) for each n, then T(B)~--~T(B). See the proof of (6.5) in [2]. In 
particular if B is a compact subset of F or an arbitrary open subset of F, then 
T(B) and T(/~) are dual terminal times. 
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We can now complete the proof of Theorem 2.2 by a standard capacity 
argument. F i x f  gEC + and t>0. If B is a Borel subset of F define 

(p (B) = E I {g (Xt); T(B) < t} 
(2.11) 

(B) =/~g {f(Xt); T(B) <_ t}. 

It follows from the rem~trks in the preceding paragraph that 9 (B)= ~(/3) if B 
is either compact or open. A standard argument shows that q~ and $ restricted 
to the compact subsets of F are Choquet capacities in the sense of El, 1-10.5] 
and that q~*(B)=q~(B) and $*(B)=$(B) for all Borel sets B contained in F. See 
the proof of 0-10.12) and (I-10.15) of [1]. Of course, the right continuity of q~ 
and $ comes from Proposition 2.10. Now let B be a Borel subset of F. Then 
there exists an increasing sequence {K,} of compact subsets of B and a decreasing 
sequence {G,} of open supersets of B such that 

lim (p (K,,) = (p (B) = lim q~ (G,) 
n n 

lim ~9 (/s ~(/3)= lim ~, (G,). 
n tl 

Consequently 9 (B)= ~ (/3) for each Borel subset B of F, establishing Theorem 2.2. 
The following corollaries are immediate consequences of Theorem 2.2. 

(2.12) Corollary. Let K and L be disjoint Borel subsets of E. Then TK, L = T(K x L) 
and TL, K = T ( L •  are dual terminal times. I f  d(K,L)>O, then TK, L and TL, K 
a r e  e x a c t .  

(2.13) Corollary. Let F be a Borel subset of(O, oo). Then T=inf{t: d(Xt_, X t )eF } 
and T=inf{t: d(Xt_, J(r)~F} are dual terminal times. I f  F is at a positive distance 
from the origin, then T and T are exact. 

3. L&y Systems 

We begin with a lemma that will be needed in our discussion of L6vy systems. 

(3.1) Lemma. Let T and 7" be exact terminal times of X and X with all points 
of E permanent for both T and T, that is, PX(T>0)= 1 and PX(T>0)-- 1 for all x. 
Let T, be the iterates of T, that is, To=0, T,+I= T,+ To Or, fOr n>>-O, and let T, 
be the iterates of T. Fix  a constant a with 0 < a< 1 and let ao =0 and a ,=a  for 
n >= 1. Define 

M,= I] (l-a~ lq (1-an). 
Tn <~t T n ~ t  

Then M and f/i are exact MF's  of X and X, and M and M are dual if and only 
if T and T are dual. 

Proof It is routine that M and ~ / a r e  MF's of X and J?. Clearly all points 
are permanent for both M and ~/ and so they are exact. Observe that if S = 
inf{t: Mr=0}, then S=lim T,, and a similar statement holds for ~/. Suppose M 
and/V/are dual. Then it follows from [2; 4.12] that T and T are dual because 
/to, T,(t) = l im(M,) x and Ito, ~-,(t)= lim(/17/t)~. 



262 R . K .  G e t o o r :  

Conversely suppose that T and T are dual terminal times. Let (V'), (~"), 
W ~ ( ), and (W ~) be the resolvents corresponding to T, T,, M, and ~/respectively. 

By assumption (V ~) and (P~) are dual resolvents. Fix geC~.  Then for c~>0 

oo 

W~g(x)=EX ~ e-~t g(XOMtdt  
0 

T n + l  

= ~ U  ~ e-~tg(X~)(1-a) 'dt  
i1 = 0 T n  

= ~ (1-a)"E~{e-~r"V~g(XT,)} 
n = 0  

= F, (1-a)"PL Wg(x). 
n=O 

But if hsbN*,  

PL+I h (x) = E x { e - ~ T. EX~ ~,,~ [ e -  ~ ~ h ( x o ]  } = Pr PC h (x), 

and combining these computations we obtain 

(3.2) W=g(x)= ~ (1 - a)"(Pr V~g(x), 
n = O  

where, of course, (p~)O is the identity. Also if u'(x, y)< m we have v'(x, y)= 
u=(x, y)-P~u=(x, y)=u=(x, y)-u'PC.(x, y), and so 

Pr ~ (x, y) = PC u ~ (x, y) - (Pr') z u ~ (x, y) = u" ~ (x, y) - u ~ (fir (x, y) = v ~ PC (x, y). 

