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Problem 

Abstract. A systematic perturbative procedure (the method of singular pertur- 
bation) is developed to follow the time evolution of an enzyme catalyzed reaction 
with one intermediate product over the entire time domain of interest. The pertur- 
bation parameter is the ratio of the enzyme concentration to the Michaelis-Menten 
constant. The treatment leads to a meaningful definition of the so-called quasi- 
steady state often invoked in the description of enzyme catalyzed reactions. The 
legitimacy and tile domain of validity of this assumption are examined in the 
context of both the reversible and irreversible Michaelis-Menten kinetics. 

Key words: Michaelis-Menten kinetics - Singular perturbation - Quasi-steady 
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1. Introduetlon 

Consider the enzyme catalyzed chemical reaction 

kl k2 
E +  S ~ E S  ~ "  E +  P ,  (1) 

k-1 k-2 

where E S  is the enzyme-substrate complex. Let e, s, x, and p stand for the con- 
centrations of the e~Lzyme, the substrate, the enzyme-substrate complex and the 
product respectively. If the system is closed, there are two conservation require- 
ments: 

s + p + x = s 0 ;  e + x = e 0 .  (2) 

It suffices therefore to consider the rates of change of s and x: 

ds 

dt  

dx  

dt  

- k _ l x -  k1r = k - i x  - kls(eo - x )  

- k l e s  - ( k - i  + k2)x  + k_2ep 

= klS(eo - x)  - (k -1  + k2)x  + k-2(eo - x)(so - s - x)  . 

(3a) 

(3b) 
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We use the initial conditions 

s(0) =So and x(0) = 0 .  (4) 

Following Reich and Sel'kov (1974), it is convenient to cast these equations in the 
so-called canonical form (in terms of dimensionless variables). Define the dimen- 
sionless parameters 

e0 k-1 k-2 
e -  , ~ - 1 -  , fl - (5a) 

Km k - 1  + k2 k l  

and the dimensionless variables 

S X 
S -  , X -  , r = k l e o t  (5b) 

Km eo 

where K m = (k_ 1 + k2) / k  I is the Michaelis-Menten constant. The canonical equations 
now read 

d S  
--  ~ - 1  x --  S ( 1  - X )  ( 6 a )  

dr  

d X  
e - -  = S(1 - X )  - X + [3(So - S - eX)(1 - X ) .  (6b) 

d r  

Eq. (4) can now be rewritten as 

SO 
S(0) - - So and X(0) = 0 .  (7) 

Km 

Although Eqs. (6) look deceptively simple, their analytical solutions have remained 
elusive. In fact, closed solutions of Eqs. (6) are known only in the special ease of/3 = 1. 
There have been, however, numerous attempts (Hommes, 1962a, b; Walter and 
Morales, 1964; Wong, 1965; Walter, 1966, 1974; Stayton and Fromm, 1979; Schauer 
and Heinrich, 1979) to determine the domain of parameters for which the quasi-steady 
state assumption may hold, or conversely to find if it may not hold for some special val- 
ues of one or more of the parameters (the rate constants). Thus, it has been suggested 
(Walter, 1974) that for/3 > 1, the use of this assumption could lead to errors. 

In this paper, we seek to develop a systematic perturbative procedure to find 
analytical solutions for the kinetic Eqs. (6). At least for those enzyme systems charac- 
terized by a small enzyme concentration, the use of e [defined in Eq. (5a)] as a per- 
turbation parameter suggests itself. A naive application of such a perturbation de- 
velopment in powers of E leads to an apparent violation of the conservation re- 
quirements Eq. (7). It is easily verified that on setting e = 0, Eq. (6b) yields 

x(r) -/3So[1 - 

s ( T )  = 

[ 1  - x ( r ) ] ( 1  - t5)  
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It now follows that (since X(O) = 0) 

So = s ( 0 )  - - - - -  
1) 

So ~ So, 

which is clearly absurd. This necessitates formulation of the perturbation procedure 
along more sophisticated lines and we do so in the following sections. 