Now i f fE  C~ by using (3.2) and its dual and the above, we obtain 

( f  W'g)= ~ (1 -a ) ' ( f (P~ ) ' V ' g )=  ~ (1-a) ' ( fV ' (P~)" ,g)=( fW~,g) ,  
n = O  n = O  

and so (W') and (l?v") are dual resolvents. This completes the proof of Lemma 3.1. 

We turn now to the discussion of L6vy systems. Let A(A) denote the class 
of all AF's of X(,Y) that are finite on the interval [0, () ([0, ~)). Let Ar and ,~  
denote the set of continuous elements in A and ,~ respectively. A pair (N, H) 
where N=(N(x ,B))  is a kernel on (E, g) satisfying N(x, {x})=0 for all x and 
which is proper in the sense that E is a countable disjoint union of Borel sets B, 
such that N(., B,) is finite for each n, and where H~A~ is called a LOvy system 
for X provided that for each nonnegative Borel function 4) on E • E vanishing 
on the diagonal one has for each x ~ E and t > 0 

t 

(3.3) E ~ { y'  ,f  (X~ _,  X~)} = E ~ S S ~ (X~, y) N(X~, dy) dU~. 
s<=t 0 

Moreover one may assume that for a fixed ~ > 0, H has a bounded ~-potential. 
It is well-known ([5] or [10]) that if X is special standard, then X has a L6vy 
system. Also it is proved in [9] that if X and 2~ are dual processes then X has 
a L6vy system without any additional assumption. Thus we may assume that 
both X and )( have L6vy systems (N, H) and (N,/~) respectively, and the main 
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purpose of this section is to investigate the relationship between these systems. 
Of course, we write the action of _N on feg+ as fN(x )= Sf(Y)N(dy, x) in keeping 
with our standard notational scheme. Finally it is known (see [2] or [7]) that 
there exists a unique a-finite measure # on (E, d ~ which doesn't charge semipolar 
sets and such that 

GO 

U~ f (x) =E ~ ~ e-~tf (Xt) dH t =~ u~(x, y) f (y) #(dy) 
o 

for all c~ > 0 a n d f ~  g+. The corresponding measure f o r / t  is written/~. In particular 
if the left (or right) side of (3.3) is finite for all t, then letting At(~)= ~ ~b(Xs_, Xs) 
it follows from (VII-T.17) of [3] that s<t 

cO 

(3.4) E ~ ~ e -~' dAt(q~)=~ u~(x, z) ~ q~(z, y)N(z, dy) #(dz) 
o 

for each ~ >_0. Finally if A and A are in A c and .~c respectively we say that A 
and A are dual (additive functionals) provided M t = exp(-At)  and if/, = exp(-At)  
are dual MF's. It is known that A and /1  are dual if and only if #---/) where # 
and /~ are the measures corresponding to A and A respectively. See section 9 
of [2] or [7]. 

We are now in a position to state the main result of this section. 

(3.5) Theorem. The L~vy systems (N, H) and (FI, _#I)for X and f( respectively 
may be chosen so that H and FI are dual CAF's and such that if # is the measure 
corresponding to H and FI, then N and N are dual kernels relative to #, that is 

~f(Ng)d#=S(fl~l)gd# for all f g~do+. 

Proof Fix ~>0.  Let (.K(x, dy),Jt) and (K(dy, x) ,~)by L~vy systems for X 
and 2 such that J and J have bounded a-potentials. Let v and ~) denote the 
measures corresponding to J and ] respectively. 

Let B be a compact subset of E x E -  D and let T = T(B) be the exact terminal 
time defined in (2.1). Let (p(x)=E~{e-~ Then 0__<(p<l and so 
K,,={cp<=l-1/n}'~E as n ~ o o .  Let C,,=Bn(ExK,) .  Fix n and let R=T(C,,). 
If Ro,R1,... are the iterates of R, X(Rk)sK, for k > l  and so ~E~(e-~R~)< 

k->l 
( 1 -  1/n)k-~< oc. Therefore the additive functional At= ~ 1 has a bounded 

k>=l Rk<t 
~-potential. Similarly there exists an increasing sequence {L,} of Borel subsets 
of E whose union is E and such that if F~ --/3 c~ (E • L~) and/~ -- T(F~) and if (/~k) 
and A are defined analogously to (Rk)  and A, then A has a bounded a-potential. 
Let F~ = B r~ (L, • K,). Then F~ T B, ~ =/~ c~ (K, • L,), and the additive functionals 
At(F~)= ~Ir~(X~_,X~) and / l t (~)= ~Ir~(f[~,Xs_) have bounded ~-potentials. 

s<-t s<=t 
Finally E • E - D  is the union of an increasing sequence of compacts and so 
there exists an increasing sequence {F~} of Bore1 subsets of E x E - D  whose 
union is E • E - D  such that for each n, F~ is at a positive distance from D and 
such that A(F~) and A(F~) have bounded e-potentials. 

We now fix n and let F =F,, T=  T(F), and T= 7"(/~). By Theorem 2.2, T and 
are dual exact terminal times. Let M and 2~/be defined with respect to T and 
as in Lemma 3.1 so that M and .~/ are exact MF's. Also if At=aAt(F) and 
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.,tt=aA~(/~), then A and A have bounded c~-potentials and 

(3 .6)  dAt=  - ( M r _ )  - 1  dMt; d.4t = - -  ( ]~/ t_)  - 1  d]~ t. 

Here a is the constant in Lemma 3.1. 
Now by the definition of a L6vy system, or more exactly (3.4) 

oO 

U~ f (x) = E x ~ e-~t f (Xt) dAt=a E x ~ e- ' t  lr(Xt_, Xt) f (Xt) 
o t 

= a ~ u ~ (x, z) ~ I r (z, y) f(y) K(z ,  dy) v (dz),  

for f~g+. Let L(x, dy)=alr (x ,y )K(x ,  dy) for notational simplicity. Then the 
above becomes 

(3.7) U~f  = U ' ( L f  �9 v). 

If we write 0]  for 0~ and let L(dy, x)= aI((dy, x)It(y,  x), then the dual of (3.7) is 

(3.8) f 0~ = (~ . fL) (J'. 
In (3.7) and (3.8) and in what follows we adopt the notation h. v for the measure 
7(dx)=h(x)v(dx) whenever heN+. Similarly we write ~-h for the measure 
9(dx) = ~ (dx) h (x). 

Let (V =) and (P=) be the resolvents corresponding to M and ~ .  Then a 
standard calculation (see [2] or [-4]) using (3.6) and the duality of M and 2f/yields 

U~v~=P~u~=u~P~=v~Q~. 

Combining this and (3.7) we see that 

(3.9) ~ u ~ (x, y)LV~f(y) v (dy)= U~ V~f(x)= ~ u ~ (x, y) ~ P~t (dy, z)f(z) dz. 

Using the uniqueness theorem for potentials of measures [1; VI-I.15] this yields 
for f eb~+  

(3.10) LV~f  �9 v = ~ P~(., z) f (z) dz, 

and dually 

(3.11) f .  ( f  ~'~L)= ~ f(y) dy WM(y,'). 