2.1. The Method of Singular Perturbation 

Physically there exist two characteristic time scales in the system: a "short-time" scale 
characterizing the rapid evolution of the intermediate complex to the quasi-steady state 
during which the subslLrate concentration remains virtually unaltered and a "long-time" 
scale over which both the substrate and the intermediate complex concentrations 
evolve to their equilibrium values. The perturbation procedure employed exploits the 
existence of these two time scales. Figure 1 shows the essential ingredients of our 
approach at a glance. The time evolution of the system is broken up into two parts, a 
short-time and a long-time evolution. Two sets of kinetic equations are written down, 
one for each description. The short-time solutions satisfy the prescribed initial condi- 
tions, but have the wrong asymptotic behaviour (do not yield the equilibrium). The 
long-time solutions, on the other hand, yield the equilibrium, but violate the initial 
conditions. Both solutions have a region of overlap over an intermediate time domain, 
which we term the "matching region". The solutions are matched (in each order of the 
perturbation in e) by means of the matching principle which will be explained in a subse- 
quent section. 

2.2. The Short-Time Evolution 

The time evolution immediately following the commencement of the reaction is de- 
scribed on the short-time scale. Following the recipe of the method of singular 

Fig. 1. The basic ingredients of the singular 
perturbation procedure 

Kinetic equations 

Oimensiontess form 
/ 

( Vari~zbt e ~ = z/•-) 

(FPrescribed initiot conditions 

Short-time solutions 
HATCHING PRINCIPLE 
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(Voriobte z) 
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perturbation (Van Dyke, 1975), we define the "strained variable" 

T 
= - =  (k-1 + k2) t .  (8) 

It must be emphasized that no matter how small e is, u = O(1) by proper choice ofT. 
This serves to define roughly the extent of the short-time domain. Eqs. (6) can now 
be transformed to the form 

- e [ ~ - l X  - S(1  - X')] (9a)  
d~ 

ds  
- S (1  - X ) - ) ~  (9b)  

d? 

for the irreversible reaction scheme (/3 --- 0, i.e., the product formation is irreversible) 
and 

d~ 
-- E[~- I  X -- S ( l  - ~ ]  ( 9 a )  

d~ 

ds  
- S (1  - ~ - X + f l ( S o  - - S  - e.~T')(1 - )~) (9c)  

d~ 

for the reversible reaction scheme (/3:/: 0). 
For both schemes, the initial conditions are 

~(o) -- So; ~?(o) = 0. 

All variables referred to the short-time scale carry bars over them as in Eqs. (9). 
We refer to Eqs. (9) as the short-time kinetic equations and note in passing that 
this terminology is meaningful only in the context of a perturbation expansion in e. We 
deal with systems in which e may be regarded small. Accordingly we make perturba- 
tion expansions in e: 

X(~) = Xo(~) + ~X,(~) + . . .  (lOa) 

_~(~) = X,o(t) + e s  + . . .  (lOb) 

Zeroth Order: We substitute the above perturbation expansions in Eqs. (9) and 
equate terms of the same order in e. Eq. (9a) now yields 

d ~  
- 0 or ~o(~) = So ( l l a )  

d~ 
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for both the reversiNe and irreversible schemes. In fact, the reversible and irreversible 
schemes are indistinguishable in the zeroth order, as both Eqs. (9b) and (9c) lead 
to 

dX-O 

dR 
- S0(1 _ff~o) _ X . o ,  

whose solution is 

S0 
X'~ r) - - -  {1 - exp [ - ( 1  + So)~']} . ( l l b )  

(1 + s0)  

It may be mentioned that use has been made of the initial conditions 

X~ = s0 

and 

X'~  = o 

m. 
(SJ(O) = 0 for j > O) 

(Xh{O) = 0 for j > O) 

in the derivation of the above. He re j  denotes the order of the perturbation. In other 
words, the zeroth order solutions satisfy the prescribed initial conditions, while all the 
higher order solutions are identically zero at the initial time. 