Moreover (3.9) can be written as 

u ~ (x, y) ~ P~ (dy, z) f(z) dz = ~ u ~ (x, y) L v ~ (y, z) f(z) v (dy) dz 

and so for each fixed x 

(3.12) u~P~t(x, z)=~ u~(x, y)Lye(y, z) v(dy) 

almost everywhere in z. But the left side of (3.12) is e-coexcessive as a function 
of z and hence cofinely continuous while the right side is c~-(Jr, )f/) excessive, 
as a function of z and hence cofinely continuous (/~M =E). Therefore (3.12) holds 
identically. Similarly 

(3.13) P~ u~(x, z)=~ v ~ L(x, y)u~(y, z) ~(dy). 
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Now fix f gEC; .  Then 
A ^ p e ( f  M U" g)=( f  U" P~, g), 

and using (3.10) and (3.11) this equality can be written 

(3.14) ~ ( f  V~ L) U ~ g dO = ~ f CT'(LV'g)dv. 

Now from (3.12) 

f V'(z) = f  O " ( z ) - f  0 ~/3~} (z) = f U~(z) - ~ f  (J~(y) Lye(y, z) v(dy). 

But If~=l_< 1/~ flfll and so by (3.8) 

~(f  (5"L) U'gd ~<~-1 llflt ((~" 1L) ~ ' ,  g)= ~-1 ]lfll (1 ~~, g)< or, 

because 1 ~ is bounded and g~C~. Therefore we can substitute the above expres- 
sion for f V ~ into the left side of (3.14) to obtain 

( f  f'~' L) U ~' g dr, = ~ ( f  0 r L) U ~ g d ~ - ~ ~ f (J~' (x) Lv ~' L(x, y) U ~' g (y) v (dx) r (d y), 

where of course, 

Lv ~' L(x, y)= ~ L(x, dz) v~'(z, w) L(dw, y). 

Similarly the right side of (3.14) becomes 

~ f U~'(L V~' g) dv= ~ f U~'(LU" g) d v -  ~ f O~'(x) Lv" L(x, y) U'g(y) v(dx) r y). 

Consequently 
( f  O~L) U = g dO = S f  O'(LU= g) dr, 

and using the uniqueness theorem for potentials twice we obtain 

(3.15) L(dx, y) ~,(dy)= v(dx) L(x, d y) 

as measures on E x E. Perhaps we should point out that the measures on E x E 
defined in (3.15) are a-finite. This follows readily from the a-finiteness of v and 
and the fact that L and L are proper kernels as defined above (3.3). 

Recalling the definition of L and L and the fact that F=F~ for a fixed n, we 
see that 

(3.16) Is y) ~, (dy)= v (dx) K(x, dy) 

as measures on E • E - D  because E • E - D  is the increasing union of {F,}. But 
then (3.16) holds on E • E since neither side of (3.16) charges D. As before the 
measures defined in (3.16) are a-finite on E • E. 

Eq. (3.16) is the relationship that must hold between arbitrary L6vy systems 
for X and )(. Now we can modify the given L6vy systems to obtain Theorem 3.5. 
Neither v nor ~ charges semipolar sets, and U s v and ~ U~ are bounded. Now it is 
easy to find a measure 2 < ~ which is equivalent to ~ and such that U ~ 2 is bounded. 
See [6], Similarly let 2<v  be a measure equivalent to v such that 2 0 ~ is bounded. 
Now let/2 = 2 + ~. Then/2 is equivalent to v + ~ and both U ~/2 and/2 U~ are bounded. 
Obviously/2 doesn't charge semipolar sets. Hence v =(p/2 and ~ = (~/2 where q) 
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and ~5 are finite nonnegative Borel functions. Define 

N(x, dy)= q)(x) K(x, dy); l~(dy, x)=  ~2(dy, x) s 
If f g~g+, then 

f (n g) d# = ~ f (x) K(x, dy) g (y) v (dx) 

= ~f(x)F2(dx,  y) g(y) ~3 (dy)-= ~ ( f~r )g  d# 

and so N and N are dual kernels with respect to #. Finally since # doesn't charge 
semipolars and U ~ # and # U" are bounded, there exist CAF's H a n d / t  of X and 
2 respectively such that U~tf= U'(f#) and f U ~ = ( f # ) U "  for all f ~ g * .  Conse- 
quently, Uff 1 = U ~ v = U ~ (q~ #) = U~ ~o, and so d = q~ H. Similarly ,] = ~ / t .  It is now 
clear that (N, H) and (N,/4) are L6vy systems for X and )?, and that H a n d / 4  
are dual CAF's with correponding measure #. This completes the proof of Theo- 
rem 3.5. 