First Order: From Eqs. (9a) and (10), we obtain for both the reversible and irreversible 
schemes 

dS 1 
_ ~_~ys _ So(1 - T~ ~ with S~(O) = O. (12) 

d~ 

Thus 

X~(~) = _ (~-1 + So)So (1 - ~-1)S0 _~- 
(1 q- So) 2 (1 -4- So) 

(~-~ + So)So 
+ (1 + S0) 2 exp [ - ( 1  + S0)~'], (13a) 

which has the following asymptotic form for large -?: 

l i m  S~(~)  - (~-1  + So)So (1 - ~ _ O S o  
( 1 3 b )  

.? __+ oo (1 -4- So) 2 (1 -}- So) 

One obtains from Eq. (9c) for the reversible scheme 

d ~  ~ 

d~ 
- - q -  ( 1  -}- S o ) ~  1 ~-~ ~ 1  _ z~[-O~l q _ / ~ ( . ~ o  2 _[_ z~O~l  _ ~1  _ ~ f , o ) ,  
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whose solution is 

So + 2 ~ - 1 -  1 
xa(f) = So - (1 +-So) ~ 

(1 -- ~ -1 )_  
1" 

(1 + 50) 3 

+ 
{(~-1 (1 "b 50) 4 

+ 5o) (so + 2) - (1 + So) (~-1 + S 0 )  (1 - S 0 )  _ 
+ z 

(1 + S0) 3 

So(1 - ~-1) } 
2 ( 1 + S o )  2 f2 exp [ - ( 1  + So)f] 

(~-1 + 5o)5o 
(1 + 50) 4 

exp [ - 2  (1 + So)f]] 

2 (1 - ~-1)  (1 - ~-1)  

+ flSo (1 --{- So) 4 --I- (1 q- So) 3 f 

+ (1 -- ~-I)(So + 2) (1 - ~-1)(1 - So)_  

i i  7 S o )  4 ~- (1 -1- 50) 3 T 

5o(1 - ~-1) ) 
+ ~ j  exp [- (1  + So)R] 

2 (1 + So) 2 

(1 - ~ - 1 ) S 0  

(1 -[- 50) 4 
exp [ - 2  (1 + So)fl] �9 (13c) 

Set/3 = 0 for the irreversible case. Further, 

l im x l ( f )  = [ ( S  O -Jr- 2 ~-1 - 1)So _ (1 - ~_DSo] 
~--,~ - L (1 + So) 4 r -(1 -+-~o) 3 -J 

[2(1 - ~_l)So (1 -- ~_l)So] 
- i l L  ( l + S ~  f ( l + S ~ J  (13d) 

2.3. The Long-Time Evolution 

The time evolution subsequent to the attainment of the quasi-steady state is best 
described on the long-time scale 

7: = k leo t .  

Eqs. (6) may be taken over as they stand for the long-time description. Expansions 
similar to those in Eqs. (10) can again be made: 
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S( r )  = S~ + ,~S~(~)  + . . . . .  

x ( ~ )  = x ~  + ~x~( r )  + . . . . .  . 

117 

(14a) 

(14b) 

It must be stressed again that the initial conditions for the long-time description are 
not the prescribed initial conditions. Instead, the quantifies SJ(0) and )Y(0) (] ~> 0) must 
be regarded as integration constants to be determined. Their actual determination calls 
for a knowledge of the asymptotic forms of the short-time solutions. A discussion of 
this point will be deferred to the next section. 