4. Additive Functionals 

Let A* and ~* denote the collection of additive functionals of X and 
respectively which have no infinite discontinuity. In particular A c A* and A c ~*. 
It is known that any AeA* may be written uniquely as 

(4.1) A = A c + A" + A q 

where A c is continuous, A" is a pure jump natural AF, and A q is a pure jump AF 
which is quasi-left-continuous (q.l.c.) in the sense that every discontinuity of 
t ~ A~ is also a discontinuity of t ~ Xt t. (An AF, B is pure jump if Bt = ~ ABs 

s < t  

where ABs=Bs-Bs_.) In [7] and 1-8 3 Revuz has given a complete description 
of the continuous and natural pure jump elements of A*. This section contains 
an analogous discussion of the q.l.c, pure jump elements of A*. The results of 
this section together with those Revuz give a complete description of all AF's 
in A*. 

Let A in A* be a pure jump q.l.c. AF of X. Then it is known, at least if X is 
special standard, that there exists a finite nonnegative Borel function, 49, on E x E 
vanishing on the diagonal, D, such that 

(4.2) At = ~ 49 (Xs_, Xs). 
s<mt 

See [5] or [10]. The fact that this representation holds in general (for dual proc- 
esses) is contained in [9]. (As usual, the equality in (4.2) means equivalence.) 
We are now going to characterize those 49 such that (4.2) actually defines an 
A F - o b v i o u s l y  any such AF is pure jump and q.l.c. Our discussion follows that 
of Revuz [83 very closely. In what follows (N, H) and (/~,/~) are L6vy systems 
for X and )? satisfying the conditions of Theorem 3.5, and # denotes the measure 
corresponding to H and/~.  We fix an ~ > 0 and assume, as we may, that H a n d / t  
have bounded e-potentials. 

1 It is an immediate consequence of the quasi-left continuity of X that if (9 is an increasing 
sequence of stopping times with limit T, then A~(~Aq(T). Conversely if X is standard and this 
condition holds, then A q is q.l.c. 
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We begin by characterizing the bounded �9 such that (4.2) defines an AF. 

(4.3) Theorem. Let �9 be a bounded nonnegative Borel function on E x E which 
vanishes on the diagonal. Then A defined by (4.2) is an AF of X if and only if there 
exists an increasing sequence {E,} of Borel subsets of E whose union is E and such 
that: 

(i) S u'( x, z) S 49(z, y) Ie,,(y) N(z, dy) p(dz) is bounded and integrabIe for each n. 
(ii) I f  IF, is the hitting time of E~, then T= lim T, > 0. 

In this case {E,} may be chosen so that T> R A ~ where R=inf{ t :  At= oo}. 

Proof Suppose first of all that A is an AF. By multiplying A by a constant 
we may assume without loss of generality that ~ <  1. Now AAt= 49(X~_, Xt) for 
each t and since ~b(x, x)=0,  AAt>O for at most countably many t. By our assump- 
tion on ~, AAt<I for all t. Define 

Mt = l l  (a - A As). 
s<=t 

Then M is a MF such that dAt=- (Mt_ ) - ldMt  and R=inf{ t :  M r = 0 } =  
inf{t: At--oo}. Clearly R > 0  since A is an AF, and so all points are permanent 
for M. Let (V ~) be the resolvent of M, then U~ V~g= U~g - V'g i fgEbg.  See [4]. 
Now let f be a bounded, integrable, and strictly positive Borel function on E, 
and define r V~f(x). Then qo is strictly positive and finely continuous be- 
cause EM = E, and 

U~ q) = U,~ V~f = U ' f  - V~f <= U~f <a -~ IlflP. 