Zeroth Order: Eq. (6a) yields in the zeroth order 

dS ~ 
- ~ _ l x  ~ - s ~  - x ~  ( 1 5 1 )  

dr 

for both the reversible and irreversible schemes, while 

0 = S~ - X ~ - X ~ (15b) 

and 

0 = s ~  - x ~  - x ~ + # ( S o  - s ~  - x ~ ( 1 5 c )  

follow from Eq. (6b) fbr the irreversible and reversible schemes respectively. Solving for 
X~ from Eq. (15c), 

s ~  + #[So - s~  
X~ -) = (16) 

a + s ~  + # [ s0  - s~  " 

(Set/3 = 0 for the irreversible scheme). On substituting this expression in Eq. (15a), 
the following transcendental equation results for S~ 

(1 - ~-1 + ~-1~) + flSo In (S O - SOq) 
(1 -- ~ 1 -{- ~ - 1 # )  2 

(1 - #) 
+ S O = - r  + h .  (17a) 

(1 - ~ - i  + ~ - , # )  

For the irreversible scheme, Eq.(17a) simplifies to the form 

In S O + S O.= - ( 1  - ~ _ a ) ( r -  h ) .  (17b) 

In Eqs. (17), S~ is the equilibrium substrate concentration evaluated at e = 0; h 
is an integration constant. The appendix lists the explicit forms of the equilibrium 
concentrations. Although, neither of the transcendental equations above can be 
solved in closed form for S~ nevertheless, their solution can be reduced to purely an 
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algebraic operation by essentially inverting the relationship between S O and -r. In other 
words, we specify an S o such that S o >/S o ~> S~ and determine the corresponding 
-r from Eq. (17a). 

As may readily be verified from Eq. (16), 

d X  ~ dS  ~ 1 
- ( 1  - / ~ )  - -  ( 1 8 )  

d r  d r  [1 + S ~ +/~(So - s~  2 

Inspection of Eq. (18) shows that (since d S ~  ~ 0)X~ increases or decreases 
monotonically from its quasi-steady state value X~ to its equilibrium value X~q 
according as whether/3 > 1 or/~ < 1. 

Firs t  Order: Eqs. (6) yield in the first order 

dS 1 
- (~-1 + S~ X1 - $1(1 - X ~  ( 1 9 a )  

dr 

d X  o 

dr  
-- [1 -{- S O q- /~(S  0 - S ~  1 '}- (1 - X~ - / ~ ) S  1 

- f iX~  - X ~  ( 1 9 b )  

Eliminating X a between these equations and solving for Sl("g), one  obtains 

cS ~ + d cS ~ + d I-1 - a 
+ [ - - ~ -  In (cS  ~ + d) 

SI(T) = G aS ~  b aS ~ + b I_ c ~ 

+ 
( 1 - a ) ( b -  1 + c ) + ( 1 - c ) c - a d  aS ~  

In cS o + d_] (1 - c - b)  2 

+ - -  
cS ~ + d  

( aS  0 + b )  2 

(ad - c + c2)(1 - a) (b  - 1) 
+ - -  (20)  

ac2(c + b - 1)(aS ~ + b) 

Here G is an integration constant and a, b, c, and d are given by 

a = ( 1 - f l ) ;  b =  l + f l S 0 ;  

c = 1 + ~-1(/3 - 1); d = - ~ _ l f l S o .  (20a) 

Substituting in Eq. (19b) the above expression for $1(+), Xl('r) may be obtained. We 
shall not reproduce here this expression. 

2.4. The Ma tch ing  Principle 

As mentioned earlier, the initial values SS(0) and XJ(0) remain to be determined. These 
are determined by appealing to the principle of "asymptotic matching" (Van Dyke, 
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1975). Stated in simple terms, this principle asserts that the "long-time limit" of the 
short-time solutions must coincide with the "short-time limit" of the long-time so- 
lutions. Formulated in mathematical terms, this implies for the zeroth and the first or- 
ders of perturbation 

lim {S~ - S~ = 0 (21a) 
~- ----> c~ 

and 

lim ~ S ~ ( ~ ) -  $ 1 ( 0 ) -  t(dS~ 
~--' t \ d r ] ~ = 0 } = 0 .  