Let E , =  {q)> 1/n}. Then each E, is a finely closed Borel set and E,'fE. Also 
U~ (x, E,) <= n U~ ~o (x) <= n U~ f ( x). Therefore U~(., E,) is bounded and it is integrable 
because (1, U'f )  = (1 ~ ,  f )  < a-l(1, f )  < oo. But 

co 

U~(x, E,)=E x ~ e -~' IE,(X,) dA, 
0 

(4.4) = U ~ e - ' t  ~(X~_, Xt) IE, (X~) 
t 

= u'(x, z) S y) X(z, dy) #(dz), 

and so the sequence {E,} satisfies (i). As for (ii), observe that if r 1/n, then 
P~(T,>0)=  1 since x is not regular for E~= {r 1/n}. But E =  {,J {q~> 1/n} and 
so P ~ ( T > 0 ) = I  for all x. 

Let us show next that T > R  a ~. Since ~o(Xr,)<l/n we have with R defined 
in the preceding paragraph 

1/n>E~{e-~r"Mr, qg(XT.); T~<R} 

= E ~ { i e - ' t M ,  f(Xt)dt;  T ,<R} ,  

and letting n --* oo we obtain 

E~{~Te-~tf(X,)M~dt;A}=O 

where A =  {T,<R for all n}. But f is strictly positive and so T>R/x  ~. 
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Conversely suppose there exists a sequence {E,} satisfying (i) and (ii). Actually 
in the following argument we will assume only (ii) and a weaker version of (i): 

(4.3 i') ~ u ~ (x, z) ~ q)(z, y) le, (z) Ix, (y)N(z, dy) # (dz)< 

for each n and x. Define 

A~ = ~, ~(Xs_,  Xs) I~, (X~_) IE. (X~). 
s<_t 

oo 

Then E ~  e - ' t  dA~ is just the integral appearing in (4.3i') which is finite by as- 
0 

sumption. Therefore each A" is an AF of X with a finite e-potential. Obviously 
At = lim A~. According to the remark at the bot tom of p. 59 of [1] 

n 

T,=inf{ t>0 :  X t ~ U  . or Xt_eEr 

and hence, A t = A~ if t < T,. Therefore At < oo if t < T, and since T > 0 it follows 
readily that A is an AF. See, for example, Lemma III.2 of [8]. This completes 
the proof of Theorem 4.3. 

It is natural to ask if ~ is such that (4.2) defines an AF of X, then does -4t = 
�9 (2~, 2~_) define an AF of X. We answer this question for bounded �9 before 

s<~t 

passing to the discussion of general (b. 

(4.5) Theorem. Let ~b be as in the statement of (4.3) and let A be defined by (4.2). 

(a) I f  A is an AF of X which is finite on [0, 0, then there exists a polar set P 
such that At= ~ ~(X~,X~_) is an AF of f(  restricted to E - P  which is finite on 
[0, ~). ~ '  

(b) Suppose that semipolar sets are polar and that A is an AF of X. Then there 
exists a polar set P such that .4 is an AF of f ;  restricted to E - P .  

Proof We begin with a lemma that is of some interest in itself. It is closely 
related to facts contained implicitly in [1] and [8] 

(4.6) Lemma. There exists an increasing sequence {B,} of Borel subsets of E 
whose union is E such that if S. is the hitting time of B~. by f(, then S. T "(, and with 
the property that for any measure v with U~v integrable, v(B.)< oo for each n. 

Proof Let B.--{1 t ~ > l / n } .  Clearly B.TE. If v is a measure with U~v inte- 
grable, then 

v(B,)<n ~ (1 Cry) d v < n d ,  U ~ v)< ~ .  
Bn 

Let ~ = 1 U~. Then q5 (Xs.) < 1/n and so 

1/n>E~{e-'S"s S ,<~}=F,~{s!e -~ td t ;  S , < ( } .  