(21b) 

Eqs. ( l la )  and (21a) taken together imply that S~ = S 0. Setting ~- = 0 in 
Eqs. (17), the integration constant h may be determined. Further, it follows from 
Eq. (16) that 

S o  
X~ - - - ,  (22) 

1 + S o  

which is precisely the asymptotic limit of ]t'~ as ? ~ ~ [see Eq. (1 lb)]. Note that 
X~ 4= 0! Using the known asymptotic form for ~1(§ [Eq. (13b)] in Eq. (2 l b), it turns 
out that 

S l ( 0  ) = _ So)So 
(1 + So) 2 ' (23)  

incidentally, use has been made of Eq.(15a). Putting in this value of $1(0) in Eq. (20), the 
integration constant G may be determined. 2"1(0) may be determined by proceeding 
along the same lines. 

3. Discussion 

The principal result of this paper is that it presents for the first time analytical solutions 
of a simple problem in enzyme kinetics, albeit by a perturbative procedure. Figures 2, 3, 
and 4 display the results graphically for/3 < 1,/3 = 1, and/3 > 1 respectively. Note that 
the concentration of the intermediate complex and the dimensionless quantity plotted 
in these figures are related by x ~ + e x  1 = e0(X ~ + eXa). We use the HP-9815 A 
calculator together with the plotter HP-9872 A to facilitate the evaluation of the 
complicated formulae derived in this paper. One observes in both Figs. 2 and 4 a well- 
defined plateau-like region, which we term the quasi-steady state region. Note that 
these are semi-log plots. During this phase of the evolution, the concentration of the in- 
termediate complex is apparently time independent. We may term the "width" of the 
plateau-like region as the "life-time" of the quasi-steady state. Prior to the attainment of 
the quasi-steady state, the enzyme-substrate complex evolves very rapidly and this evo- 
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X 0 § 6X I 

121.1 

~. ~ . . . . .  aOa g 
4 ~ 4 ~ 1 m I I 

Fig. 2. Time evolution of the enzyme-substrate complex (the sum of zeroth and first order terms in 
dimensionless units) for/3 < 1 ~ = 0 . 1 ) .  Short-time solution. - . . . . . .  Long-time solution. The re- 
gion of overlap of both solutions is the matching region, i- = (k_ 1 + k2)t. Parameters: S o = 0.8, ~_1 = 0.1, 
E = 0.01 

0.5 

X 0 + ~X 1 

~ 
_O _ 1  

~ . 1  X § 6X 

I I 
m 

LOO 

Fig. 3. Time evolution of the enzyme-substrate complex for/3 = 1. (So, ~-1, ~ as in Fig. 2) 

lution is described on the short-t ime scale. Following the at tainment of  the quasi-s teady 
state, the evolution is relatively slow and tapers  off to the equilibrium. 

A few remarks  about  the matching principle at this juncture  are in order. Despite its 
abst ract  character ,  it has a simple physical  meaning: it bridges, as it were, solutions that  
cor respond to two different t ime domains.  I t  is seen that  the "matching region" (the re- 
gion of  overlap of  the short  and long-time solutions) extends well beyond the plateau or 
the quasi-s teady state region. This vindicates the matching procedure.  A n  increase of  
either e or/3 (/3 > 1), however, has been observed to diminish the extent of  overlap of  the 
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~ 1 . 8 .  

X 0 + s  1 

~" z ~ ~ ' ~  x 6 .x  
I 1 

LOG 

Fig. 4. Time evolution of the enzyme-substrate complex for /3 > 1. (/3 = 1.5; So, ~-1, e as in 
Fig. 2) 

_0 
P + ~P 0 

~ . 8  P + 6 P l  
~ . . . . . . . . . . . . . .  

, -  

0 . 6  

13.4 

, LOG ~ - ~  ~ .~ ~ ~ , ,  
I 

Fig. 5. Time evolution of the product (the sum of zeroth and first order terms in dimensionless units; all pa- 
rameters as in Fig. 2) 

two solutions. In the perturbation development, terms containing the product  e/3 have 
been regarded as O(0.  This would be clearly invalid if, for any given e,/3 increases 
indefinitely. With increasing e and/or/3,  the width of the plateau region decreases 
(Walter, 1974). 