Now letting n ~ m we see that S, T ~. 
We return now to the proof of Theorem 4.5. Assume that A is an AF of X 

that is finite on [0, O- Let {E,} be the sequence mentioned in Theorem 4.3. Define 

v,(dz) = [~ cb(z, y) I~~ (y) N (z, d y)] I~(dz). 
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Then U" v. is just the integral appearing in (4.3 i), and so it is bounded and in- 
tegrable. Let {B.} be the sequence in Lemma4.6 and let C . = B . n E . .  Then 
C.TE, and v . (C. )<oe  for each n. Next define 

= y) dy) .  
C~ F 

Clearly ~,, is a measure carried by C. and ~.(C.)<v.(C.)< or. Therefore 

(~. (U, 1)=(~., U=I)_<c~-~ ~.(C.)< oo 

and so ~. 0" is integrable and hence finite except on a polar set P.. Therefore 
writing ~ (x, y) = ~b (y, x), 

~.(dy) u~(y, x )=~  #(dz) Ic. (Z ) Ic.(y ) ~(z, y) N (z, dy) u~(y, x) 

= ~ # (dy) Ir (z) Ic. (y) ~ (y, z) N(dz, y) u" (y, x) 

is finite provided xCP.. But this last integral is just the dual of (4.3i') with respect 
to the sequence {C.}. 

Let S. and T. be the hitting times of B; and E~ respectively by )(. We know 
that S. T ~. We claim that there exists a polar set Q such that T. T ~ almost surely 
px for x q~Q. Let us assume this for the moment and use it to complete the proof 

c _ _  c c of (4.5 a). Let P = Q w (U P,,)- If R. is the hitting time of C . - E .  u B., then R. = 
n 

min(T., S.)]'~ almost surely px for x e E - P .  Consequently ~ and {C.} satisfy 
the conditions (4.3 i') and (4.3ii) relative to )? restricted E - P ,  and so 

2 L)= E Xs_) 
s<__t s<=t 

is an AF of X restricted to E -  P which is finite on [0, ~). 
To complete the proof of (4.5 a) it remains to show that T=  lira ~, = ~ almost 

surely P~ for x not in some polar set Q. By assumption P~(T--~)=I  for all x, 
and the desired conclusion now follows by the argument on p.281 of [1]. See 
also the proof of Theorem W.1 of [8]. 

To establish (4.5b) it suffices in view of the above to show that P ~ ( T > 0 ) =  1 
for x not in some polar set under the assumptions of (4.5b). But T,+-~ ~, for each n, 
and so T~--~ T. Now T is exact and P ~ ( T > 0 ) =  1 for all x, but T need not be exact. 
Let T* be the exact regularization of T. See section 6 of [2]. Thus T and T* are 
dual exact terminal times, and by Theorem 3.2 of [2], p x ( ~ ,  > 0 ) =  1 for x not in 
some semipolar, and hence polar, set. Let f be a bounded strictly positive Borel 
function. Then 

(4..7) f A, ^ ^ ~ ~ U Pr P~.>f^~UPr ^~' 

and it is immediate that f *~ ^~ U P~, is the regularization of f U~ PC- Therefore by 
Doob's Theorem and the assumption of (4.5 b) the last two terms in (4.7) agree 
except on a polar set. Consequently P~'(T= T*)= 1 except for x in a polar set, 
and so P ~ ( T > 0 ) =  1 except for x in a polar set. This completes the proof of Theo- 
rem 4.5. 
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The case in which 4~ is unbounded is reduced to the bounded case by the 
following result. Although the proof is exactly the same as in [83 we include it 
for completeness. In particular, it follows that the assumption that �9 is bounded 
may be dropped in the hypotheses of Theorem 4.5. 

(4.8) Proposition. Let �9 be a nonnegative finite Borel function which vanishes 
on the diagonal. Let ~P= 1 - e  -~. Then At= ~ ~(Xs_,  Xs) is an AF if and only if 

s<_t 
Bt = Y', ~(Xs_,  X~) is, and when this is the case 

s<t 

inf{t: At= oe} =inf{t:  Bt = oe}. 

Proof. Obviously 0 =< IP < 1. Let M t = 1~ [1 - k~(Xs_, X~)]. Then A t = - log M t. 
s<t  

If B is an AF, then M is a MF and R--inf{t:  Mt=O}=inf{ t :  Bt= oe} >0. Con- 
sequently A is an AF and R=inf{ t :  At = or}. I fA is an AF, then so is B because 
1 - e - t < t  for t>0.  
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