The case/3 = 1 (Fig. 3) is particularly interesting. Then, as shown by Eq. (18), X~ 
is independent of 'r .  In fact, it m a y  be shown by induction that X)(T) is independent of-c 
for all j .  This has the immediate consequence that 

X ~q = l im {X'~ + eXl(~) + . . . .  } .  
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For/3 < 1, the concentration of the intermediate complex exhibits an extremum, 
while for/3 > 1, it increases monotonically to its equilibrium value. Nevertheless, even 
in the latter case a well-defined plateau region is noticeable (Fig. 4) provided that/3 is 
not too large./3 = 1 marks the transition between these two types of solutions. 

From the conservation requirement Eq. (2), one obtains 

P =p /KM = So - S - e X .  (24) 

Hence, 

pO + ep1 = S o -  S ~  eS 1 -  eX ~ (24a) 

to first order in ~. This enables us to examine the time evolution of the product. On the 
short-time scale, the barred quantities (S ~ S ~, X ~ are used instead. The product 
concentration and the dimensionless quantity plotted in Fig. 5 are related byp ~ + Ep 1 = 
Km(P ~ + ~P~). The validity of the so-called integrated versions of the Michaelis-Menten 
equation (Glick et al., 1979; Stayton and Fromm, 1979), may be established by 
comparing their predictions with the above plot. 

Within the scope of our treatment, a small ~ appears to ensure the existence of a 
well-defined quasi-steady state. For/3 = 1 or close to 1, the assumption of a quasi- 
steady state again seems to be well-founded. In biological systems, E may not ne- 
cessarily be small. The first order corrections evaluated in this paper may then become 
sizeable and significant. In the literature, incorrect statements appear (Stayton and 
Fromm, 1979; Schauer and Heinrich, 1979) with regard to what one must assume to 
derive the so-called integrated Michaelis-Menten equations. These stem either for want 
of rigour or because the canonical form of the kinetic equations are not employed. In- 
spection of Eq. (18) clearly shows that dX~ 4: O. Nevertheless, the left-hand side of 
Eq. (6b) can be set equal to zero [since it is of O(E)] in the zeroth order approximation. 
Thus, there is no inconsistency between a nonzero dX~ and the neglect of~dX/d-r in 
the zeroth order. For precisely the same reason [see Eqs. (24)], dP/dT may be set equal 
to - d S / d T  in the zeroth order (except during the short-time evolution). 

We would like to conclude with some observations regarding the advantages of our 
method over numerical integration procedures. In the special case of/3 = 1, we have 
compared our results with the exact analytical solution. They agree remarkably. 
Secondly, the dependence on the parameters is explicit in our solutions (even if 
somewhat clumsy), whereas, to extract this information by means of numerical 
methods, a good deal of computational labour is called for. Thirdly, unlike analytical 
solutions, numerical techniques cannot yield very limited information such as the 
values of the concentrations at some specific instant of time or over some specific phase 
of the evolution, should this be needed. The extension of the present treatment to 
reactions with multiple intermediate products is straightforward and reveals some very 
curious features. These will be reported elsewhere. 

Appendix 
The equilibrium concentrations are given by 

Seq 
X e q - - -  

~-1 -}- Seq 
(A1) 
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with 

{ ~ - 1 ( ~ - 1  - -  1 - -  / ~ - i )  -}- ~ - I /~So  - ~ ' ~  1} 
Seq = 

2 (1 - ~-1 + fi~-l) 

[ (~-1(~-~ - 1 - f l ~ _ ~ )  + ~ - j f l S o  - s t i r - z }  2 + 4 ~_21flSo(1 - ~ 1 + f i ~ - ~ ) ]  1/2 
+ (A2) 

2 ( 1 - ~  1 + / ~  2) 

S~ = Seq (e = 0) - . (A3) 
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